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An Assortment of New Howell Designs

E. Seah and DR. Stinson

Abrtnct Wc cnunpnl,c thc (ncr-iromorphic) qrc-frctsizetionr rnd rcu of or-
thogorul onc-frctorizrticrr (uc, Ilovrcll &lignl) for rorcrrl graptrr cr 10, 12 end
14 vcrticcr. Among, our rcrulu rrr thc following. From thc twclvc 6-rcgular gnphr
or 12 vcrticcr hrving rrrruirivc eurunorphirm grutpr. wc found that tlrcrc rrE [rE-
cirdy 24 non-iromuphic J?(6, l2). rrd prccircly onc ff3(6, l2). From thc tcn 7-
rcgular gnphr on 12 vcniccr haviry tnnsitivc automorphism group, we found tlut
there rre precircly 1393 rcn-i.romorphic E Q,l2), and precisely fivc HlQ ,12). We

dso dercrmincd that there rre cxactly threc Il'(/, 12) designs, and exactJy thrw
rkcw .[I(8, l0) derignr. Finally. wc fqrnd an cxamplc of an If-(13, l4), whidr
wrr thc rmallert cuc d en .f,["@n - l,2n) which wrr noa previoully known to
cxirt.

1. Introduction
Let Gr be an r-regular graph on n vertices. A one-factorization of Gr is a

partition of the edge-set of Gr into r onc-factors, each of which contains n/2
edges that partition the vertcx set of Gr. Two one-factorizations r' and G of
Gr are orthogonal if any two edges of the graph which belong to the same
one-factor of G belong to different one-factors of .t, (and vice-verm).

A llowell Destgn IJ(c, t) is a square arnry of side a having the following
properties:

(l) each cell of the array is either empty or contains a two-subset of a
t-set,

(2) each element of the t-set occun in exactly one ceU of each row and
each column, and

(3) any two-subset occurs in at most one cell of the aray.
It is easy !o see that nvo orthogonal one-factorizations of Gr, an r-regular

graph on n vertices, give rise to an If(r, n); and, conversely, the existence of
an IJ(r, n) implies the existence of a pair of orthogonal one-factorizations of
some r-regular graph on n vertices, Gr, which we call the underlying graph of.
the Howell Design.

This idea generalizes to higher dimensions, as well. We can define an d-

dime nsional Howell design IIi(r, n) to be an idimensional array which satis-
Iies property (l), such tlut each two-dimensional projection is an I/(r, n). We
refer !o ur H3(rrn) as a Howell cube . l$t lI;(rrn) is equivalent !o i mutually
orthogonal one-factorizations of the underlying graph.

Howell designs werc inuoduced in [9] and have been extensively studied
since then. The existence of Howell designs has tleen completely determined
in [U and [17]. Note ttrat a rivial necessary condition for the existence of an
II(r,n) isthatr+I < aS2r.
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Theorem l.l, I*tr andn bpsitiveintegen, wltercn iseven,andr+l S
n S 2r. Then there exists an I.I(r,n) if and only if (r,n) / (2,4), (3,4), (5, 6),
or(5,8).

On the other hand, if we ask which graphs are ftc undcrlying graphs of How-
ell designs, *ren not very much is known. Wc summarize afew of the known
re.suls. Denote NOF(Gr) = the number of non-isomorphic one-factorizations
of a graph Gr, and N I{;(Gr) = the number of non-isomorphic .t{(r, n) wirh
underlying graph Gr. Also, let n(Gr) denote the largest numbcr of mutualty
orthogonal one-factorizations of Gr (i.e. n(Gr) = max{i: N II;(Gr) > 0}).

First, we observe tlnt thc cases where Gr is a complcte bipartite graph K^,^
have been extensively studied in the guise of orthogonal Latin squares. Hcncc,
we have n(K^,-) >_ 2if and only if m / 2 or 6 (sec t5l). The casc,s where Gr
is a complete graph (K-, with m even) correspond to Room designs, or equiv-
alently, orthogonal symmetric Latin squares. Hence, for example, n(K_) Z 3
if and only if m Z 7 is odd (see [6]). Other bounds are given in [7l. Also,
we note tlrat the underlying graph of an I/(m ,m + Z) (m even) is K^*2 * !,
wherc / is a one-factor. Thus, we have n(K^*z- /) > 2 for all even m ) 4.
Very few other general resulls arc known.

Even less is known concerning upryr bounds for n(Gr). It is not dif{icult
to see that, for any r-regular graph on n vertices, n(Gr) ( r - l. This bound
can be attained with equality in the case of gaphs K^, when m is a prime
power. However, it secms unlikely ttrat this bound can be met with equality
for r-regular graphs where r > nf2. There is a conjeclwed bound, namely

\\Cr) S .!" - 2)/2. Note thar this conjectured bound is srronger if r > nf2,
(if r < nfZ,thenn(Gr) ( l, anyway).The twobounds agree if r = n/2. This
conjecnredboundhas been verilied forn ( l0 (see U3l, [2], and [lfl). Also,
we note that there are infinitely many srrch graphs where n(Gr) = (n - 2)/Z
(see t16l).

The non-isomorphic one-factorizations and (r -dimen sional) Howell designs
have been enumerated (for all r) for all graphs on at most l0 vertices (see [13],
[2], and t16l). It is not feasible to conrinue this enumerarion to all graphs
Gr on 12 vertices, for rwo rcasons. If Gr Ls r-regular with r close to 12, the
numbers lyi(Gr) will be astronomical, and presenr techniquas would not yicld
any resuls in a reasonable amount of time. lf Gr is 6- or T-regular, we can
determine ttre numbers /Vi(Gr); the problem here is that there are too many
graphs to test them all. In the remaining sections, we d.iscuss the enumeration
of one-facorizations and Howell designs for several interesting graphs on 12
and 14 vertices.
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2. 6-regular graphs on 12 vertices

Thecase of 6-regulargraphs on 12 vertices is particularly intcrcsting, due to the
non-existenceofapairoforthogonalLatinsquaresoforder6(i.e. n(Ke,e) = l).In [9], Hung and Mendelsohn presented rhe first example of an II(6,12).
More recently, Brickell found a Howell cube 113(6, 12) for which tlre under-
lying graph is the icosahedron with andpdal poinrs joined (soe tal). It is also
worth mentioning that the automorphism group of this cube is the same as ttre
automorphism group of the icosahedron (this group is isomorphic w Zz x .As).

In the hope of finding further examples, we investigated the 6-regular graphs
on 12 vertices having a fansitive automoqphism group. There are prccisely 12
such graphs (see [3]); we Fesent a lisring of rhe edges of t]re complements of
these graphs in Table l. From these 12 graphs, we found that rhere are precisely
24 non-isomorphic H(6,12), and precisely one lfi(6,12) (the Brickell cube).
There are no examples of an IIr(6, 12) in this cliuss of graphs. A summary of
our results is givcn in Table 2.

3. 7-regular graphs on 12 vertices

As in Section 2, we looked u the graphs having ransitive automorphism
groups. For 7-regular graphs on 12 vertices, there are l0 such graphs ( t3l).
We list the edges in the complements of these graphs in Table 3. From these l0
graphs, we found many more Howell designs: 1393 non-isomorphic H(7,l2),
and Iive non-isomorphic H3(7,12). The enumeration is summariradnTable 4.
An example of an H{7 r 12) was not previously known; we present one of the
five in Thble 5 (tle underlying graph is Sraph #l in Table 3).

We also investigated npo other 7-regular graphs on 12 vertices, namely, the
graphs which cmreqpond to the so-called'-dcsigns. An lf.(r, n) can be defined
as an If(r, n) whose underlying paph has an independent set of n - r vertices
(which is the maximum possible size). For r = 'l,n = 12, such a graph has the
form Kj+Q, where Q is either a 7-cycle or the disjoint union of a 3-cycle and a
4-cycle (c denotes complement and + dcnotes jnin). In the first case, there are no
II'(7,12): in tlre second case, therc are three non-isomorphic .H.(7, l2), which
arc presented in Table 6. These are thus the smallest examples of If.(n, 2n-2)
for n odd, since there are no Howell designs ^E(3,4) or.lf(5, 8) (previously, rhe
smallest example in ftis class was an If'(13,24), consrructed in tfsl).

4. Ir"(13,14)
Another special class of Howell designs are called --designs. An .E[..(r, n) is
defined t,o be an H(r,n) which satislies ttre following two pnoperties:

(l) there exiss an (r - n/2) x (r - n/Z) subarray of rhe Howell design
which consists of empty cells,
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(2) there exiss a one-frctor of the underlying graph which forms a transver-
sal of the a/2 rows and columns which do not mect the empty subarray

of (l).
These may soem somewhat unusual properties to ask for, but it turns out 0ut

thcre is a powerful recursive construction for "-dcsigns, which was instrumcn-
tal in the proof of Theorem 1.1 (scc t17l).

Therc has recently bccn some interest in II"(Zm - 1,2m) (i.e. Room
squares which are o-desigru). Note ttrat we can define an H"(Zm - l,2m)
by requiring only thu property (l) holds; propcrty (2) then follows as a conse-
quence. Such a design has several equivalent lbrmulations, which are describcd
in [18]: one of these is a partitioned balanced toumament design PBTD(n),
and another is a pair of almost disjoint H (mr 2m). We elaborate on the sccond
formulation. TWo H(mr2m), say Dr and D2 (on thc same symbol sct), having
underlying graphs Gr and G2, respectively, are said to be almost disjoint if the
foUowing properties hold:

(l) Gr fl G2 = /, where / is a one-factor,

Q) GtuGz- f = Kto,thecomplercgraph on2m vertices,
(3) the edges of / occur in a row (m column) of D1, and in a row (or

column) of D2.

H"(2m - l,2m) do not exist for m = 2,3, or 4 (see t18l). Fo m ) 5,
such a design is known to exist for all but a few values of m ( [l], and pri-
vate communication from S. Vanstone and E.Iamken). The smallest unknown
case was m = 7. We were able to construct two non-isomophic examples of
.Ef"(13, l4). which we pres€nt in Table 7 as sets of almost disjoint H(7,14).

These were found as follows. The IJ(7, 14) labelled Dr w&S constructed by
E. Lamken (private communication). Call the underlying graph G1, and let /
denote the one-faclor occurring in tlre last column of D1. First, we enumerated
all one-facorizations of the graph G2 = (Ks - Gr) U / which contained / as

a one-factor. There were prccisely 5272 non-isomorphic one-factorizations.F
of this rypc. For each such r', we determined all possible one-factorizations G
of Gz orthogonal to f, such tlnt G also contained / as a one-factor. For only
two of the* 5272 one-factorizations I'could we find such a G orthogonal to
F. These are exhibited in Thble 7.

5. Skew ff(8, 10) designs

The last types of Howell designs we investigared are complementary and skew
H(rrr + 2). Thcsc special types of Howell designs are introdrred in t101.
Several constructions iue gven, and it is shown that a pair of complementary
H(r,r + 2) exist for all even r ) 4. Much less is known regarding skew
H(r,r + 2). In [10], a skew.E[(4,6), is constructcd, and it is reported that
there does not exist a skew I/(6, 8). The fint unsettled case was ttrat of a skew
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I/(8, l0). We have done an enumeration of skew If(8, l0), and wc found that
ftere are exactly three non-isomorphic examples.

We define a skew II(r,r + 2) (of ooursc, r must be evcn). An I/(r, r + 2),
say .[f, is said to be stew if t]rere exist two symbols o, D where {", 0} is not an
edge of the underlying graph, such that the following properties are satisfied:

(l) Denote the n cells of If which contain aby T., and denote the n cells
of If which contain b by Ii. Then Ii U?i consiss of the r cells on the
diagonal of If (say D), and r olrer cells which form a transversal of
cells (say D) of II,such that I/ is symmeric with respect to D (i.e. a
cell (r,7) e D tt and only if cell ti,i) e D'1.

(2) Given any cell (;,il * D V D, precisely one of ccll (i,7) and cell
(1,0 is empty.

In [16], theauthors enumeratedall non-isomorphic II(8, l0); thereare 1822A
such Howell desigru. It was therefme a straightforward test to see which of
these designs could be written down in such a way Orat it forms a skew IJ(8, l0).
This was done as follows. For any given If(8, 10), rhere are five possibilities
for tlre pair to, D). For each possibility, ttre cells in T.UTt form four 4<ycles
(no mattcr how the Howell design is written down). For each 4<ycle, there are
s5ssntially two inequivalent ways of permuting the rows / columns containing
the 4cycle. There are thus only 25 = 32 row / column permutat^ions that must
be considered (for each possible {", D}).

As a result of these tests, we found precisely three non-isomorphic skew
If(8, 10), which we recud in Tablc 8.
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Craph No.

I

10

lt

r2

98,

a

3

4

5

6

7

8

9

Table L S-regular graphs on 12 vertices having transitive automorphlsm groups

Edges

L -2,3,4,5,6i2 -3,4,5,6;3 - 4,7,8;4 -7,8;5 - 6,9, 10; 6 - 9, l0;
7-8, 11, 12;8- ll, 12;9- 10, 11, 12;10- ll, 12:lL-12.
| - 2,3,4, 5, 6; 2 - 3, 4,7, 8; 3 - 4, 9, l0; 4 - Ll, L2; 5 - 6,7,9, 1 1; 6 - 8, 10, 12;

7 -8,9,11; 8 - 10, 12;9- 10, 11; 10 - L2;ll - 12.

L -2,3, 4,5,6i2 -3,4,7, 8; 3 - 4,9,10; 4 - ll, l2;5 - 7, 8, 9, l1;
6-7,8, 10, 12;7 -9,ll;8- 10, 12:9-ll,12;10- 11, 2.

-2,3,4,5,6;2 -3,4,7,8;3 - 4,9, l0; 4 - ll, l2; 5 -

-7,9,10, 12;7 - 10, 12;8 - 9, 11, 12;9 - 11; l0 - 11, 2.

-2,3,4,5,6; 2 -3,4,7, 8;3 - 5,7,9;4 - 5,7, 10;5 - 7, 11; 6 - 8, 9, 10, 11;

-12;8 -9,10, l2;9- 11,12;10- 11, 12;ll-12.
-2,3,4, 5, 6; 2 -3,4,7, 8; 3 - 5,'1,9; 4 - 5, 7, 10; 5 -7, ll;6 - 8, 9, 10, 12;

-12;8 -9, 11, L2;9- 10, 11;10- 11, 12;ll-12.
-2,3,4,5,6;2 -3,4,7,8;3 - 5,7,9;4 - 6,8, 10; 5 - 6,9, 11; 6 - 10, 11;

- 8,9, 12; 8 - 10, 12;9 - 11, 12; 10 - 11, 12; 11 - 12.

-2,3,4, 5, 6; 2 -3,4,7, 8; 3 - 5, 9, l0; 4 - 7, 9, 10; 5 - 9, 11, 12;

-8,9, ll,l2;7- 10, ll,12:8- 10, ll,l2;9- 11; 10- 12.

-2,3,4,5, 6; 2 -3,4,7, 8; 3 - 5, 9, 10; 4 -7,11, 12; 5- 9, 11, 12;

- 8, 10, 11, 12;7 - 9, 10, 11;8 - 9, 10, 12; 9 - 12;10 - 11.

-2,3,4, 5, 6; 2 -3,7,8, 9; 3 - 10, 1l, 12;4-5, 7, 8, 10; 5 - 9, 11, 12;

-7,8,11,12;7 -9,11;8 - 10, I2;9 - 10,12; l0- 11.

-2,3,4,5,6;2 -3,7,8, 9; 3 - 10, ll,12;4 -7,8,9,10; 5 - 7, 8, 10, 11;

- 7, 10, 11, 12;7 - l2:8 - 11, l2;9 - 10, 11, 12.

-2,3,4,5,6|2 -7,8,9, 10;3 - 7,8,9, ll;4 -7,8, 10, 1\5 -7,9, 10, 11;

- 8,9, 10, 1l;7 - l2;8 - 12; 9 - 12:10- 12; 11 - L2.

I

7

1

I

6

I

7

1

7

I
7

1

6

I
6

1

6

1

6

1

6
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Table 2. Ilowell designs from 6-regular graphs on 12 vertictx having

transitive automorphism gmuFs.

No.Graph lAu(Gr)l
768

t44
48

24

96

L2

120

L2

24

48

24

r440

DPM(Gr)

368

348

3M
342

392

386

368

354

344

3M
336

376

NOF(Gr)

190

469

1248

2018

145 I
6932

733

4976

22t6

1021

1983

t32

NH(Gr) NHr(Gr)
1

2

3

4

5

6

7

8

9

10

11

t2

0

0

0

0

0

0

1

0

0

0

0

0

0

3

8

0

0

1

4

0

5

0

3

0

Notation: DPM(Cr) denotes the number of distinct one-factors of Gr.
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Graph No.

I
t2;

Table 3. 4regular graphs on 12 vertices having transitive automorphism gnoups

Edges

l -2,3,4,5;.2-3,4,6;3 -4, 7;4 -8;5 - 6,9, 10; 6- X 10; 7- 8, 11, 12; 8 - 11,

9 - 10, 1l; 10 - 12; ll - 12.

| -2,3,4,5;2-3,4,6;3 -5,7;4 -6,8;5 - 7,9;6- 8, 10;7 - 9, 11;8 - 10, 12;

9 - 11, 12; 10 - 11, 12: 1l - 12.

l -2,3,4,5;2 - 3,6,7;3 -8,9;4 - 5,6, 10;5 - 8, 1l; 6-7,1A;7 -9,72;
8-9, ll;9-12;10- 11, l?;Ll-12.
L -2,3,4,5;2 - 3,6,7;3 - 8,9;4 -6,8, l0;5 -7,9,10;6- 8, 11;7 - 9, 1l;
8 - 12; 9 - 12;10 - 11, 12; ll - 12.

1 -2,3,4,5;2- 3, 6, 7;3 -8,9;4 - 6,8, 10; 5 -7,9,11; 6- 8, 11; 7 -9, 12;

8 - 12; 9 - l0; 10- 11, 12; ll - 12.

L -2,3,4,5;2-3,6,7;3 - 8,9;4-6,10,11;5 - 8, 10, 12;6- ll,12;
7 -9,L0,12;8 - Il,12;9 - 10, 11.

| - 2,3, 4, 5; 2 - 6, 7, 8; 3 - 6, 7, 8: 4 - 6, 9, l0; 5 - 6, 9, 10; 7 - Ll, 12; 8 - ll, 12;

9 - 11, 12; 10 - 11, 12.

I -2,3,4,5;2 - 6,7,8; 3 - 6, 7,9;4 - 6,7,10; 5 - 8, 9, 10; 6- 11; 7 - 12;

8 - 11, l2;9 - 11, 12; 10 - 11, 12.

| -2,3,4,5;2 - 6,7,8; 3 - 6, 7,9;4- 6, 8, 10; 5 - 7,9, I9i6- 11; :l - 12;

8- 11, 12;9-ll,t2; l0- 11,12.

| -2,3,4,5;2 - 6,7,8; 3 - 6, 9, 10; 4 -7,9,11; 5 - 8, 10, 12; 6 - ll, 1.2;

7 - lO, 12;8 -9, ll; 9 - 12; 10 - 11.

2

3

4

5

8

9

6

7

10
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Table 4. Howell desiggrs from 7-regular graphs on 12 vertices having

transitive automorphism groups.

lAut(Gr)lNo.Graph DPM(Gr)

825

837

827

824

821

808

827

820

818

804

NOF(Gr)

127222

270875

130176

130141

245 I 38

2r8138

9145

43060

237042

I 106s6

NH(Cr) NHr(Gr)

I

3

0

0

0

0

0

1

0

0

1

2

3

4

5

6

7

8

I
01

48

24

48

48

24

24

768

144

24

48

84

23s

103

166

189

130

47

72

264

103

t83



Table 5. A I'Iowett cube l\(7,12).

72
5 11

6B
10 t2

L2
Bt2
310
79
4 11"

56

4 11

8L2
3 r.0

56

5 r.0

67
L4
28
39

11 L2

L0 t2
6 11

6 r"r.

13
25
79
810

'l 72

29

10

5

11

B

34
8]-2
't lt

B9
4 10

91210

6

12

1

11

6

10

9

49
37

10

9

B

11

6

B

4

1

1

B

4

1

2

5

1

4

3

6

3

4

5

1

2

5

2

6

2

4

7

L2

5

)

2

tr

1

11

1

6

84L2

13
? 11

28
5L2
49
610

610
7 L1

512

6 11 3

6

1

B9
4 r"0

25

16
11 12

3't

712
5 1r.

91

10

2

3

5

4

L2

7

B

9

14
3B
59

810

2tt
]-'1
412 1

6

9

0

B

4

3

2t

"tt

L249
't913

2B
B

6

L

37
25

t_1 1.2

6B
412
5 10

29
34
2 1,I

9 1.2

t't
3 11

5 11

10

7

5

9

2

6

9

10

2L0

27

184



Table 6. Three l{owelt designs ll'(7,12).

7 1t

1_3
?

2

't
5

r.0t

t2
7t2
89
4 t1

5 10

36

t2

L2

812
6 r.1

59

26
37

10 1t-

4t2
r_8

25
36
910
412

1B

2B
5L2
69
410

1

6

7

2

5

Br_0 4

11 27

6 10

B 11

14
2't

610 4

9

)

5

B 16
B 11

912

4

L2

9

3

4

11

3

1

6

2

11

1

'l

3

9

)

1

5

r_0

4

7

3

7

10

1

B

2

l_ t-
14

1,2

11

5

9

6

16
28
3't

1

B

10

4

t2
7

5

9

11

3

6

2

59
4 10

28

16
11 t2
3't

59
410

11 t2

BL2
69

610
B 1r.

35
24

L"t
9L2

7Lt
25

5

3

7

4

6

t2
B

10

9

1

7

6

3

9

L2

49
26

11

5 11

810
24

35
9L2

4 11

23
L7
510

Bt2
79

69
38
7 r.0

5L2
4 1r.

13
B 10

7L2
5 11

5 r_0

9 10

412
36
1B
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1s 65
4655
35 4 L
2 5 1. I
al. 3 3
aA22
23aa

a!,3Ls31Ia24266
L22L45a361a355
3665al.2352aL4!_
63a432saa52l.1t
a 5 a 2 2 5 4 1 1 O -6 !, 3 34513a6a63.{sl22
2L561!624353aa

a 4 a!- 2 3 15 s Z 31 6 66f,32a54L2La1s5
12255136a6a34L
34a565a243251f,
a56-l-42a216s43f,
s613a36!_aa452z^
2L46115i356?aa

D3

Table 7. Two sets of atmost disjoint tloweil designs tl(l,14)

15
9.6
36
25
a1

a 3 a3 ZA. z 4

a2a21313
Dl

Sct 1: tDr, Dz].

D2

Set 2: {Dr, D3}.

a4
)1

12L2aSa5
3 A, 3 4 aS a 6

4 s !,5 2 6 ? 6
16 16 3 s 35
56 s 6 L 4 lL
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Table 8. Three skew I'I(8, 10) designs.

19 45
7 10

35
2

a=5rb=6

7

9

10

5

4

6B
37

13
1579

4B

45
6B

32B
36

610
B9 .4

10

9

1

2

3

25
L1

L10

8

t4
2LO

3B

61

5 r_0

3B

6B
r.35

4

1

3

1

2

3

1

B1

1

8

4

2

6

7

10

4

2

B

L5

23

4'1

69 4

10

9

6

2

671-85
267

58 19

7

9

10

10

9

o

475918

a=5rb=6

a=7,b=8

4B
310

6 10

4B

45

2

610 2 7

35
2589

6

I
9

10

2

3

4

'7

39
24

4658
5769

23

6

0

9

132

5

6

3

4

r_0

1

9

6

L0

7

69
27 1

19283
4

57

4 10

16

4 r"0

31

810
49

1

r_0

9

6

?

35
5

7

2

t 6

9

10

2

5

1

1

210
79B

9

q

21563

187



References

1. B.A. Anderson, PJ. Schellenberg and D-R. Stinsoa,Tlu eistence of How-
ell designs of even sr'de, Joumal of Comb. Theory A 36 (1984),2!55.

2. D.S. Archdercon, J.H. Dinirz and W.D. Wallis, Sets of ortlwgonal I -fac-
torizations of Krc, Congressus Numerantium 43 (1984), 4S-:t9.

3. A.M. Baravev and I.A. Faradzev,Postroenie i issledovanie naWM odno-
rodnylch i odonorodnykh dv ndol' nyl:h grafoov,Algoritmiceskie issledova-
nia v kombinatorike (1978), Moscow, Nauka, 25*ffi.

4. E.F. Brickell, A few results in mcssage autlunticatron, Congressus Nu-
merandum 43 (1984), 14l-154.

5. R.C. Bose, S.S. Shrikhande, and E.T. Parker, Furthcr results on the con-
struction of rruuually orthogonal Latin sqwres and the falsity of Euler's
conjecture, Canad. J. Math. 12 (1960), 189-203.

6. J.H. Diniu and D-R. Stinson, Tlu spectrwr of Room cuhes, Eurogrean
Journal of Comb.2 (1981),221-230.

7. J.H. Dinitz, Pairwise orthogonal symmctic Latin squares, Congressus
Numerantium 32 (1981), 261-265.

8. J.H. Dinitz and W.D. Wallis, Fow orthogonal one-factorizatiotts on ten
points,in Algorithms in Combinatorial Design Theory, Annals of Discrete
Math. 26 (1985), 143-150.

9. S.H.Y. Hung and N.S. Mendelsohn, On Howell designs,J. Combin. Thc-
ory A 16 (1974),174-198.

10. E.R.I-amken and S.A. Vanstone, Complenuntary Howell designs of side
2n and order 2n+2, Congrassus Numerantium 4l (1984), 85-113.

ll. E.R. I-a.mken and S.A. Vanstonc, Partitioned balonced tournament de-
signs of side 4n + l,Ars Combinatoria 20 (1985), 2944.

12. A. Rosa,Room sqtures generalized, Ann. Discretc Math. 8 (1980), 43-57.
13. A. Ros"r and D.R. Stinson ,One-factorizations of regular graplu and IIow-

ell designs of snwll order, Utilitas Mattrematica 29 (1986),99-124.
14. PJ. Schellenberg and S.A. Vanstone,The eistence of ltowell designs of

side 2n and order 2n +2, Congressus Numerantium 29 (1980), 879-887.
15. PJ. Schellenberg, D.R. Stinson, S.A. Vanstone and J.W. Yates, The ex-

istence of llowell designs of side n + I and order 2n, Conrbinatorica I
(1981),289-301.

16. E. Seah and D-R.. Stinson,An enumerationof non-isomorphic one-factoriz-
ations and. llowell designs for the graph K1s minus a one-factor, Ars
Combinatoria 2l ( I 986), 145-16 l.

17. D.R. Stinson, The eistence of Howell designs of odd side, Joumal of
Comb. Theory A 32 (1982),53-65.

18. D.R. Stinson, Room squores with maximum empty subarrays, Ars Com-
binatoria 20 (1985), 159-166.

Department of Computer Science
University of Manitoba

r88


