HOLEY PERPENDICULAR ARRAYS

D.R. STINSON

ABSTRACT. It is often useful to consider combinatorial designs with holes.
Perpendicular arrays are an interesting and useful type of design, and may be
thought of as containing holes of size one. We consider perpendicular arrays
with holes of other sizes, giving several constructions and applications of
these “holey” arrays.

We also prove a PBD-closure result which is of independent interest. If
v 2> 13, v # 14, 16, 18, 19, 23, 26, 27, 30, 38, or 42, then there exists a
pairwise balanced design on v points having blocks of size 4, 5, 7, 8, 9, or
12.

1. Introduction.

Let § = {Gy,...,G,} be a partition of a finite set X (the elements
of G are called holes). A holey perpendicular array (or HPA) having
strength ¢ and partition §, is an array P, having entries from X, which
satisfies the properties:

1) P has exactly ¢ rows

2) no column of P contains two elements from the same hole of §

3) given any two distinct rows, 1 and 3, of P, and given any two distinct
elements of X from different holes, z and y, there is a unique column
k of P such that {P(, k), P(5,k)} = {z, v}

It follows from the definition that an HPA, on symbol set X and
having partition §, contains exactly r columns, where

= (1xr - %1 - X - @)z

Geg

The type of an HPA having partition § is the multiset {IG]:G € §}.
We use the notation a*bick ... to describe the type of an HPA, where
there are ¢ holes of size a, 7 holes of size b, etc. In the literature, HPAs
of type 1" have been referred to as perpendicular arrays. A PA(n, 8)
denotes a HPA of strength s and type 1". For information concerning
perpendicular arrays, we refer the reader to 8], [9], [10], and [11]
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EXAMPLE 1.1: A PA(5,4) (or, equivalently, an HPA of type 1° and
strength 4)

01 2 3 4 01 2 3 4
1 23 4 0 2 3 4 01
23 401 401 2 3
4 01 2 3 3 4 0 1 2

The spectra for PA(n, s) have been almost completely determined for
8 <5 (see [8] and [10]). The results are as follows:

(1) There exists a PA(n,3) if and only if n > 3 is odd.
(i1) There exists a PA(n,4) if and only if n > 5 is odd.
(iii) There exists a PA(n,5) if and only if n > 5 is odd, except, possibly,
n = 39.

In this paper, we consider HPAs with holes of size other than one.
We pay particular attention to HPAs of type 2". We construct HPAs of
type 2™ and strength 4 for all n > 4, with the possible exceptions n = 6,
10, 11, 14, 15, 18, 19, 23, 26, 27, 30, 38, and 42. As an application,
we give a short, self-contained proof of the existence of PA(n,4) for all
odd integers n > 5. Also, for certain prime powers n = 1 modulo 4, we
coustruct HPAs of type 2™ and strength 7, using the computer.

2. Constructions for HPAs.

Our basic tool is the following recursive construction for HPAs which
uses group-divisible designs. A group-divisible design, or GDD, is a triple
(X, G, A), which satisfies the properties:

1) G is a partition of X into subsets (called groups),

2) A is a set of subsets of X, called blocks, such that a group and a
block contain at most one common point, and

3) given any two points from distinct groups, say z and y, there is a
unique block A € A such that z,y € A.

A weighting of a GDD (X, §, A) is a function w: X — Z+ U {0}. We
can use GDDs with suitable weightings to construct large HPAs from
small ones, as follows.

CONSTRUCTION 2.1. Suppose we have a GDD (X, G, A) with a weight-
mg w, and let t > 2 be an integer. For every block A € 4, suppose that
there i1s a HPA of type {w(z):z € A} and strength t, say H(A). If we
Juxtapose all the arrays H(A), A € A, horizontally, then we obtain an
HPA of type {3, cc w(z):G € G} and strength t.



We obtain one very simple corollary of this construction using pairwise
balanced designs (PBDs). A pairwise balanced design is a pair (X, A)
such that any two points occur in a unique block 4 € 4.

COROLLARY 2.2. Suppose we have a PBD (X, A) such that there exists
a PA(|A|,t) for all A € A. If we define a set of groups § = {{z}:z € X},
then (X, G,4) is a GDD. If we give every point weight one, and apply
Construction 2.1, then we get a PA(|X]|¢t). (Equivalently, we are saying
that the set of integers {m: there exists a PA(m,t)} is PBD-closed).

Thus, we can construct large HPAs provided we have small ones.
What we need now are direct constructions for HPAs.

Most direct constructions for HPAs use difference methods. The fol-
lowing is an immediate generalization of the techniques described in [10],
Let G be an abelain group and let H be a subgroup of @, such that g—nh
is even, where g = |G| and h = |H|. A holey perpendicular difference
array, or HPDA, of type A9/ and strength t,is a t by (g —h)/2 array of
elements from G\ H, say D = [d:j], such that for any {z, k} C{1,...,t},
we have:

{£(dij —drs): 1 <5< (g - h)/2} =G \ H.

Informally, we are saying that the differences obtained from any two
rows produce every element of @ \ H. It is casy to see that developing
an HPDA through the group G will yield an HPA (¢f. [10, Theorem
2.1]). Hence, we have

CONSTRUCTION 2.3. If there is a holey perpendicular difference array

of type h9/* and strength t, then there exists an HPA of type h9/h and
strength t.

A perpendicular difference array, PDA(g,t), as defined in [10], is an
HPDA where H = {0}, which therefore gives rise to a PA(g,t).

One application of HPDAs is a finite field construction [10, Corollary
2.5]. Suppose m is an odd prime power, and let z be a primitive root of
the Galois field G F(m). Then the following (m —1)/2 columns comprise
a PDA(m,m):

0 0 0 0

1 x z2 ... g(n=3)/2

z x2 3 .. glh-1)/2 - 4
x> z3 zt . glet)/2 =
2,'"'_2 mn—-l T . m(n—S)/Z

Hence, we have the following corollary.



COROLLARY 2.4. Ifnis an odd prime power, then there is a PA(n, n).

3. Perpendicular arrays of strength 4.

In this section, we give a short, self-contained proof of the existence

of a PA(n,4) for all odd n > 5. We shall use the following two small
HPAs.

EXAMPLE 3.1: An HPA of type 24 and strength 4:

holes: {{1, 5}, {2, 6}, {3, 7}, {4, 81}

163128174234527564538678
631281741342275645385786
316812417423752456853867
888777666111444333222555

EXAMPLE 3.2: An HPDA of strength 4 in Z10\{0,5}, which gives rise
to an HPA of type 2% and strength 4:

0 0 00O
1 8 7 6
2 4 9 3
3 2 6 9

We use these two HPAs in our GDD construction as follows. Suppose
that n > 4, n # 6, 10. Then there exist three mutually orthogonal Latin
squares, or MOLS, of order n (three MOLS of order 14 were recently
found by Todorov; for an existence proof of all other orders, see [12]).
A set of three MOLS gives rise to a transversal design TD(5,n), or a
GDD having 5n points, 5 groups of size n, and n? blocks of size 5. Let
0 <t < n, and delete n —t points form a group of this GDD. We obtain
a GDD with group-type n*t!, having blocks of size 4 and 5.

Now give every point weight 2, and apply the Construction 2.1 with
t = 4. We use the two HPAs of types 2¢ and 2° as input HPAs, and we
obtain an HPA of type (2n)%(2¢)! and strength 4.

We can now fill in the holes of this HPA with the designs PA(2n+1, 4)
and PA(2t + 1, 4), assuming they exist. For each hole G of the HPA,
adjoin the columns of a PA of strength 4 on the points G U {oo}, where
0 13 any new point. This produces a PA(8n + 2t +1, 4).

Summarizing this discussion, we have
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CONSTRUCTION 3.3. Suppose n > 4, n #6, 10, and 0 <t < n. If
there exists a PA(2n + 1, 4) and a PA(2t + 1, 4), then there exists a
PA(8n + 2t + 1, 4).

Assuming that we have all “small” PA(m, 4) (i.e. supposing we have
coustructed PA(m, 4) for all odd m such that 5 < m < M, for some
M), how big must M be in order that Construction 3.3 will complete the
spectrum? Let us make a table of applications of the above construction.

Table 1

Construction of PAs of strength 4

n t 8n+2t+1

4 0,2,3,4 33,37,39,41

o 0,2-5 41,45,47,49,51
7 0,2=17 07,61,63,...,71
8 0,2—-8 65,69,71,...,81
9 0,2-9 73,77,79,...,91
11 0,2-11 89,93,95,...,111
ete.

There are no gaps from this point on. The only small numbers not
covered in Table 1 are:

5,7,...,31, 35,43, 53, 55, and 50.

50, we will be done, provided we can construct PA(m, 4) for these
values of m.

The finite field construction (Corollary 2.4) handles m = 5, 7, 9, 11,
13, 17, 19, 23, 25, 27, 29, 31, 43, 53, and 59, leaving only m = 15, 21,
35, and 55 to be dealt with.

The three largest of these can be killed by means of Corollary 2.2.

Since a (21,5,1) BIBD exists (i.e. there is a projective plane of order
4), and there is a PA(5,4), hence there is a PA(21,4).

There also exist 3 MOLS of order 7 and 11. These give rise to transver-
sal designs T'D(5,7) and TD(5, 11). Hence there is a PBD on 35 points
with blocks of size 5 and 7; and a PBD on 55 points with blocks of size
o and 11. Since there exist PA(m,4) for m = 5, 7, and 11, hence there
exists a PA(35,4) and PA(55,4). '



The last PA we have to construct is a PA(15,4). In fact, the following
PDA(15,5), exhibited in [11], gives rise to a PA(15,5):

00 0 0 0 0 o
1 2 3 4 5 ¢ 71
25 7 9 12 4 1
6 3 14 10 7 13 4
10 6 1 11 2 7 12

Finally, it is easy to see that there does not exist a PA(m,4) for any
even m, or for m = 3. Hence, we have established the following

THEOREM 3.4. There exists a PA(m,4) if and only if m > 5 is odd.

4. HPAs of type 2" and strength 4.

In this section, we study the existence of HPAs of type 2" of strength
4. We have already constructed HPAs of types 2% and 2% (and strength
4). We also have direct constructions for the following cases.

LEMMA 4.1. There exists an HPA of type 2™ and strength 4 for n = 7,
8, 9, and 12.

PROOF: First, we construct an HPA of type 27 and strength 4. The
points are {2, 3,... 15} and the holes are {{2,3},{4,5},... ,{14,15}}.
We start with the following 7 columns:

4 2 4 2 4 2 ¢
14 4 9 8 10 12 10
7 6 12 10 13 14 9
10 8 16 15 2 7 12

Next, we obtain 28 columns, replacing each column by the four columns
obtained by the action of the permutation group ((2 3) (4 14 5 15)
(6 11 7 10) (8 12 9 13)). Finally, we obtain 84 columns, by replacing
each column

by three columns:

& o o~ 8
QU o o8
&R & o o
& o~ 8 o

The resulting array is the desired HPA.
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Next, we present an HDPA of type 28 and strength 4 in Z¢ \ {0, 8}:

60 00 0 O

1 2 3 45 6 7
14 4 9 15 6 13 11
10 15 7 5 3 12 2

An HPA of type 2° is obtained from the following HPDA in Z18\{0,9}:

06 0 00 0 0O 0 O
1 2 3 4 5 6 7 8
16 1 14 6 11 10 15 3
12 16 8 7 3 5 17 14

Finally, we display an HPDA of type 212 in Zo, \ {0,12}:

0O 0 0 0 00 0O 0 0 O
1 2 3 4 5 6 7 8 9 10 11
22 20 7 15 14 1 21 6 16 11 19
18 11 23 22 19 4 15 7 14 21 8
This completes the proof. o

Now, if we apply Construction 2.1, giving every point weight 2, we
see that the set

HPA4 = {n: there exists an HPA of type 2" and strength 4}

is PBD-closed. Since we have {4, 5, 7, 8, 9, 12} C HPAA4, it will be of
interest to study the set B(4, 5, 7, 8, 9, 12), i.e. the PBD-closure of {4,
5,7,8,9, 12} (in general, B(K) denotes the set of all integers v such
that there exists a PBD all of whose block sizes are in K).

Hanani has shown [6, Lemma 6.3] that B(4,5,8,9,12) = {n:in =0
or 1 (modulo 4)}. Hence, it is necessary only to consider n = 2 or 3
(modulo 4). Next, we use Brouwer’s result [2] that B(4,7) = {n =1
(modulo 3)}\ {10, 19}. Note also that 10, 19 ¢ B(4,5,7,8,9, 12) ([4]).

Hence, we have

LEMMA 4.2. n€ B(4,5,7, 8, 9, 12) unless n = 2, 3, 6, or 11 (modulo
12), or n = 10, 19.

The following construction is useful to handle the remaining cases.
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LEMMA 4.3. Suppose v = 4 modulo 12, and 0 <t < (v —1)/3. Then
v+te B4, 5, t).

PROOF: Adjoin t infinite points to t parallel classes of a resolvable
(v, 4, 1)-BIBD (these were shown to exist in [7]). o

Using ¢t = 7, we handle all n = 11 modulo 12, n > 35.

Using t = 22, we have n € B(4, 5, 22), for all n = 2 modulo 12,
n = 98. Since 22 € B(4, 7), we have n € B(4, 5, 7) for these n.

Using ¢ = 35, we have n € B(4, 5, 35), for all n = 3 modulo 12,
n > 147. Since 35 € B(5, 7), we have n € B(4, 5, 7) for these n.

Finally, using t = 50, we have n € B(4, 5, 50), for all n = 6 modulo
12, n > 210. Since 50 € B(7, 8), we have n € B(4, 5, 7, 8) for these n.

Many of the remaining values can be obtained by truncating some
points from some groups of a transversal design. We use the following
well-known construction.

LEMMA 4.4. Suppose there is a TD(j + k,m), and 0 < u; < m, for
1< ¢ < k. Then jm-{-ElSiSk u; € B(]’,j-{-1,...,j+k,u1,...,uk,m).

We also use the following variant to handle one case.,

LEMMA 4.5. Suppose there is a T D(j+k, m). Then jm+k € B(g7,7+1,
7+ k,m).

PROOF: Let A be any block of the TD. Delete all points in groups
J+1,...,7+ k, except those points on A. o

Many small values in fact are not in B(4,5,7,8,9, 12): in [4], Drake
and Larson show that n ¢ B(4,5,7, 8,9, 12)if n = 14, 15, 18, 23,
26, or 27. We are not sure if 30, 38, or 42 € B(4,5,7, 8,9, 12) (see
[5] for an investigation of the structure of a possible PBD on 30 points
with blocks from {4, 5, 7, 8, 9, 12}). However, we can apply Lemmata
4.4 and 4.5 to eliminate all the other possible exceptions. (The requisite
TDs can all be found in Beth, Jungnickel, and Lenz [1].)
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Construction of PBDs with blocks of size 4, 5, 7, 8, 9, and 12

Table 2

n authority equation block sizes
39 Lemma 4.4 4*8+ 7 4,5 7,8

50 Lemma 4.4 ™7+1 7,8

0l Lemma 4.5 4*12 + 3 4,5,7,12
04  Lemma 4.4 77+ 5 5,7,8

62 Lemma 4.4 "8+56+1 5,7,8,9

63 Lemma 4.4 7*9 7,9

66 Lemma 4.4 7*8+5+5 9,7,8,9
74" Lemma 4.4 "9+ 7+4 4,7,8,9

75 Lemma 4.4 794+ 7+5 5,7,8,9

78 Lemma 4.4 "9+7+38 7,8,9

86 Lemma 4.4 7*12+1+1 7,8,9,12
87 Lemma 4.4 4*20+7 4,5, 7,20
90 Lemma 4.4 7*12+5+1 5, 7,89, 12
99 Lemma 4.4 ™12+8+7 7,8,9,12
102 Lemma 4.4 713+ 7+ 4 4,7,8,9, 13
111 Lemma 4.4 713+ 12+ 8 7,8,9,12, 13
114 Lemmadd  7*16+1+1 7,8, 9, 16
123 Lemma 4.4 717+ 4 4,7, 8, 17
126 Lemma 4.4 ™17+ 7 7,8, 1

135 Lemma 4.4 7*17 + 16 7,8, 16, 17
138 Lemma 4.4 17T+ 12417 7,8,9,12, 17
150 Lemma 4.4 4*32 + 22 4,5, 22, 32
162 Lemma 4.4 4*35 + 22 4,5, 22, 35
174 Lemma 4.4 4*35 + 34 4, 5, 34, 35
186 Lemma 4.4 4*41 + 22 4, 5, 22, 41
198 Lemma 4.4 4*44 + 22 4,5, 22, 44

-
-

Summarizing the results above, we have the following PBD-closure
result.

THEOREM 4.6. Let A={2, 3, 6, 10, 11, 14, 15, 18, 19, 23, 26, 27} and
B = {30, 38, 42}. Then Z+\(AUB) C B(4,5,7,8,9,12) C Z+\ A.



5. HPAs of type 2" and strength 7.

In this section, we indicate how it 13 possible to construct HPAs of
type 2" and strength 7, for some prime powers n = 5 modulo 8. The
technique is basically that used in [8]. For such an n, let £ be a primi-
tive element in GF(n). The non-zero elements of GF(n) form a cyclic
group with respect to multiplication, with generator z. Let Co be the
(multiplicative) subgroup of size (n — 1)/4, and let Cy, Ci, C2, and Cjy
be its cosets (these are referred to as cyclotomic classes).

We construct our HPA on point set GF(n) x {0, 1}, with partition
{y} x {0, 1}: y € GF(n)}. (For convenience, we will write an ordered
pair (y, 1) as y;, y € GF(n), i =0, 1.) We give a set of 8 columns.
Multiplying by every element in Co, we obtain 2n —2 columns, and then
developing through GF(n), we have 2n(n — 1) columns, which, at least,
is the correct number.

Hence, it is sufficient to find a set of 8 columns that work. It is most
convenient to pick a subscripting pattern ahead of time, and then use
a backtracking algorithm to finish the job. Let § denote the following
7x 8 0—1 matrix:

000011 11
0011001 1
01 01 01 0 1
01 1 0011 0
001111 0 0
01 01101 0
01 1010 01

It A denotes any 7 x 8 matrix with entries from GF(n), let A® S be
the matrix whose ¢ — 5 entry is a,, where a = A, j] and s = S[;, 7l
A® S are the 8 columns that we use to generate the HPA of type 2»
and strength 7. It is not difficult to formulate the set of conditions that
will ensure that a given 4 @ § will work. The differences obtained from
any two rows should comprise one representative from each of the four
cyclotomic classes, for each of the 2 x 2 = 4 combinations of subscripts.

On the computer, it is not difficult to find matrices A4 so that A @ §
satisfies these conditions. We found the following matrices A:
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n = 29:

16
8 13
4 14 23 22

14

18 21

14

12
16

2
4 3

9 19 8

8
28

17 25

25

4

n = 37:

14

22
30

16

183 14 24

17 21

7
6 12 21

11

4
6 10

w

n = 53:

37

3 37 37 3 37
4 39 39 39 39

4

4

4
4 17 13

22
ol 43 36 21

o0 42

22

1 24

5

1 43 20

8

3

n = 61:

11

26

5

10 9 28 10
9 11 40 20 38

4
4 10

00 46 37 41

11 39

5

6
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n = 101:

000 0 0 0 0 o
1 21 2 1 2 1 2
214 3 3 3 19 4
3 3 5 4 5 4 8 38
4 7 2 12 7T 5 24 ¢4
5 4 3 8 17 13 11 18
6 5 6 40 55 41 69 43

Hence, we have the following result.

THEOREM 5.1. There exists an HPA of type 2™ and strength 7 for
n =29, 37, 53, 61, and 101.
6. Conclusion.

We have introduced the concept of holey perpendicular arrays. We

hope that this idea will be fruitful in the study of perpendicular arrays,
Latin squares, and related designs.

42



(¢,

10.

11.

12.

REFERENCES

. Th. Beth, D. Jungnickel and H. Lenz, “Design Theory”, Bibliographisches In-

stitut, Zurich, 1985.

. A.E. Brouwer, Optimal packings of K} s into a K,,, J. Comb. Theory A 26 (1979),

2568-279.

. J.H. Dinitz and D.R. Stinson, MOLS with holes, Discrete Math.44 (1983), 145-154.
. D.A. Drake and J.A. Larson, Pairwise balanced designs whose line sizes do not divide

siz, J. Comb. Theory A 84 (1983), 266-300.

. D.A. Drake and J.A. Larson, A quest for certasn linear spaces on thirty points, J.

Stat. Plan. and Inf. 10 (1984), 241-255.

. H. Hanani, The existence and construction of balanced sncomplete block designs, Ann.

Math. Statist. 82 (1961), 361-386.

. H. Hanani, D.K. Ray-Chaudhuri and R.M. Wilson, On resolvable designs, Discrete

Math. 8 (1972), 75-97.

. C.C. Lindner, R.C. Mullin and G.H.J. van Rees, Separable orthogondal arrays, Util-

itas Math. (to appear).

. C.C. Lindner and D.R. Stinson, The spectrum for the conjugate snvariant subgroups

of perpendicular arrays, Ars Combinatoria 18 (1984), 51-60.

R.C. Mullin, P.J. Schellenberg, G.H.J. van Rees and S.A. Vanstone, On the con-
struction of perpendicular arrays, Utilitas Math. 18 (1980), 141-160.

P.J. Schellenberg, G.H.J. van Rees and S.A. Vanstone, Four pairwise orthogond Latin
squares of order 15, Ars Combinatoria 6 (1978), 141-150.

W.D. Wallis, Three orthogonal Latin squares, Cong. Num. 42 (1984), 69-86.

Department of Computer Science
University of Manitoba

Received November 4, 1985



