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ABSTRACT

A Kirkman Triple System (KTS(v)) is a resolvable (v,3,1)—BIBD;
it is well-known that such a system exists if and only if v = 3 modulo 6.
In this paper we investigate the following problem: for which w =3
modulo 6 do there exist KTS(3w), KTS(3w+6) and KTS(3w+12), each
containing a sub-KTS(w)? We are able to solve this problem for all but
four values of w.

1. Introduction

Kirkman Triple Systems have been the source of an intense amount of study since
they were first introduced well over a century ago by T.P. Kirkman in his famous
‘Schoolgirls’ problem (see [4] for a historical account and references to this problem).
It was not until 1971 that a complete solution to the problem of determining the spec-
trum for these designs appeared:

Theorem (Ray-Chaudhuri and Wilson, [4]). There exists a Kirkman Triple System
KTS(v) if and only if v = 3 modulo 6.

We can think of a KTS as being a triple (X,B,P) where X is the set of points, B
is the set of blocks and P is a partition of B into subsets (called parallel classes), each
parallel class forming a partition of X. Then a KTS (X',B',P') is a subsystem of
(X,B,P)if X'CX, B'CB and if for each p' € P’ there is a p € P such that p' Cp.
That is, each parallel class on the subsystem must be ‘inherited’ from the mother sys-
tem. In particular then it is easy to see that if a JXTS(v) has a (proper) sub-KTS(w),
it must be that v 2> 3w. If v = 3w,3w+6 or 3w+12 then we will call such a subsystem
a mazimum subsystem, since in these cases a KTS(v) could not contain a subsystem
with more than w points.

The general problem of determining the existence of Kirkman Triple Systems with
subsystems of a given size was the subject of a recent paper by one of the authors, who
obtained the following result.

Theorem 1.1 (Stinson, [9]). Given v and w with v = w =3 modulo 6 and v > 4w—9
there exists a KTS(v) containing a sub-KTS(w), except possibly when v = 81 and
w=15,0or v =87 and w = 2],

In view of this result one only need consider KTSs with ‘large’ subsystems. A
particularly interesting sub-problem of this is to determine the spectrum for KTSs
with maximum subsystems, and it is with this problem that we are herein concerned.
We will prove the following result.

Theorem 1.2. Given any w =3 modulo 6 there exists a KTS(v) containing a sub-

KTS(w) where v = 3w,3w+6 or 3w+12, except possibly when v = 3w+12 and
w = 45, 51, 63 or 87.
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Of central importance to our work will be the notion of a group-divisible design.
A group-divisible design (GDD) is a triple (X,G,B) where X is a set of points, G is a
partition of X into subsets (called groups) and B is a collection of subsets of X
(blocks) such that
(i) [B,-nGjl <1forall B; €B and G; €G, and
(ii) each pair of points from distinct groups occurs in exactly one block.
An sncomplete group-divisible design (IGDD) occurs when we assign to each
G; €G a (possibly empty) subset H; C G, and replace condition (ii) by
(iiY a pair of points x €G;, and y €Gj, () # j) occurs in exactly one block unless
z €H; and y €H,, in which case z and y do not occur together in any block.

Note that when all H; = (5 an IGDD is just a GDD. We will describe GDD's and
IGDD'’s by means of an exponential notation: a K —~GDD of type g'l‘g;’...g:' is a GDD
in which there are t; groups of size g;, t = 1,...,r and in which each block has size from
the set K5 a K—IGDD of type (g),h,) " (g2,h2)" * * * (g,,h,)" is an IGDD with ¢, groups
of size g;, each one assigned a ‘subgroup’ of size h; in the aforementioned sense, and in
which each block has size from the set K. When some h; = 0 we will suppress it; thus
a 4=IGDD of type (9,3)'6' means a 4—IGDD of type (9,3)%(6,0)". In some cases it will
be convenient to say instead K—GDD of type S, where S is the multiset consisting of
t; copies of g;, or K—IGDD of type S, where S is the multiset consisting of t; copies
of the (ordered) pair (g;,h;), where ¢ = 1,...,r.

The following construction is essentially equivalent to construction 4.4 in [3].

Construction 1.3. Let (X,G,B) be a group-divisible design and let
w:X —2Z* U {0} and d:X — Z* U {0} be non-negative integer functions on X,
where d(z) <w(z) for all £ €X. Suppose that for each block & €B there is a
K—IGDD of type {(w(z),d(z)):xz €b} and that for some fixed non-negative integer a
there is a X—GDD on a + )} w(x) points having a group of size a and a group of

1€G;
size Y} d(z), for each G; €G. Then there is a K ~GDD on a + ¥ w(x) points hav-
IEG,‘ z€EX
ing a group of size a and a group of size Y] d(z).

TEX

A group-divisible design is called resolvable if its block set can be partitioned into
subsets (parallel classes), each parallel class forming a partition of the point set. In [8]
the authois considered the problem of constructing resolvable 3—GDDs and obtained a
result which implies the following.

Theorem 1.4. Let g and u be given with gu = 0 modulo 3 and g(u=1) =0 modulo 2,
(9,u) # (2.3), (2,6), (6,3). Then there exists a resolvable 3—GDD of type 9", except
possibly when g = 6 modulo 12 and u = 11, 14, or ¢ = 2 or 10 modulo 12 and u = 6.

A frame is a group-divisible design (X,G,B) whose block set can be partitioned
into holey parallel classes, i.e. each holey parallel class is a partition of X —G; for some
group G; €G. The groups in a frame are referred to as holes. Frames were first
introduced in connection with the study of Room Squares (see e.g. [13], [3]), while
frames with more than one block size have been used by one of the authors in connec-
tion with the g*)(v) problem (see [5], [6] and [7]). We are concerned here with a class
of frames called Kirkman frames, which are frames in which every block has size 3.
These designs were studied by Stinson (9], who obtained necessary and sufficient condi-
tions for the existence of Kirkman frames with uniform group sizes:

Theorem 1.5. There exists a Kirkman frame of type g if and only if g is even,
u 2> 4 and g(u—1) = 0 modulo 3.
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Remark. It is noted in [9] that in a Kirkman frame (X,G,B) there are é—lGA holey

parallel classes that partition X—G, for each G; €G. In particular then, it is not dif-

ficult to see that a Kirkman frame of type g"’ is equivalent to a 4—IGDD of type
3 1

(-é‘g,;z—g)". (For a more detailed discussion of this relationship the reader is referred

to [10].)

Kirkman frames (and other classes of frames) can be built from group-divisible
designs by means of the following simple construction (which, in view of the above
remark, is very similar in nature to construction 1.3).

Construction 1.8 ([9], Construction 3.1). Let (X,G,B) be a group-divisible design
and w:X — Z* U {0} be a non-negative integer function on X (w is called a weight-
ing). Suppose that for each block b € B there is a Kirkman frame of type {w(z):z€b}.
Then there is a Kirkman frame of type { 33 w(z):G,;€G}.

IGG,‘

A transversal design TD(k,n) is a group-divisible design of type n* in which
every block has size k. It is well-known that a TD(k,n) is equivalent to a resolvable
TD(k—=1,n), which in turn is equivalent to k—2 mutually orthogonal latin squares
(MOLS) of order n. Thus a TD(3,n) exists for all n > 0 and a TD(4,n) exists for all
n >0 except n = 2,6. It has been known for some time (see e.g. [12]) that there exist
three MOLS of order n (and hence a TD(5,n)) for all n > 4 except n = 6 and possibly
n =10, 14. More recently, Todorov [11] has constructed three MOLS of order 14,
thus leaving n = 10 as the only unsettled value.

An tncomplete transversal design ITD(k,(n,m)) is a k—IGDD of type (n,m)*;
such a design is equivalent to k—2 mutually orthogonal latin squares of order n which
are ‘missing’ a set of k—2 mutually orthogonal latin subsquares of order m. It is well-
known that an JTD(3,(n,m)) exists if and only if n >2m, while an ITD(4,(n,m))
exists if and only if n 2 3m, with the exception n = 6, m =1 (see Heinrich and Zhu

(2)).

Finally, we will use the notation PBD(K ,v) to indicate a pairwise balanced design
on v points in which each block has size from the set K. Where there is exactly one
block of some size £ € ) we will indicate this by writing k*.

2. KTS(v) with sub-KTS(w) where v = 3w or 3w + 6

The case v = 3w is trivial: since w is odd there is a resolvable TD(3,w). Now
construct a KTS(w) on each group.

Now let v = 3w+6, w » 3, 9, 15, 63 or 81. Write v—w = 2w+6 = 12, where
t >4andt » 11,14. From theorem 1.4 there is a resolvable 3—GDD of type 68'; add a
group ‘at infinity’ of size 3t—3 to yield a 4—GDD of type 6‘(3t—3)'. Now apply con-
struction 1.8, using weight 2, to build a Kirkman frame of type 12'(6¢t—6)' (note that a
Kirkman frame of type 2% is just a KTS(9) with a point removed). Add three ‘ideal’
points to this frame and fill in KTS5(15) and a KTS5(6t~3). We obtain a KTS(18t—3)

-with a subsystem of order 6¢—3 = w, as desired (note that 18t—3 = v).
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There remain the cases KTS(3w+6) with sub-KTS(w) where w = 3, 9, 15, 63 or
81. The case w = 3 is trivial, while the cases w = 9,15 are covered by theorem 1.1.
For w =‘63 we start with a KTS(33), adding a group ‘at infinity’ of size 15 to yield a
4—GDD of type 3''15'. Apply construction 1.6 with weight 4 to build a Kirkman
frame of type 12''60' (a Kirkman frame of type 4 exists by theorem 1.5); add three
‘ideal’ points and fill in KTS(15) and a KTS(63). Finally, for w = 81 proceed as fol-
lows. Start with a resolvable 3—GDD of type 127 (theorem 1.4) and add a group ‘at
infinity’ of size 36 to yield a 4—GDD of type 12736'; apply construction 1.6 with
weight 2 to obtain a Kirkman frame of type 24772'. Add nine ‘ideal’ points and on
each hole of size 24 (plus the ideal points) construct a KTS(33) ‘missing’ a sub-KTS5(9)
(we have already ascertained the existence of a KTS5(33) with a sub-KTS(9); now just
remove the blocks from the subdesign) and on the hole of size 72 (plus the ideal points)
construct a KTS(81).

We have thus shown:

Lemma 2.1. For each w =3 modulo 6 there exists a KTS(v) containing a sub-
KTS(w) where v = 3w or 3w+6.

3. KTS(v) with sub-KTS(w) where v = 3w+12

These designs are by far the most challenging to construct, and it is here that we
will require the full power of the ideas presented in the introduction. Let W = {w=3
modulo 6: there exists a KTS(3w+12) with a sub-KTS(w)}. Our main tool will be the
following.

Lemma 3.1. Suppose that there is a group-divisible design (X,G,B) on s points in

which every block has size 2> 4 and in which there is a group G; €G where

(i) 1G;1=34,50r6, and

(ii) there is a point y € G such that every block containing y has size 5 or 6.
Then 6s—3 € W.

Proof. Apply construction 1.3 to the GDD, where w(x) =9 and d(z) =3 for all
points T % y, while w(y) = 8 and d(y) = 0. Set a = 3. Each block b in the GDD not
containing y is replaced by a 4—IGDD of type (9,3)"”l (see theorem 1.5 and the remark
following it), while each block containing y is replaced either by a 4—IGDD of type
(9,3)'6" or a 4—IGDD of type (9,3)°6" (see appendix) depending on whether the block
has size 5 or 8. Each group G; # G; is replaced by a 4—GDD of type 3216 I+l(3 IG, D!
(obtained by adding a group ‘at infinity’ of size 3|G; | to a KTS(6|G; |+3)), while the
group G; is replaced by a 4—GDD of type 3'64, 369&, 3%'12", or 3''6'15! (see appen-
dix), depending on whether |G;| = 3,4,5 or 6.

In this way we obtain a 4—GDD on 9s points with group sizes 3,6,9 and a group
of size 3s—3. Apply construction 1.6 with weight 2 and add three ‘ideal’ points, filling
in KTS(9), KTS(15), KTS(21) and a KTS(6a—3). This gives a KTS(185+3) with a
sub-KTS(6s—3), i.e. 6s—3 € W. o

Lemma 3.2. Let s > 19, s % 22. Then 65—3 € W.
Proof. We construct a GDD on s points satisfying the hypothesis of lemma 3.1.
8 = 19,20,21. Take the projective plane of order 4, viewed as a 5—GDD of type

1'%5!, and remove 2, 1, or O points from the group of size 5.

23 <8 <30. If s =23,24 or 25 remove 2, 1, or O points from a group in the affine
plane of order 5. If s = 26,...,30 add a group ‘at infinity’ of size 8—25 to the affine
plane of order 5.
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8 > 31 (s % 43,44,45,468). Choose r from the set {3,4,5,6} so that s =r modulo 4,

and add a group ‘at infinity’ of size r to a resolvable TD(fl'—‘:—(.s—r)).

s = 43,44,45,46. There is a resolvable (40,4,1)—BIBD (see [1]); add a group ‘at infin-
ity' of size 3,4,5 or 6 to this design. u}

It remains to be shown that 6s—3 €W where 1 <3 <18 or s = 22. The case
8 =1 is trivial and the cases 8 = 2,3 or 4 are covered by theorem 1.1. If s =5 or 6
we can use the 4—GDD'’s of type 3%'12" or 3''6'15! (appendix), applying construction
1.6 with weight 2 and using three ‘ideal' points. Thus we need consider only
7<s<18or s = 22,

Lemma 3.3. If s = 7,10,13,16 or 22 then 6s—3 € W.

25+1

Proof. From theorem 1.4 there is a resolvable 3—GDD of type 9 3 ; add a group ‘at
23+l

infinity’ of size 3s—3 to yield a 4—GDD of type 9 8 (35—3)'. Apply construction 1.6
with weight 2 and use three ‘ideal’ points. A KTS(18s+3) with a sub-KTS(6s-3) is
obtained, as desired. 0 \

Lemma 3.4. If s = 12 or 17 then 6s—=3 € W.

Proof. Proceed as in lemma 3.3, starting with a resolvable 3—GDD of type 15° (if
8 =12) or 15" (if s = 17) and constructing a 4—GDD of type 15°30' or 15745!. Use
construction 1.6 with weight 2, but add nine ‘ideal’ points. Fill in KTS(39) ‘missing’ a
sub-KTS(9) (a KTS(39) with a sub-KTS(9) is the case 8 = 2; now just remove the
blocks from the subdesign) and either a KTS(69) or KTS(99). o

Lemma 3.5. If 8 = 14 or 18 then 6s—3 € W.

Proof s = 14. Start with an ITD(4,(31,10)) and add three ideal points a,b,c. Let
T,,T9,T3,T4 be a block in the ITD, where x| is in the ‘missing’ subdesign. Now from
theorem 1.4 there is a resolvable 3—GDD of type 4% add a block ‘at infinity’ of size 10
to build a PBD({4,10*},34). Note that in this PBD there are blocks of size 4 which do
not intersect the block of size 10. Construct a copy of this PBD on each group of the
ITD (plus the ideal points) so that (respectively) a,b,c,z;, a,b,c,z9, a,b,c,z3 and
a,b,c,x, are blocks of size 4. This yields a PBD({4,7‘,40‘},127) (a,b,e,x),20,23,24 is
the block of size 7) in which the blocks of size 7 and 40 intersect (in z,); now remove
T, to obtain a 4—GDD of type 3276'39'. Apply construction 1.6 with weight 2, using
three ‘ideal’ points.

s = 18. We proceed as above, starting with an ITD(4,(40,13)) and adding three ideal
points. In the appendix we construct a PBD({4,7*,13*},43) in which the blocks of size
7 and 13 intersect and in which there are blocks of size 4 which do not intersect the
block of size 13. Building a copy of this design on the groups (plus the ideal points) of
the ITD we can generate a {4,7}—GDD of type 3%3%6?51'. Apply construction 1.6 with
weight 2, using three ‘ideal’ points. 8]

_ We do not know how to do the cases s = 8,9,11 and 15. The results in this sec-
tion imply the following.

Lemma 3.6. Let w =3 modulo 6. Then there exists a KTS(3w+12) with a sub-
KTS(w), except possibly where w = 45,51,63 and 87.
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4. Conclusion

Theorem 1.2 now follows as a consequence of lemmas 2.1 and 3.6.
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Appendix

A 4-IGDD of type (0,3)‘8'. We construct a 3,4—GDD of type 6% whose triples fall
into twelve holey parallel classes (i.e. three holey parallel classes corresponding to each
of four of the groups).

Points: (Z5X{1,2,3,4}) U ({a}X Z,) U ({6}X Z,) U {00,,00,}.

Groups: {{0+1,241,4+1}x{1,3}:i=0,1} U {{o+1,24¢,4+1}x {2,4):i=0,1} U
{({a}x2Z,) U ({8}X Z;) U {00},00,})-
Blocks of size 4: develop the following modulo 6

Holey parallel classes: develop each of the following two classes modulo 6 (the sub-
scripts on a and b are to be evaluated modulo 2)

071433 agdry 1,033, ap4,5,
3120, 834 5 2,533 0,455,
005,54  bol 24 0011923 bolyly
0095953 012914 000,54 5,33,

A 4-IGDD of type (9,3)%6'. We proceed as above, constructing a 3,4—GDD of type
8% whose triples fall into fifteen holey parallel classes.

Points: (Z,5X{1,2}) U ({a}X Z3) U {00,,005,00,}.
Groups: {{0+1,5+1,1041 }%{1,2}:i=0,1,2,3,4} U {({a} X Z3) U {00,,005,003}}.
Blocks of size 4: develop the block 0,1,244, modulo 15.

Holey parallel classes: develop the following class modulo 15 (the subscripts on a are to
be evaluated modulo 3)

1,3,7, 2,14,8,
18,0 128,
4,12,00, 8,4,00,
9,60003  12/11,a,

6,13,a0  7,l4,a,

A 4-GDD of type 3'64

Points: (Z,,X{1,2})U({a} X Z,).

Groups: {{0+1,2+1,441,6+1,841,10+1 } X {5}:1=0,1;5=1,2} U {{a} X Z,}.

Blocks: develop the following modulo 12 (the subscript on a is to be evaluated modulo
3)

01110232, 0]314292, 00017?82| 00217102-

A 4-GDD of type 3%°9%2. We construct a 3,4—GDD of type 3%9! whose triples fall into
nine parallel classes. Points: (ZgX{1,2})U ({a}X Z3)U ({6 }X Z3) U {00,,00,,003).

Groups: {{o+1,3+1,641 } X {j}1=0,1,2;5=1,2} U {{a}xZ;5) U ({6}xzZ3) U
{001-002'003}}'

Blocks of size 4: develop the block 0,2,3,7, modulo 9.
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Parallel classes: develop the following class modulo 9 (the subscripts on a and b are to

be evaluated modulo 3)

A 4-GDD of type 3%'12!.
into twelve parallel classes.

ay0,0,
a 15762
a3)4,

bo7,2;  00,2,4,
b11,8,  00y8,3,
51,5, 0048,7,

We construct a 3,4—GDD of type 3%! whose triples fall

Points: (Z¢X{1,2,3}) U {o0;:1<i <8)}.

Groups: {{(0+1),,(1+1),,(2+1 )3} €Zg} U {00;:1<i <6).

Blocks of size 4: develop the block 0,050333 modulo 9; then there are six more quadru-

ples, namely 00,254,6,, 0091,3,8,, 00302573, 0042)4,6,, 0051,3,8,, 0060,5,7,.

Parallel classes: develop the following class modulo 9

0,3,2,
1,457,
2,614
51963

Three more paralle! classes are

03132,
334353
63738
0,1,2,

A 4-GDD of type 3''8'15!

00,397,
0096459
0034,8,
00,43,7,
0056,5;
004 ,8,

03438,
33732,
631353
314,5,
394259

7535 00,0,2
004,83  0053,03
002643 00g8,7,
004853

00,048,
0097529
004641,
00,40,8,
0057,2,
00g6,1,

037353
331383
63432,
6,7,8,
67,8,

00155,
0090245
0033429
0041,5,
00504,
0063,2,

Start with an JTD(4,(13,4)) and add three ideal points a,b,c. Let T),T9,23,T, be a
block in the ITD where z, is contained in the ‘missing’ subdesign. Construct a
(16,4,1)—BIBD on each group (plus the ideal points) so that (respectively) a,b,c,z,,
a,b,c,ry, a,b,c,xz3 and a,b,c,r, are blocks of size 4. This yields a PBD({4,7*,16*},55)

in which the blocks of size 7 and 16 intersect (in z,). Now remove the point T,

A PBD({4,7*,13*},43). We construct a 3,4—GDD of type 3%' whose triples fall into

twelve parallel classes.

Points: (Z1,X{1,2}) U ({a}X Z,) U {00,,005,003,00,}.

Groups: {{0+1,4+i,8+1}X {5}:i=0,1,2,3;5=1,2} U {({a}X Z,) U {004,009,003,00,}}.

Blocks of size 4: develop the blocks 0,3,6,9, and 0,3,6,9, modulo 12.

Parallel classes: develop the following class modulo 12 (the subscripts on a are to be

evaluated modulo 2)

0,0,2, 00,93,10,
411282 0035162

00,2,

7y a;435,
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