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An Assortment of New Howell Designs

E. Seah and D.R. Stinson

Abstract. We ecnumerate the (non-isomorphic) one-factorizations and sets of or-
thogonal one-factorizations (i.c. Howell designs) for several graphs on 10, 12 and
14 vertices. Among our results are the following. From the twelve 6-regular graphs
on 12 vertices having transitive automorphism groups, we found that there are pre-
cisely 24 non-isomorphic H(6, 12), and precisely one H3(6,12). From the ten 7-
regular graphs on 12 vertices having transitive automorphism groups, we found that
there are precisely 1393 non-isomorphic H (7, 12), and precisely five H3(7,12). We
also determined that there are exactly three H*(7, 12) designs, and exactly three
skew H(8, 10) designs. Finally, we found an example of an H**(13, 14), which
was the smallest case of an H**(2n — 1,2n) which was not previously known to
exist.

1. Introduction

Let Gr be an r-regular graph on n vertices. A one-factorization of Gr is a
partition of the edge-set of Gr into r one-factors, each of which contains n /2
edges that partition the vertex set of Gr. Two one-factorizations F' and G of
Gr are orthogonal if any two edges of the graph which belong to the same
one-factor of G belong to different one-factors of F' (and vice-versa).
A Howell Design H(s,t) is a square array of side s having the following
properties:
(1) each cell of the array is either empty or contains a two-subset of a
t-set,
(2) each element of the t-set occurs in exactly one cell of each row and
each column, and
(3) any two-subset occurs in at most one cell of the array.
It is easy to see that two orthogonal one-factorizations of Gr, an r-regular
graph on n vertices, give rise to an H(r,n); and, conversely, the existence of
an H(r,n) implies the existence of a pair of orthogonal one-factorizations of

- some r-regular graph on n vertices, Gr, which we call the underlying graph of

the Howell Design.

This idea generalizes to higher dimensions, as well. We can define an -
dimensional Howell design H;(r,n) to be an s-dimensional array which satis-
fies property (1), such that each two-dimensional projection is an H(r, n). We
refer to an Hj(r,n) as a Howell cube. An H,(r,n) is equivalent to s mutually
orthogonal one-factorizations of the underlying graph.

Howell designs were introduced in [9] and have been extensively studied
since then. The existence of Howell designs has been completely determined
in [1] and [17]. Note that a trivial necessary condition for the existence of an
H(r,n)isthatr+1<n <2r.
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Theorem 1.1. Letr and n be positive integers, wheren is even, andy + 1 <
n < 2r. Then there exists an H(r,n) if and only if (r,n) # (2,4), (3, 4), 5,6),
or (5, 8).

On the other hand, if we ask which graphs are the underlying graphs of How-
ell designs, then not very much is known. We summarize a few of the known
results. Denote NOF(Gr) = the number of non-isomorphic one-factorizations
of a graph Gr, and N H;(Gr) = the number of non-isomorphic H;(r, n) with
underlying graph Gr. Also, let n(Gr) denote the largest number of mutually
orthogonal one-factorizations of Gr (i.c. n(Gr) = max{i: NH;(Gr) > o}.

First, we observe that the cases where Gr is a complete bipartite graph Kynm
have been extensively studied in the guise of orthogonal Latin squares. Hence,
we have n(K,, ,) 2 2 if and only if m 2 or 6 (see [5]). The cases where Gr
is a complete graph (K, with m even) correspond to Room designs, or equiv-
alently, orthogonal symmetric Latin squares. Hence, for example, n(K,,) > 3
if and only if m > 7 is odd (see [6]). Other bounds are given in [7]. Also,
we note that the underlying graph of an H(m, m +2) (m even) is Ky,.2 — J,
where [ is a one-factor. Thus, we have n(K,,,» — f) > 2 for all even m > 4.
Very few other general results are known.

Even less is known concerning upper bounds for n(Gr). It is not difficult
to see that, for any r-regular graph on n vertices, n(Gr) < r — 1. This bound
can be attained with equality in the case of graphs K, when m is a prime
power. However, it seems unlikely that this bound can be met with equality
for r-regular graphs where r > n/2. There is a conjectured bound, namely
n(Gr) < (n — 2)/2. Note that this conjectured bound is stronger if r > n/2,
(if r < n/2, then n(Gr) < 1, anyway). The two bounds agree if r = n/2. This
conjectured bound has been verified forn < 10 (see [13], [2], and [16]). Also,
we note that there are infinitely many such graphs where n(Gr) = (n — 2)f2
(see [16]).

The non-isomorphic one-factorizations and (i-dimensional) Howell designs
have been enumerated (for all 1) for all graphs on at most 10 vertices (see [13],
[2], and [16]). It is not feasible to continue this enumeration to all graphs
Gr on 12 vertices, for two reasons. If G'r is r-regular with r close to 12, the
numbers N;(Gr) will be astronomical, and present techniques would not yield
any results in a reasonable amount of time. If Gr is 6- or 7-regular, we can
determine the numbers N;(Gr); the problem here is that there are too many
graphs to test them all. In the remaining sections, we discuss the enumeration
of one-factorizations and Howell designs for several interesting graphs on 12
and 14 vertices.
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2. 6-regular graphs on 12 vertices

The case of 6-regular graphs on 12 vertices is particularly interesting, due to the
non-existence of a pair of orthogonal Latin squares of order 6 (i.e. n(Kgg) = 1).
In [9], Hung and Mendelsohn presented the first example of an H(6, 12).
More recently, Brickell found a Howell cube H4(6, 12) for which the under-
lying graph is the icosahedron with antipodal points joined (see [4]). It is also
worth mentioning that the automorphism group of this cube is the same as the
automorphism group of the icosahedron (this group is isomorphic to Z; x As).

In the hope of finding further examples, we investigated the 6-regular graphs
on 12 vertices having a transitive automorphism group. There are precisely 12
such graphs (see [3]); we present a listing of the edges of the complements of
these graphs in Table 1. From these 12 graphs, we found that there are precisely
24 non-isomorphic H (6, 12), and precisely one H3(6, 12) (the Brickell cube).
There are no examples of an Hy(6, 12) in this class of graphs. A summary of
our results is given in Table 2.

3. 7-regular graphs on 12 vertices

As in Section 2, we looked at the graphs having transitive automorphism
groups. For 7-regular graphs on 12 vertices, there are 10 such graphs ( [3]).
We list the edges in the complements of these graphs in Table 3. From these 10
graphs, we found many more Howell designs: 1393 non-isomorphic H(7, 12),
and five non-isomorphic H3(7, 12). The enumeration is summarized in Table 4.
An example of an H3(7, 12) was not previously known; we present one of the
five in Table 5 (the underlying graph is graph #1 in Table 3).

We also investigated two other 7-regular graphs on 12 vertices, namely, the
graphs which correspond to the so-called *-designs. An H*(r, n) can be defined
as an H(r,n) whose underlying graph has an independent set of n — r vertices
(which is the maximum possible size). For r = 7, n = 12, such a graph has the
form K§+Q, where Q is either a 7-cycle or the disjoint union of a 3-cycle and a
4-cycle (° denotes complement and + denotes join). In the first case, there are no
H*(7, 12); in the second case, there are three non-isomorphic H*(7, 12), which
are presented in Table 6. These are thus the smallest examples of H*(n, 2n—2)
for n odd, since there are no Howell designs H (3,4) or H(5, 8) (previously, the
smallest example in this class was an H*(13, 24), constructed in [15)).

4. H**(13, 14)

Another special class of Howell designs are called **-designs. An H**(r, n) is
defined to be an H (r, n) which satisfies the following two properties:

(1) there exists an (r — n/2) x (r — n/2) subarray of the Howell design
which consists of empty cells,
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(2) there exists a one-factor of the underlying graph which forms a transver-
sal of the n /2 rows and columns which do not meet the empty subarray
of (1).

These may seem somewhat unusual properties to ask for, but it turns out that
there is a powerful recursive construction for **-designs, which was instrumen-
tal in the proof of Theorem 1.1 (see [17]).

There has recently been some interest in H**(2m — 1,2m) (i.e. Room
squares which are **-designs). Note that we can define an H**(2m — 1,2m)
by requiring only that property (1) holds; property (2) then follows as a conse-
quence. Such adesign has several equivalent formulations, which are described
in [18]: one of these is a partitioned balanced tournament design PBT D(n),
and another is a pair of almost disjoint H(m, 2m). We elaborate on the second
formulation. Two H(m, 2m), say D, and D, (on the same symbol set), having
underlying graphs G and G2, respectively, are said to be almost disjoint if the
following properties hold:

(1) G1 NG, = [, where f is a one-factor,
2) G, UG, - [ = K,,,, the complete graph on 2m vertices,
- (3) the edges of f occur in a row (or column) of D, and in a row (or
column) of D».

H**(2m — 1,2m) do not exist form = 2, 3, or 4 (sce [18]). Form > 5,
such a design is known to exist for all but a few values of m ( [11], and pri-
vate communication from S. Vanstone and E. Lamken). The smallest unknown
case was m = 7. We were able to construct two non-isomorphic examples of
H**(13, 14), which we present in Table 7 as sets of almost disjoint H(7, 14).

These were found as follows. The H(7, 14) labelled D; was constructed by
E. Lamken (private communication). Call the underlying graph G|, and let f
denote the one-factor occurring in the last column of D,. First, we enumerated
all one-factorizations of the graph G2 = (K14 — G1) U f which contained f as
a one-factor. There were precisely 5272 non-isomorphic one-factorizations F'
of this type. For each such F', we determined all possible one-factorizations G
of G, orthogonal to F, such that G also contained f as a one-factor. For only
two of these 5272 one-factorizations F' could we find such a G orthogonal to
F. These are exhibited in Table 7.

5. Skew H(8, 10) designs

The last types of Howell designs we investigated are complementary and skew
H(r,r + 2). These special types of Howell designs are introduced in [10].
Several constructions are given, and it is shown that a pair of complementary
H(r,r + 2) exist for all even r > 4. Much less is known regarding skew
H(r,r + 2). In [10], a skew H(4,6), is constructed, and it is reported that
there does not exist a skew H (6, 8). The first unsettled case was that of a skew
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H (8, 10). We have done an enumeration of skew H (8, 10), and we found that
there are exactly three non-isomorphic examples.

We define a skew H(r, r + 2) (of course, r must be even). An H(r, r + 2),
say H, is said to be skew if there exist two symbols a, b where {a, b} is not an
edge of the underlying graph, such that the following properties are satisfied:

(1) Denote the n cells of H which contain a by T, , and denote the n cells
of H which contain b by T}. Then T, U T} consists of the r cells on the
diagonal of H (say D), and r other cells which form a transversal of
cells (say D’) of H, such that D’ is symmetric with respect to D (i.e. a
cell (s, ) € D’ if and only if cell (j,5) € D').

(2) Given any cell (s,7) ¢ D U IV, precisely one of cell (1, j) and cell
(J, 1) is empty.

In [16], the authors enumerated all non-isomorphic H (8, 10); there are 18220
such Howell designs. It was therefore a straightforward test to see which of
these designs could be written down in such a way that it forms a skew H (8, 10).
This was done as follows. For any given H(8, 10), there are five possibilities
for the pair {a, b}. For each possibility, the cells in T, U T}, form four 4-cycles
(no matter how the Howell design is written down). For each 4-cycle, there are
essentially two inequivalent ways of permuting the rows / columns containing
the 4-cycle. There are thus only 23 = 32 row / column permutations that must
be considered (for each possible {a, b}).

As a result of these tests, we found precisely three non-isomorphic skew
H(8, 10), which we record in Table 8.
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Table 1. S-regular graphs on 12 vertices having transitive automorphism groups

Graph No.
1

10

11

12

Edges

1-2,3,4,5,6;2-3,4,5,6,3-4,7,8,4-7,8,5-6,9,10,6-9, 10;
7-8,11,12;8-11,12;9-10,11,12;10-11,12; 11 -12.
1-2,3,4,5,6,2-3,4,7,8,3-4,9,10;4-11,12;5-6,7,9,11,6-8, 10, 12;
7-8,9,11;8-10,12;9-10,11;10-12; 11 - 12.
1-2,3,4,5,6;2-3,4,7,8,3-4,9,10;4-11,12;5-7,8,9,11;
6-7,8,10,12;7-9,11;8-10,12;9-11,12;10- 11, 12.
1-2,3,4,5,6;2-3,4,7,8,3-4,9,10;4-11,12;5-7,8,9, 11;
6-7,9,10,12;7-10,12;8-9,11,12;9-11;10- 11, 12.
1-2,3,4,5,6;,2-3,4,7,8,3-5,7,9;4-5,7,10;5-7,11;6-8,9, 10, 11;
7-12;8-9,10,12;9-11,12;10-11,12; 11 -12,
1-2,3,4,5,6,2-3,4,7,8,3-5,7,9;4-5,7,10;5-7,11;6- 8,9, 10, 12;
7-12;8-9,11,12;9-10,11;10-11,12; 11-12,
1-2,3,4,5,6;2-3,4,7,8,3-5,7,9;4-6,8,10;5-6,9,11;,6-10, 11;
7-8,9,12;8-10,12;9-11,12;10-11,12; 11 -12.
1-2,3,4,5,6;2-3,4,7,8;3-5,9,10;4-7,9,10;5-9, 11, 12;
6-8,9,11,12;7-10,11,12;8-10,11,12;9-11; 10- 12,
1-2,3,4,5,6,2-3,4,7,8,3-5,9,10;4-7,11,12;5-9, 11, 12;
6-8,10,11,12;7-9,10,11;8-9,10,12;9-12; 10-11.
1-2,3,4,5,6;2-3,7,8,9;3-10,11,12;4-5,7,8,10;5-9, 11, 12;
6-7,8,11,12;7-9,11;8-10,12;9-10,12; 10- 11.
1-2,3,4,5,6,2-3,7,8,9;3-10,11,12;4-7,8,9,10;5-7,8, 10, 11;
6-7,10,11,12;7-12;8-11,12;9-10, 11, 12.
1-2,3,4,5,6,2-7,8,9,10;3-7,8,9,11;4-7,8,10,11;5-7,9, 10, 11;
6-8,9,10,11;7-12;8-12;9-12;10-12; 11 - 12.
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Table 2. Howell designs from 6-regular graphs on 12 vertices having
transitive automorphism groups.

Graph No. |Aut(Gr)|
1 768
2 144
3 48
4 24
5 96
6 12
7 120
8 12
9 24

10 48
11 24
12 1440

Notation: DPM(Gr) denotes the number of distinct one-factors of Gr.

DPM(Gr)

368
348
344
342
392
386
368
354
344
344
336
376
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NOF(Gr)

190
469
1248
2018
1451
6932
733
4976
2216
1021
1983
132

NH(Gr)

0

O W o Wi O &~ — O O XX W

NH,(Gr)
0
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Graph No.

12;

1

10

Table 3. 4-regular graphs on 12 vertices having transitive automorphism groups

Edges
1-2,3,4,5;2-3,4,6,3-4,7,4-8;5-6,9,10;6-9,10;7-8,11,12; 8- 11,

9-10,11;10-12; 11 -12.
1-2,3,4,5;2-3,4,6;3-5,7,4-6,8,5-7,9,6-8,10;7-9,11; 8- 10, 12;
9-11,12;10-11,12; 11 - 12.
1-2,3,4,5;2-3,6,7,3-8,9;4-5,6,10;,5-8,11;6-7,10;7-9, 12;
8§-9,11;9-12;10-11,12; 11 - 12. .
1-2,3,4,5;2-3,6,7,3-8,9;4-6,8,10;5-7,9,10;6-8,11;7-9, 11;
8§-12;9-12;10-11,12;11-12.
1-2,3,4,5;2-3,6,7,3-8,9;4-6,8,10;5-7,9,11;6-8,11;7-9, 12;
8§-12;9-10;10-11,12; 11 - 12.
1-2,3,4,5;2-3,6,7,3-8,9;,4-6,10,11;,5-8,10,12;6-11, 12;
7-9,10,12;8-11,12;9-10, 11.
1-2,3,4,5;2-6,7,8;3-6,7,8;4-6,9,10;5-6,9,10;7-11,12;8-11, 12;
9-11,12;10-11, 12,
1-2,3,4,5;2-6,7,8,3-6,7,9;4-6,7,10;5-8,9,10;6-11;7- 12;
8§-11,12;9-11,12;10-11, 12.
1-2,3,4,5;2-6,7,8,3-6,7,9;4-6,8,10;5-7,9,10;6-11;7-12;
8§-11,12;9-11,12;10- 11, 12.
1-2,3,4,5;2-6,7,8;3-6,9,10;4-7,9,11;5-8,10,12;6-11, 12;
7-10,12;8-9,11;9-12;10-11.
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Table 4. Howell designs from 7-regular graphs on 12 vertices having
transitive automorphism groups.

Graph No.  |Aut(Gr))  DPM(Gr) NOF(Gr) NH(Gr) NH,(Gr)
1 48 825 127222 . 84 1
2 24 837 270875 235 3
3 48 827 130176 103 0
4 48 824 130141 166 0
5 24 821 245138 189 0
6 24 808 218138 130 0
7 768 827 9145 47 0
8 144 820 43060 72 1
9 24 818 237042 264 0

10 48 804 110656 103 0
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Table 5. A Howell cube H,(7, 12).
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Table 6. Three Howell designs H*(7, 12).
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Table 7. Two sets of almost disjoint Howell designs H(7, 14)

Set1: {D,, D,}.

Set2: {D,, D,}.
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a=5,b=6
6 10
8 9
1 5
2 3
4 7
a=5b=6
2 6
3 8
4 9
7 10
1 5
a=7,b=8
8 10
4 9
2
3 6

2

1

6 9
8

3 10

6 10

2 5

1

7

4 8
7
9

3 5

6 10

Table 8. Three skew H(8, 10) designs.

1 9
6
8 10
3 5
7
4 10
1
6 9
2 8
4 10
3
1 5
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