
ON RnSoLvABLB Covrnnvcs oFpnnr^s
ByTnplns

A. Assaf, E. Mendelsohn* , and D. R. Stinson**

AbsFacfi,In this papcr, we consider a type of covering design related
to nearly Kirkman rriple systems (NKTS). If we consider a NKTS ro
be a resolvable packing of pairs into triples, this suggests that we
consider resolvable coverings of pairs by triples. We denote such a
design on 6n points by RC(6n). We are able to determine the
spertrum of such coverings, with 9 exceptions. We show rhat RC(6n)
exists forall n 23, n e [6,7,8, 10, ll, 13, 14,l7,ZZ). Inproving
this result, we make cssential use of a typ€ of design called a "frame;,
which can be thought of as a Kirkman triple system with ,'holes".

1. Introduction

We need to begin with some definitions.

A pairwise balanced design (or, PBD) is a pair (X, A), such that A is a
set of subsets (called hlocks) of X, each of cardinality at least two, such
that every unordered pair of poinrs (i.e. elements of X) is contained in
a unique block in A. If v is a positive integer and K is a ser of positive
integers, each of which is greater than or equal to 2, then we lay that
(X, A) is a (v, K)-PBD if lXl = v, and lAl e K for every A e A.

If K = [k], then a (v, K)-PBD is referred ro as a (v, k, I)-BIBD
(balanced incomplete block design). A (v, 3, I)-BIBD is called a

Steiner triple system; these designs exist for all v = 1 or 3 modulo 6.

A group-divisible design (or, GDD), is a triple (X, G, A), which
satisfies the following properties: 1) G is a parririon of X into subsers
called groupsi 2) A is a ser of subsers of X (calle d blocks) such that a
group and a block contain at most one common point; and, 3) every
pair of points from distinct groups occurs in a unique block.

The group-type, or type,of a GDD (X, G, A) is the multiset {lGl: G e
G). We usually_use an "exponential" notation to describe group-types:
a group-type til3k... denores i occurrences of 1, j occuriencisbi Z,
etc. We will say that a GDD is a K-GDD if lAl e K for every A e A.
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A parallel class in a PBD or GDD is a set of blocks that partitions the
set of points, ffwe can partition the blocks into parallel clisses, we say
that the design is resolvable. Clearly, if a parallel class of blocks of
size k exists in a design, then k must divide v.-

A resolvable (v, 3, I)-BIBD is called a Kirkman triple ry.rrern and
denoted KTS(v). It was conjecrurcd over a century ago thai a KTS(v)
exists if and only if v = 3 modulo 6, but this was proven only in l97l
by Ray-Chaudhuri and Wilson [6]. A related class of GDDs was
defined by-Kouig and Rosa [5]: a resolvable 3-GDD of group-rype 2u
is referred to as a nearly Kirkman triple system, ind-denotecl
NKTS(2u). It has been shown that a NKTS(v) exists if and only if v = 0
modulo 6, v 2 18 (see [1], [3], [4], and [5]).

One obvious generalization of NKTS is as follows. If we ignore the
groups, then the blocks form a maximum collection of blocks (of size
three) such that no pair of points occurs in at most one block. Such a
design is called a packing (of pairs into triples). Furrher, this packing
is resolvable. The "opposite" of a packing is a covering (of pairs by
triples), in which we require the minimum collection of blocks sucir
that every pair of points occur in at least one block. In the case of the
numhr of points being a multiple of 6, the covering could be
resolvable. Such a covering of v points is denoted RC(v). In such a
design, the pairs occuring twice would form a one-factor (or, perfect
matching) of the set of poinrs. Note that the number of parallel classes
in an RC(v) is v / 2.

Wittr only a few small exceptions, we can give a complete solution to
the resolvable covering problem.

For small values, we have the following results.

Lemma 1.1 There exist RC(18), RC(24), and RC(30).

Proof: These designs are presented in the Appendix (the covering on
30 points is due to C. Colboum (private conrmunication)).

Lemma 1.2 There does not exist RC(6) or RC(12).

Proof: It is easy to see that an RC(6) does not exist. Without loss of
generality, we can take the first parallel class to be t 1,2,3) {4, 5, 6 ) .
Up to isomorphism, there is only one possibility for the next parallel
class, so we can take it to be 11,2,4) {3,5,6}. This causes two pairs
to be repeated. The third parallel class must also repeat two pairs, so
we alleady have 4 rcpeated pairs, which is too many.

The non-existence of an RC(12) was shown by an exhaustive computer
search.
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2. Recursive Constructions

In this section, we describe recursive constructions for resolvable
coverings. For the fint construction, we use a particular type of
design called a frame as an esscntial tool. Some definitions are
required.

If (X, G,A) isak-GDD andC € G, then we say that a set P gA of
blocks is a lwley parallel class wirh hole G provided that P consists of
(lxl - lcl) / k disjoint blocks that partition X\G. We write h(P) = 6
to denote that G is the hole of P. If we c:ur partition the set of blocks A
into a set P of holey parallel classes, then we say that (X, G, P) is a

frame with block-size k. We can think of a frame as being a resolvable
BIBD with holes, exactly as a GDD is a BIBD with holes.

We will be using frames with block-size 3, which we refer to as
Kirkman frames. These are srudied in [7], in which they are used to
prove new results on the existence of subdesigns in Kirkman triple
systems. In the case where all the holes have the same size, their
existence was completely determined, as recorded in Theorem 2.1.

Theorem 2.1 There exists a Kirkman frame of type tu if and only if t is
even, u ) 4, and t(u - 1) = 0 modulo 3.

Kirkman frames are related to the problems of resolvable coverings of
pairs by triples by means of the following simple construction.

Theorem 2.2 Suppose there is a Kirkman frame of type tlut 12u2 ...

tiuj, and suppose also that there exist RC(t1), for 1 < i S j. Then there

exists a RC(u), where u = It si si t1'u1.

Proof: I-et (X, G, P) be a Kirkman frame of type tlul t2u2 ... tjuj. For

every hole G e G, construct an RC(lGl) having point-set G, denoting
the parallel classes by P(C, i), I < iSlGl12.

We need the following property of Kirkman frames, which is proved

in [7, Theorem 1.2]: given any hole G e G, there are precisely lGl I 2
holey parallel classes with hole C. Hence, we can name the holey
parallel classes P'(G, i), I < i < lGl lZ,for every hole G e G.

It is now a simple matter to describe an RC(lXl) on point-set X: the

parallelclasses areP(G, i)uP'(G, i), 1<i <lGl l2,for everyG e G.

In applying this theorem, it will be useful to have constructed some
Kirkman frames. We do this now. We use a recursive construction
for frames, which is found in [7, Construction 3.1].
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Theorem 2.3 l*t (X, G, A) be a GDD, and let w: X -> Z+ r_r {0} (we
say that w is a weighting). For every A e A, suppose there is a

Kirkman frame of type {w(x): x e A}. Then there is a Kirkman
frame of type (I* . 6 w(x): G e G).

We now mention some useful corollaries of this construction.

Corollary 2.4 Suppose there is a CDD, (X, G, A), in which every
group has size 3, 4, or 5, and every block has size at least 4. Then there
is a RC(6.lXl).

Proof: Apply Theorem 2.3, giving every point weight 6. There is a

Kirkman frame of type 6lnt 1or every block A e A, by Theorem 2.1,
since every block has size at least 4. Hence, there is a Kirkman frame
of type [6.lGl: G e G]. Since every hole of this frame has size lB,Z4
or 30, we can fill in RC(18), RC(24), or RC(30), as required
(Theorem 2.2). This produce.s an RC(6.lXl).

We obtain the GDDs required by Corollary 2.4 from the following
two constructions. These constructions use transversal designs, which
are defined as follows: a transversal design TD(k, n) is a {k}-GDD
having group-type nk. (It is well-known thar the existence of a TD(k,
n) is equivalent to the existence of k - 2 mutually orthogonal Larin
squares of order n.)

Lemma 2.5 Suppose there is a TD(6, m), and 4 S r < m. Then there is
a GDD of group-type 4m-r5r in which every block has size at least 4.

Proof: Delete all of the points of one group of the TD(6, m), thereby
rrenting a resolvable {5}-GDD of group-type m5. Deleting m - r
points from one of the remaining groups yields a {4, 5 }-GDD of type
m4r1, in which the blocks are panitioned into parallel classes, each of
which consists of m - r blocks of size 4 and r blocks of siz.e 5. Now,
take one of these parallel classes as the groups of a new GDD. 'Ihis
design is a {4, 5, r, m}-CDD of group-type 4m-r5r.

Lemma 2.6 Suppose there is a TD(5 + r, m), and 1 ( r. Then there is a
GDD of group-type 4m-r5r in which every block has size ar least 4.

Proof: I-et B be a block of the TD, and let x e B. Delete all points in
the group containing x, and from r other groups, delete all points,
except those on B. Taking the blocks through x as groups, we obtain a

{4,5, 4 + r, m}{DD of group-type 4m-r5r.

Our other construction for resolvable coverings fills in the groups of a
resolvable group-divisible design with block-size 3.
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Construction?.T Suppose there is a resolvable CDD with block_size 3,of group-type tu, and- suppose rhere is an i.C(t). ft., rhere is an
RC(t.u).

3. The Spectrum of Resolvable Coverings

Lemma 3.1 For n ) 48, there exists an RC(6n).

Proof: Write n = 6m + r, where m is odd and 4 (r(m (this can be
!r.* q a unique way). There is a TD(6, m) by ta, nppfy Corollary
2.4 and l-emma 2.5.

S.o, y" have yet to-consider RC(6n) for 6 < n < 47. Many of these can
also be consructed by filling in the holes of Kirkman frames.

Lemma 3.2 There is an RC(6n) for 32 < n< 45.

Proof: Apnff lrmma 2.5 and Corollary 2.4 with m = 7, 4 ( r < 7.
with m = 8, 4 < r< 7; and with m = 9, 4 S rS9.
Lemma 3.3 There is an RC(6n) for n = 46 and47.
Proof: Apply Lemma 2.6 and Corollary 2.4 with m = I l, r = 2 and 3.
Lemma 3.4 There is an RC(54).

F[{i-t!:',tlli#.it,rttfl [e!,i;;x,'ff:T,iJ:T#a:'i,!]l;
a pair of orttrogonit t-^itin squares oioraer lbi Siil il nctrg) exisrs,then therc is an RC(54).

Lemma 3.5 There is an RC(lOg).

Proof: From Theorem 2.1, there is a Kirkman frame of type lg6.Since RC(18), exists, therefoie RC(lOg) exists. 
--- -'*' '

We present constructions for the remaining GDDs in tabular form (seeTable 1). In all cases, Corollary 2t.4 rsapp-lied.

Summarizing the results of kmmata l.l, t.Z, j.l - 3.5, and Table l,we have our main existence result.

Theorem 3.4 RC(6n) exisrs for all n ) 3, except possibly for n e {6,7,8, 10, ll, 13, L4, 17,22lt.
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TABLE 1

Construction of C roup-divisible Designs

n
t2
15

16

19

20
2l

44

44.3-r

45
37

srcuktyBa-aIGDD ca!.lt-rucl1aIl
TD(4, 3)
affine plane of order 4 minus
a point
TD(4, 4)
m(5,4) minus a point
m(5,4)
delete a point from a 14,71-
PBD on ?.2 points (constructed
by "completing" a Kirkman
triple system on 15 points)
m(5,5) minus two points
from one group
TD(s, 5) minus a point
TD(s,5)
TD(6,5) rninus two points
from each of two groups

TD(6,5) minus two points
from one group and one point
from another group
TD(6,5) minus one point
from each of two groups
'l'D(6, 5) minus a point
TD(6, 5)
Complete three parallel
classes of a resolvable
(28,4,1)-BIBD.

34
3s

23

24
25
26

27

28

5431

544r
5s

5437

29
30

31

544131

5442

5s41
56

473r
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AppBNnx

A resolvable covcring of lg points.

Points: (Zgx[1,2))

Resolution classes: develop the following modulo 9

), (1, l), (0,2))
), (4,2), (6, 2))
), (1, 2), (2,2)l

A resolvable covering of 24 points.

Points: (Znx I l, 2))

Resolution classes: develop the following modulo 12

(0,2), (t,2),

I
I
I

t
(

t

(0,
(3,
(6,

[(2, l), (4, 1), (7, 1))
((5, t), (3,2), (7,2))
((8, 1), (9,2), (5,2))

))
))

i
I

t
(

(

{

(4, 1), (9, l),
(2,2), (9,2),
(6,2), (9,2),

, l), (3, 1))
, L), (7,2)l
I, l), (3,2))
1,2), (10, 1))

(1
(7
(1
(1

[(0, 1),
((2, 1),

{(5, l),
((5,2),

(
(
(
l0
6

(e

[(0,2), (1,2),(3,2)]
((4, l), (ll, 1), (12,2)l
{(9, l), (14, 1), (9,2)}
{(6,2), (t3,2), (9, t)}
{(4,2), (9,2), (12, 1)}

4,2)l
2) )

A resolvable covering of 30 poinls.

Points: (ZtS x { l, 2))

Resolution classes: develop the following modulo 15

t
{
(

{

t

t), (3,
t), (2,
, 1), (1
,2), (L

(1,
(6,
(13
(t4
(11

(0, 1),
(2, 1),
(7, 1),
(5,2),
(7 ,2),

l)]
2)l
0,2)
0, 1)

, 1))2), (5

)

)
t
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