ONE-FACTORIZATIONS OF REGULAR GRAPHS
AND HOWELL DESIGNS OF SMALL ORDER

A. ROSAl AND D. R. STINSON2

1. Introduction.

A 1-factorization of a graph G is a partition of the edge-set of G
into 1-factors (=perfect matchings). Two 1-factorizations Fy, Fo of G
are orthogonal if any two edges of G belong to distinct 1-factors of F
whenever they belong to the same 1-factor of Fj.

A Howell design H(s,n) is a square array of side s such that (1)
each cell is either empty or contains a 2-subset of an n-set N, (i1) every
element of N occurs in exactly one cell of each row and each column,
and (i) any 2-subset of N occurs in at most one cell of the array.
Necessary and sufficient conditions for the existence of a Howell design
H(s,n) were recently obtained by the second author [1, 8].

On the other hand, not much seems to be known about the num-
ber of nonisomorphic Howell designs. It is well-known (see, e.g., [6])
that a Howell design H(s,n) is equivalent to a pair of orthogonal 1-
factorizations of (some) regular graph of degree s and order n (i.e., with
n vertices). Thus when trying to enumerate Howell designs, a natu-
ral approach would appear to be to enumerate first the 1-factorizations
of regular graphs, and then to examine whether they admit orthogonal
mates, with a subsequent (or simultaneous) isomorphism rejection. This
1s essentially the approach that we adopted, and this paper 18 a report
on our findings.

Starting with a known listing of regular graphs given in [3], we enumer-
ate: 1. nonisomorphic 1-factorizations of regular graphs of order < 10
and degree < 7; 2. nonisomorphic pairs of orthogonal 1-factorizations
of these regular graphs, i.e., nonisomorphic Howell designs.

2. General comments.

Let G be a regular graph of degree s on n vertices (n even). If there ex-
1sts a pair of orthogonal 1-factorizations of G (resulting in a H(s,n)), we
will say that G admits a Howell design. Although the existence question
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for Howell desiens has been completely settled, the question about which
regular graphs admit a Howell design does not appear to be an easy one.
Since the existence of g pair of orthogonal Latin squares of order n ig
equivalent to the existence of a pair of orthogonal 1-factorizations of
Ko i,y it follows (cf. [5]) that the complete bipartite graph Ko ad-
mits a Howell design whenever m # 2 or 6. (Although no other regular
graph of degree 1n on n vertices admits a Howell design if n < 8, four
out of 59 other 5-1'egular graphs on 10 vertices do (cf. Tables 6 and 9
below), and so does at least one of (the other) G-regular graphs on 12
vertices [4, 5].) Similarly, the unique (n = 1)-regular and the unique
(n — 2)-regular graph on n vertices (i.e., the complete graph K,,, and
the cocktail-party graph K, — F (F a 1-factor), respectively) admit a
Howell design if n > 8, and if n > 6, respectively. This follows from the
results on the existence of H(n -1, n) (i.e., Room squares of order n)
and H(n - 2,n)’s [1, 8].

Not much else appears to be known in general. One of the reasons
that we undertook the mmvestigation of s-regular graphs on n vertices
for small n (n < 10) was the hope that this will shed some light on
the gencral question above. Although this did not quite materialize,
nevertheless, we feel that the following is most likely to be true:

Conjecture. For every k > 1 there exists a number Ny such that for all
n > Ni (n even), every (n — k)-regular graph on n vertices admits a
Howell design H(n — k,n).

The conjecture is true, of course, for k = 1,2, but to prove it already
for k = 3 will likely not be easy.

3. Howell designs H(s,n), n <8,

The following is well-known and/or an easy exercise, and is recorded
only for the sake of completeness:

There exists no H(2,4), H(3,4) or H(5,6) (5, 9].

There exists a unique H(3,6) and unique H(4,6) (up to an isomor-
phism, of course); of the two 3-regular graphs on 6 vertices, it is K; 5
which admits a Howell design (and Cg which does not).

Having dismissed the trivial case n < 6, we thus proceed to the case
n =8,

3.1. There exists a unique H (4,8) (up to an isomorphism).

We may assume w.l.o.g. that the first row of a Howell design H(4,8)
is (12 34 56 78). Then the second row is, w.l.o.g., either (58 67 14 23)
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(Case 1) or (67 18 23 45) (Case 2). We may again w.l.o.g. assume that
the cell (3,1) contains the element 3.

Case 1. The cell (3,1) must contain the pair 36 (as 34 occurs already
in the first row, and 37 in cell (3,1) would force 28 in cell (3,3) which in
turn would force 37 in cell (4,3) as well, a contradiction). Therefore the
cell (4,1) contains 47. The cell (3,3) must then contain 27 (the element
7 can occur in the third column only in cell (3,3) but since 78 occurs
already in the first row, 27 is the only possibility left). Consequently,
the cell (3,4) contains 38. It is now easily seen that a unique completion
of the 3rd and 4th row is now forced, to (36 18 27 45) and (47 25 38 16),
respectively. '

The underlying graph of the resulting Howell design is Ky 4, and,
in fact, this is the well-known HD(4,8) [6] from a pair of orthogonal
Latin squares of order 4 (which is well-known to be unique up to an
1somorphism).

Case 2. The cell (3, 1) must contain the pair 35 (as 34 occurs already in
the first row, and 38 would force 45 in cell (4,1) but 45 occurs already).
Therefore the cell (4,1) contains 48; this forces 17 in cell (4,3) and then
again 48 in cell (3,3) a contradiction.

An alternative proof is via exhibiting all distinct 1-factorizations of 4-
regular graphs on 8 vertices, and inspecting all pairs of them for orthog-
onality. However, except possibly in this case, this approach becomes
quickly impractical (cf. Tables 6-8) for “proofs by hand” and is suitable
only if one uses computer.

3.2. There exists no H(5,8).

Hung and Mendelsohn [5] reported this as a result of a computer
search. We think that the “non-computer proof” below may be of in-
terest.

Assume that a Howell design H(5,8) exists. We may assume w.l.o.g.
that the cell (1,1) is empty, and that the first row is (12 34 56 78).
Then w.lo.g. the first column is either (-13 24 57 68)7 (Case I) or (-
18 23 45 67)T (Case II).

Case 1. As the cell (2, 1) contains the pair 13, we may assume w.l.o.g. that
one of the remaining three occupied cells of row 2 contains the pair 25;
this forces the remaining two occupied cells in row 2 to contain the pairs
48 and 67. If 48 were to occur in cell (2,2) then one would be unable to
complete column 2 (as all three of 56,57, 67 already occur in the square);
thus 48 must occur in cell (2,4). Similarly, if 25 were to occur in cell
(2,3), one could not complete column 3 (as all three of 67, 68, 78 already
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occur in the square); thus 25 must occur in cell (2,5). If 67 were in
cell (2,2) then the only way to complete column 2 would be with pairs
38,45, and the pair 45 would have to be in cell (5,2); but then the only
way to complete row 5 would be with pairs 17,23, and the only way to
complete column 4 would also be with pairs 17,23 which is impossible;
thus 67 cannot occur in cell (2 2). Comnsequently, row 2 must be of the
form (13-67 48 25). The only way to complete column 3 is with pairs
15,28, and the pair 28 must go in cell (4,3); but then the only way to
complete row 4 would be with pairs 14,36, and the only way to complete
column § would also be with pairs 14,36 which is impossible.

Case II. W.l.o.g., we have to distinguish four cases according to whether
the remaining three pairs in the occupied cells of row 2 are 27, 35, 46
(Case Ila), 26,35,47 (Case IIb), 25,36,47 (Case IIc) or 24,36,57 (Case
I1d).

Case Ila. If the pair 35 were in cell (2,2) then the only way to complete
column 2 would be with pairs 47,68, and column 2 would have to be
(12 35 47 68-)T. But with 45 and 68 in cells (4,1) and (4,2), respec-
tively, row 4 is impossible to complete. Thus the pair 35 cannot be 1n
cell (2,2) which implies that 35 must be in cell (2,5) and 46 must be in
cell (2,2). Now column 2 can be completed either with the pairs 37,58
or with the pairs 38,57. If the pairs 37,58 were to occur in column 2
then the pair 37 must be in cell (4,2). If the pair 58 were in cell (5,2)
then row 5 would have to be (67 58-13 24) which in turn forces the pair
16 in cell (4,5) but this implies that the two cells (3,2) and (3,5) in row
3 are empty, a contradiction. If the pair 58 were in cell (3, 2) then the
only way to complete row 3 would be with pairs 16,47 and the only way
to complete row 4 would be with pairs 16,28, a contradiction. Thus the
pairs 38,57 must occur in column 2, with 57 in cell (3,2). The element
5 must now oceur in cell (4,3).

I£ 58 occurs in cell (5,3) then row 5 must be of the form (67-58 13 24)
which in turn forces column 4 to be of the form (56 27 48-13)T and
column § to be of the form (78 35 16-24)T, a contradiction as this would
mean two empty cells in row 4. If 15 occurs in cel] (5,3) then column
3 must be (34 27 68-15)T which forces column § to be (78 35-16 24)T,
now if 38 would appear in cell (4,2), row 5 cannot be completed, and
if 38 would appear in cell (5, 2), two cells (2,4) and (5,4) in column 4
would be empty. Finally, if 25 occurs in cell (5,3) then row 2 must be
(18 46-27 35) which forces column 3 to be (34-68 17 25)T and the pair
26 to appear in cell (4,5). But then 38 must occur in cell (4,2) and 14
in cell (3,5) which forces two cells (3,4) and (4,4) in column 4 to be
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empty, a contradiction.

Case IID. 1If the pair 35 were in cell (2,2) it would be impossible to
complete column 2, thus 35 must be in cell (2,5) and so 26 must be in
cell (2,3). Column 5 can now be completed only with pairs 16, 24, with
24 in cell (5,5) which forces cell (4,4) to contain element 2. If 27 were
in cell (4,4) then column 3 must be (34 26 17-58)T which forces row 5
to be (67-58 13 24) which in turn forces column 4 to be (56-48 27 13)7;
but then row 3 is impossible to complete. If 28 were in cell (4,4) then
the only way to complete column 3 is with pairs 17,58, and the only way
to complete row 5 is with pairs 13,58 which implies that 58 must be in
cell (5,3), 13 must be in cell (5,4), 47 must be in cell (2,4), and so two
cells (2,2) and (5,2) in column 2 would be empty, a contradiction.

Case Ilc. If the pair 47 were in cell (2,2) then row 2 must be (18 47 25-
36); the only way to complete column 2 would be with pairs 35,68
and the only way to complete column 3 would be with pairs 17,68, a
contradiction. Thus 47 must be in cell (2,4). If 36 were in cell (2,2) then
column 2 would have to be (12 36 57-48)T which would force column 4
to be (56 47-28 13)T but then row 5 would be impossible to complete.
Thus 36 cannot be in cell (2,2), and row 2 must be (18-25 47 36). This
forces column 5 to be (78 36 15-24)T but then row 3 is impossible to
complete.

Case IId. If the pair 36 were in cell (2,2) then column 2 must be
(12 36 47 - 58)T but then row 5 is impossible to complete. Thus 36
must be in cell (2,5), and 24 must be in cell (2,4). This leaves as the
only possibility for column 5 (78 36 14 — 25)T but then row 3 is impos-
sible to complete.

In either case, the square cannot be completed. w

3.8 There exist exactly three nonisomorphic H(6,8)s.

This was obtained both by hand and by computer, by using essen-
tially the same approach. First all nonisomorphic 1-factorizations of
the cocktail-party graph Kg — F were found (13 in total, ¢f. Table 2).
Afterwards, for each of these all possible orthogonal mates were con-
structed. Int the final step, the obtained set of Howell designs was tested
for isomorphic copies, and duplicates were deleted.

The only difference between the hand and computer calculations that
13 worth noting is that when working by hand, in enumerating the non-
isomorphic 1-factgrizations of Kg — F' a use was made of the known
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nonisomorphic 1-factorizations of Kp [9]: from each of the 6 nonisomor-
phic 1-factorizations of Kg, a representative of each orbit of 1-factors
(under the group of the 1-factorization) was omitted one at a time.
This resulted in a set of 1-factorizations of Kz — F from which isomor-
phic duplicates were then removed. When working on a computer, all
distinct 1-factorizations of Kg — F were obtained first, and isomorphic
duplicates were eliminated by a “sieve” method (cf. Section 4 below).

The nonisomorphic 1-factorizations of the cocktail-party graph Kz —
F are listed in Table 2, together with their types. The type of a 1-
factorization indicates how many of all (g) = 15 pairs of its 1-factors have
as their union two 4-cycles, and one 8-cycle, respectively. As seen from
Table 2, in this case the type 1s a fairly sensitive, though not a complete
invariant. We also indicate in Table 2 (in the column headed OF(Kj)
No.) which of the 6 nonisomorphic 1-factorizations of the complete graph
Kg results (in the numbering of [9]) if the (unique) “missing” 1-factor
I 1s added to the 1-factorization of Kg — F. Ounly four out of thirteen
nonisomorphic 1-factorizations of Kg — F admit an orthogonal mate,
and only one (No. 2, ¢f. Table 2) admits 2 nonisomorphic mates, one
of them isomorphic to itself. The three nonisomorphic Howell designs
H(6,8) are listed in Table 3.

4.  One-factorizations of s-regular graphs on 10 vertices
and Howell designs H(s, 10) with s < 7.

When the number of vertices is increased to 10, it becomes quickly
apparent that for none of the questions addressed in Section 3 is hand
computation any longer feasible. Thus all results of this section were
obtained by computer. A brief description of the algorithms used follows.

We used the list of connected regular graphs given in [3] (where the
graphs are given by the list of their edges) which we augmented when-
ever applicable with the disconnected regular graphs. For a given graph,
all its distinet 1-factors were generated by a simple backtrack. The du-
plicates from the (ordered) list of distinct 1-factors were then eliminated
by a sieve-like procedure using the action of the automorphism group of
the graph on its 1-factors. First, all images of the first 1-factor on the list
(except itself) were deleted from the list, next all images of the second
(remaining) 1-factor (except itself) were deleted, etc. Clearly, after one
pass through the list only nonisomorphic 1-factors remain. Note that
the procedure is computationally feasible only due to the small size of
both the group order and the set of distinct 1-factors.

The procedure for generating distinct and nonisomorphic 1-factoriza-

‘tions is similar, as is the procedure for generating all nonisomorphic
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pairs of orthogonal 1-factorizations (i.e., Howell designs).

The results of calculations are listed in Tables 4-11. First of all, the
numbering of graphs is as in [3] (for specific differences, see comments
directly within the respective tables). Tables 4,5 list all regular graphs
on 10 vertices of degree 3 and 4 respectively (actually, the unique discon-
nected graph of degree 4 consisting of two disjoint Kj5’s is not included
in Table 5 as it has no 1-factor). Since the listing of graphs in [3] does
not appear readily available, we have included Tables 4a and 5a with the
lists of edges of the connected 3- and 4-regular graphs on 10 vertices, as
it appears in [3]. [In the listing of the 4-regular graphs on 10 vertices in
[3], there iz a misprint in the graph No. 32: the edge 68 should appar-
ently read 69.] Tables 6, 7 and 8 list all 5-, 6- and T-regular graphs on 10
vertices respectively. An extra column contains information on Howell
designs H(s,10) for s = 5,6,7. The totals give the following:

There exist ezactly 6 nonisomorphic H(5,10)s.

There ezist ezactly 18 nonisomorphic H(6,10)’s.

There ezist ezactly 901 nonisomorphic H(7,10)’%s.

On the other hand, there exists no set of three pairwise orthogonal
1-factorizations (i.e., no “Howell cube”) of an s-regular graph on 10
vertices where s = 5,6 or 7.

We may add, for the sake of completeness, that there exist exactly
257630 nonisomorphic Room squares of side 9, exactly 257 nonisomor-
phic Room cubes of side 9, and exactly one (up to isomorphism) 4-
dimensional Room hypercube of side 9 ([2]). A corresponding enu-
meration for the graph Ko — F was recently done by E. Seah and
D.R. Stinson. There are exactly 3192 nonisomorphic 1-factorizations,
exactly 18220 nonisomorphic Howell designs H{(8,10), exactly 3 noniso-
morphic sets of three orthogonal 1-factorizations, and exactly 1 set of
four orthogonal 1-factorizations (up to isomorphism). (This set of four
was first constructed by E. Lamken and S.A. Vanstone).

Tables 9 and 10 list all nonisomorphic H(5,10)’s and H(6,10)’s while
Table 11 lists, for each of the 7-regular graphs on 10 vertices, one example
of a H(7,10) admitted by the graph.

One comment concerning Table 9 and the two Howell designs H(5, 10)
admitted by K 5: although we are convinced that it must be well-known
that there are precisely two nonisomorphic pairs of orthogonal Latin
squares of order 5, we are unable to produce a reference for this fact.

5. Concluding remarks and open problems.

Very recently, Brickell [4] found a Howell cube H(6, 12); this is the
first example of an n-regular graph on 2n vertices (other than K, ,) that
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admits three orthogonal 1-factorizations. Many more examples should
exist for n = 6.

One question one might ask in connection with this is, what proportion
of n-regular graphs with 2n vertices admits a Howell design? Of course,
we cannot realistically expect a complete answer.

Another question that has been asked before [7] is about the existence
of special Howell designs H*(n+1, 2n) where n is even. The underlying
graph of such a design I(n_1+Qn+1 (where + denotes the Join, and Q, 1,
13 a 2-regular graph on n + 1 vertices). The smallest known example in
this class is H*(13,24) given in [7].

Scott Vanstone and others conjectured that the maximum number
of pairwise orthogonal 1-factorizations of any r-regular graph on 2n
vertices does not exceed n — 1. If true, this would generalize the up-
per bound on the number of pairwise orthogonal Latin squares and the
conjectured bound for pairwise orthogonal (=perpendicular) symmetric
Latin squares. Unfortunately, we are not aware of any progress towards
settling this conjecture.
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Table 1. Regular graphs on 8 vertices.
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nonisomorphic l-factors

distinct l-factorizatioans

Edges
12,13,14,23,24,35,
46,57,58,67,68,78
12,13,14,23,25,36
45,47,58,67,68,78
12,13,14,23,25,36
47,48,57,58,67,68
12,13,14,25,26,35,
37,46,47,58,68,78
12,13,14,25,26,35,
37,46 ,48,58,67,78
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co(3.1)
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No.
1

2
3
4
5
6
7
8
9

10
11
12
13

l-factors
1,2,4,7,12,18
1,2,4,7,12,21
1,4,7,12,19,21
2,4,7,12,19,21
L,2,8,13, IS, 20
1,2,3,8,16,20
1,2,4,13,15,20
1,2,3,13,16,20
1,3,8,13,16,20
1,2,8,13,16,20
1,2,5,13,14,20
1,2,5,8,14,20
1,3,6,10,11,17

List of l-factors:

l:
2:

3:
4:
3
6:
7:

12 34 56 78
13 24 57 68
13 25 47 68
14 23 58 67
14 25 38 67
14 27 36 s8
15 26 37 48

Type
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v
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16:
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18:
19:
20:
21:
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17
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Table 2. The 13 nonisomorphic 1-factorizations of Kz — F
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13

67

48

25

13

67

48

25

Table 3. The 3 nonisomorphic Howell designs H (6,8).
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CGraph No.
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Table 4. Regular graphs of degree 3 on 10 vertices.
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Table 4a.

Connected regular graphs of degree 3 on 10 vertices — list of edges.

Graph No.

10
11
12
13
14
15
16
17
18

19

Edges

1-2,3,6;2-3,4;3-5;4-5;5-6;6~7,8;7-9,10;8-9,10;9-10
1-2,3,4;2-3,4;3-5;4-6;5-6,7;6-8;7-9,10;8-9,10;9-10
1-2,3,4;2-3,4;3-5;4-6;5-7,8;6-7,9;7-10;8-9,10;9-10
1-2,3,4;2-3,4;3-5;4-6;5-7,8;6-9,10;7-8,9;8-10,9-10
1-2,3,4;2-3,4;3-5;4-6;5-7,8;6-9,10;7-9,10;8-9,10
1-2,3,4;2-3,5;3-6;4-5,7;5-8;6-7,9;7-10;8-9,10;9-10
1-2,3,4;2-3,5;3-6;4-5,7;5-8;6-9,10;7-8,9;8-10;9-10
1-2,3,4;2-3,5;3-6;4-5,7;5-8;6-9,10;7-9,10;8-9,10
1-2,3,4;2-3,5;3-6;4-7,8;5-7,8;6-9,10;7-9;8-10;9-10
1-2,3,4;2-3,5;3-6;4-7,8;5-7,9;6-7,10;8-9,10;9-10
1-2,3,4;2-3,5;3-6;4-7,8;5-7,9;6-8,9;7-10;8-10;9-10
1-2,3,4;2-3,5;3-6;4-7,8;5-7,9;6-8,10;7-9,8-10;9-10
1-2,3,4;2-3;5;3-6;4-7,8;5-7,9;6-8,10;7-10;8-9;9-10
1-2,3,4;2-5,6;3-5,6;4-7,8;5-9;6-10;7-9,10;8-9,10
1-2,3,4;2-5,6;3-5,7;4-6,8;5-9;6~10;7-8,9;8-10;9-10
1-2,3,4;2-5,6;3-5,7;4-6,8;5-9;6-10;7-8,10;8-9;9-10
1-2,3,4;2-5,6;3-5,7;4-6,8;5-9;6-10;7-9,10;8-9,10
1-2,3,4;2-5,6;3-5,7;4-8,9;5-8;6-9,10;7-9,10;8-10

1-2,3,4;2-5,6;3-7,8;4-9,10;5-7,9;6-8,10;7-10;8-9
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Table 5. Regular graphs of degree 4 on 10 vertices.

Graph

No.
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Table 5. (Continued)

Graph

40
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42
43
44
45
46
47
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51
52
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54
55
56
57
58
59
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Table 5a.

Connected regular graphs of degree 4 on 10 vertices — list of edges.

Graph No.

O XNV WN -

UuuuuuNNNNNNNNNNHr—r—r-r-r—'--p-y—-—-
vﬁbww»—-O\Dm\lO\U\&\qu—'O\Om\lO\U\&\WNr—O

Edges

1—2,3,4,5;2-3,4,5;3-4,5;4-6;5—7;6—8,9,10;7—8,9,10;8—9,10;9—10
1—2,3,4,5;2-3,4,5;3-4,6;4-6;5—7,8;6—9,10;7—8;9,10;8—9,10;9—10
1—2,3,4,5;2—3,4,5;3—4,6;4—7;5—6,8;6—9,10;7—8,9,10;8—9,10;9—10
1-2,3,4,5;2—3,4,5;3—4,6;4-7;5—8,9;6—7,8,10;7—9,10;8~9,10;9-10
1—2,3,6,5;2—3,4,5;3-&,6;4—7;5-8,9;6—8,9,10;7—8,9,10;8-10;9-10
1—2,3,4,5;2—3,4,5;3-6.7;6—6,7;5—8,9;6-8,10;7-9,10;8—9,10;9—10
1—2,3,4,5;2—3,4,5;3—6,7;4-6,8;5-6,9;6-10;7-8,9,10;8-9,10;9—10
1—2,3,4,5;2—3,4,5;3—6,7;4—6,8;5—7,8;6—9,10;7-9,10;8—9,10;9—10
1—2,3,4,5;2—3,4,5;3—6,7;4—6,8;5—7,9;6—8,10;7—9,10;8—9.10;9—10
1—2,3,4,5;2—3,4,5;3—6,7;4—6,8;5—7,9;6—9,10;7—8,10;8—9,10;9—10
1-2,3,4,5;2—3,4,5;3—6,7;4—6,8;5—9,10;6—7,8;7-9,10;8—9,10;9—10
1—2,3,4,5;2—3,4,5;3—6,7;&—6,8;5—9,10;6—7,9;7-8,10;8-9,10;9—10
1-2,3,4,5;2—3,4,5;3—6,7;4-6,8;5~9,10;6—9,10;7—8,9,10;8~9,10

1-2,3,4,5;2—3,4,6;3—4,7;4—8;5—6,7,9;6-8,10;7—9,10;8—9,10;9-10
1-2,3,4,5;2—3,4,6;3—4,7;4—8;5—6,9,10;6—9,10;7—8,9,10;8—9,10

1—2,3,&,5;2-3,&,6;3—5,6;4—7,8;5—7,9;6—8,10;7—9,10;8-9.10;9—10
1—2,3,4,5;2—3,4,6;3-5,7;4—5,8;5~9;6—7,8,10;7—9,10;8—9,10;9—10
1—2,3,4,5;2-3,4,6;3—5,7;4—5,8;5—9;6—7,9,10;7—8,10;8-9,10;9—10
1—2,3,4,5;2—3,4,6;3—5,7;4—6,8;5—7,9;6—8,10;7—9,10;8—9,10;9—10
1—2,3,4,5;2—3,4,6;3—5,7;&-6,8;5-7,9;6—9,10;7—8,10;8—9;10;9-10
1—2,3,&,5;2—3,4,6;3-5.7;4—6,8;5—8,9;6—7,10;7—9,10;8—9,10;9—10
1-2,3.4,5;2—3,4,6;3-5,7;&—6,8;5—8,9;6—9,10;7-8,9,10;8-10;9—10
—2,3,4,5;2—3,4,6;3—5,7;4—6,8;5—9,10;6—9,10;7—8,9,10;8~9,lO

2,3,4,5;2—3,4,6;3-5,7;4-7,8;5—6,9;6-8,10;7—9,10;8—9,10;9—10
2,3,4,5;2—3,4,6;3~5,7;A—7,8;5—8,9;6—8,9,10;7—9,10;8—10;9—10
2,3,4,5;2—3,&,6;3—5,7;4-7,8;5—9,10;6—7,8,9;7—10;8—9,10;9—10
2,3,4,5;2—3,4,6;3—5,7;4—7,8;5—9,10;6—8,9,10;7—8,9;8—10;9—10
2

1
1
1
1
1
1-2,3,4,5;2-3,4,6;3-5,7;4-7,8;5-9,10;6-8,9,10;7-9, 10;8-9, 10

2,3,4,5;2-3,4,6;3-5,7;4-8,9;5-8,9;6-7,8,10;7-9,10;8-10;9-10
2,3,4,5;2-3,4,6;3-5,7;4-8,9;5-8,10;6-7,8,9;7-9,10;8-10;9-10
2,3,4,5;2-3,4,6;3-5,7;4-8,9;5-8,10;6-7,8,10;7-9, 10;8-9:9-10
2,3,4,5;2-3,4,6;3-5,7;4-8,9;5-8,10;6-7,9,10;7-9,10;8-9, 10
2.3,4,5;2-3,4,653-5,7;4-8,9;5-8,10;6-8,9,10;7-8,9,10;9-10
2,3,4

2,3,4

595 ,5;2—3,4,6;3-7.8;4—].8;5—6,9,10;6~9,10;7—9,10;8—9,10

1
1
1
1
1
1
1-2,3,4,5;2-3,4,6;3-7,8;4~7,9;5-6,7,8;6-9,10;7-10;8-9, 10;9-10
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Table 5a. (Continued)

Graph No.

36
37
38
39
40
41
42
43
44
45
46
47
43
49
50
51
52
53
54
55
56
57
58
59

Edges

1-2,3,4,5;2-3,4,6;3-7,8;4-7,9;5-6,7,10;6-8,9;7-10;8-9,10;9-10
1-2,3,4,5;2-3,4,6;3-7,8;4-7,9;5-6;8,9;6-8,10;7-9,10;8-10;9-10
1-2,3,4,5;2-3,4,6;3-7,8;4~7,9;5-6,8,10;6-8,10;7-9,10;8-9;9-10
1-2,3,4,5;2-3,4,6;3-7,8;4-7,9;5-6,8,10;6-9,10;7-8,10;8-9;9-10
1-2,3,4,5;2-3,4,6;3-7,8;4-7,9;5-7,8,9;6-8,9,10;7-10;8-10;9-10
1-2,3,4,5;2-3,4,6;3-7,8;4-9,10;5-6,7,8;6-7,9;7-10;8-9,10;9-10
1-2,3,4,5;2-3,4,6;3-7,8;4-9,10;5-6,7,8;6-9,10;7-9,10;8-9,10
1-2,3,4,5;2-3,4,6;3-7,8;4-9,10;5-6,7,9;6-7,10;7-8;8-9,10;9-10
1-2,3,4,5;2-3,4,6;3-7,8;4-9,10;5-6,7,9;6-8,10;7-8,9;8-10;9-10
1-2,3,4,5;2-3,4,6;3-7,8;4-9,10;5-6,7,9;6-8,10;7-8,10;8-9;9-10
1-2,3,4,5;2-3,4,6;3-7,8;4-9,10;5-6,7,9;6-8,10;7-9,10;8-9, 10
1-2,3,4,5;2-3,4,6;3-7,8;4-9,10;5-7,8,9;6-7,8,9;7-10;8-10;9-10
1-2,3,4,5;2-3,4,6;3-7,8;4-9,10;5-7,8,9;6-7,8,10;7-9;8-10;9-10
1-2,3,4,5;2-3,4,6;3-7,8;4-9,10;5-7,8,9;6-7,9,10;7-10;8-9,10
1-2,3,4,5;2-3,6,7;3-8,9;4-5,6,7;5-8,9;6-8,10;7-9,10;8-10;9-10
1-2,3,4,5;2-3,6,7;3-8,9;4-5,6,7;5-8,10;6-8,9;7-9,10;8-10;9-10
1-2,3,4,5;2-3,6,7;3-8,9;4-5,6,7;5-8,10;6-9,10;7-9,10;8-9,10
1-2,3,4,5;2-3,6,7;3-8,9;4-5,6,8;5-7,9;6-9,10;7-8,10;8-10;9-10
1-2,3,4,5;2-3,6,7;3-8,9;4-5,6,8;5-7,10;6-9,10;7-8,9;8-10;9-10
1-2,3,4,5;2-3,6,7;3-8,9;4-5,6,8;5-7,10;6-9,10;7-8,10;8-9;9-10
1-2,3,4,5;2-3,6,7;3-8,9;4-6,7,8;5-6,8,9,6-10;7-9,10;8-10;9-10
1-2,3,4,5;2-3,6,7;3-8,9;4-6,7,8;5-8,9,10;6-9,10;7-9,10;8-10
1-2,3,4,5;2-6,7,8;3-6,7,8;4-6,9,10;5-6,9,10;7-9,10;8-9,10
1-2,3,4,5;2-6,7,8;3-6,7,9;4-6,8,9;5-7,8,9;6~-10;7-10;8-10;9~10
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Table 6. Regular graphs of degree 5 on 10 vertices.

Graph No.
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39
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DOF

336
224
208
224
224
216
192
216
188
196
136
164
184
168
176
204
264
224
226
190
154
174
196
234
170
194
186
204
144
170
166
176
160
216
166
180
166
148

NOF

29
62
28
28
24

49
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82
27
88
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32
37
20
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47
174
57
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41
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Table 6. (Continued)

Graph No. |T| DPM NPM DOF NOF HD
39 1 64 64 166 166 0
40 4 64 23 156 45 0
41 2 61 33 142 73 0
42 8 61 12 112 15 0
43 4 62 17 148 39 0
44 4 63 21 180 58 0
45 4 63 19 176 54 0
46 4 61 18 152 44 0
47 A 62 19 144 36 0
48 2 63 34 168 88 0
49 2 62 38 154 84 0
50 16 64 12 180 21 1
51 2 64 37 182 93 0
52 16 65 12 . 204 23 0
53 16 62 8 176 18 1
54 2 63 34 162 83 0
55 10 63 10 186 21 0
56 4 62 22 140 42 0
57 8 63 14 156 26 0
58 320 63 4 152 3 0
59 240 56 4 36 2 0
60 28800 120 1 1344 6 2
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Graph No.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

CGraph No.

LCLTIE ~ T OC R XC R

Table 7. Regular graphs of degree 6 on 10 vertices.

|| DPM NPM DOF NOF HD Comment
32 152 12 4864 168 0
16 144 14 4032 269 0
4 146 38 4352 1100 2
8 146 24 4288 560 0
16 146 16 4224 276 0
2 146 87 4400 2260 6
4 146 47 4336 1146 0
4 146 42 4256 1064 1
8 144 22 4064 520 0
12 144 12 4160 348 0
6 144 27 3968 690 0
6 144 24 4016 674 0
2 144 72 4112 2056 1
48 144 10 3648 89 0
20 144 15 3856 222 1
& 144 43 3984 1022 1
20 142 11 3552 192 1
8 144 28 4064 549 1
120 144 2 4064 38 1
288 144 1 4032 23 1 co(K, U C()

1728 144 1 4608 1 2 co(K, U Ky 4)

Table 8. Regular graphs of degree 7 on 10 vertices.

Graph [r| DPM NPM DOF NOF HD
co(C,,) 20 293 29 173008 8844 539
co(Cyu C,) 84 294 6 179232 2175 138
co(C, U €() 96 292 11 168384 1865 98
CO(CS\“JCS) 200 295 7 180000 988 57
co(C3 UC3 h’Ca) 576 294 4 178560 369 69
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Table 9. The 6 nonisomorphic H(5,10)’s.

Howell design

Underlying graph

No.

10

10

10

4

17

10

1

50

10

10

10

53

10

60

10

10

10

60

10
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Table 10. The 18 nonisomorphic Howell designs H(6, 10).

llowell design

Underlying graph

No.

10

4

10

10

10

1

10

5

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10
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Table 10. (Continued)

Howell design

Underlying graph

No.

10

10

10

10

10

10

10

10

10

2

10

10

1

10

10

13

10

10

10

15

10

10

10
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Table 10. (Continued)

Howell desfgn

Underlying graph

No.

10

10

16

10

10

17

10

10

10

18

10

10

19

10

10

10

20

10

10

21
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10

10

10

21

1o

10
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Table 11. Some Howell designs H(7, 10).

Underlying graph

CO(CIO)

co(C3 U C7)

co(C(' v, C6)

co(C5 | CS)

co(C3 V) C3 v CA)
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3 6 9
5 1 4
10
310
9 27
58
8 5 7
2 8
10
7 6 10
9 14
6 39
3 6
9 15
3 10
2 8
10 4 7
8
7
3 79
9 1 4
8 5 10
36
7
10
2 8
3
10 1 5
78
2 10
3
4
8
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