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ABSTRACT

If a Room square of side 2n +1 contains a t X ¢ block of
empty cells, then t < n. If t = n we say the empty subarray
is maximum. We construct such Room squares of sides 9 and
11, and show that no such Room square exists of side 7.
Recursive constructions enable one to construct an infinite
number of these, but the spectrum is not determined. Also,
we describe several equivalent formulations of the problem,
indicating connections with other types of designs.

1. Introduction.

Let n be a non-negative integer. A Room square of side 2n + 1 is a
square array R of side 2n + 1, in which each cell either is empty or con-
tains an unordered pair of symbols chosen from a set S of size 2n + 2,
such that each symbol occurs in exactly one cell of each row and each
column of R, and each pair of symbols occurs in exactly one cell of R. R.
Mullin and W. Wallis [1] proved

Theorem 1.1. There is a Room square of side 2n + 1 if and only if
2n + 1 # 3 or 5.

Each row or column of a Room square of side 2n + 1 contains
n + 1 filled cells and n empty cells. A square t X t subarray of empty
cells must therefore satisfy t < n. If equality occurs, we say that the
given Room square contains a mazimum empty subarray. We will denote
by MESRS(2n +1) a Room square of side 2n + 1 which contains a max-
imum empty subarray.

In this paper, we investigate MESRS. First, in Section 2, we give
several equivalent formulations. In Section 3, we describe direct construc-
tions. Then, in Section 4, we give some recursive constructions and some
consequences. We conjecture that there exists a MESRS(2n+1) if and
only if 2n + 1 # 3, 5, or 7; however, we are far from proving this fact.
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We close this section by presenting MESRS(9) and MESRS(11) in Fig.
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Figure 1.

2. Equlvalent formulations.

Suppose R is a MESRS(2n+1). We can permute rows and columns
80 that the maximum empty subarray T occurs in the lower right corner of

: . D|F :
R. Hence, we regard R as being partitioned R = I3 Tl . It is easy
2
to see that F; and F, contain only filled cells, and D contains precisely one
filled cell in each row and column. Permuting rows and columns, we can

stipulate that the filled cells of D occur on the main diagonal.

Furthermore, each symbol occurs in n cells of Fy, in n cells of F,, -
and hence in one cell of D. So, the filled cells of D form a perfect
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matching M of the symbol set S, i.e. a one-factor of the complete graph on
vertex set S.

If we project the cells of D horizontally, we obtain an
(n+1) X (n+1) array H,= M| FI]. This array is a Howell design
H(n+1.2n +2): every symbol occurs in one cell of each row and column of
H\, and no pair is repeated. Similarly if we project the cells of M down-
MT
F, ]
two Howell designs contain no common pairs, except for those in M.
Every pair of symbols of S not in M occurs in precisely one of H |, H,.

Thus we say two H(n+1,2n+2), H, and H,, are almost disjoint if
there exists one row/column of H, which contains the same pairs as one
row/column of H,, but no other pair occurs in both /1, and I,

ward, we obtain H, = » Which is also an H(n+1,2n+2). These

We have constructed a pair of almost disjoint H(n+1,2n +2) from a
MISRS(2n +1). It is ezsy to see that the construction 1s reversible, so we
have

Theorem 2.1. There exists a MESRS(2n+1) if and only if there exists
a pair of almost disjoint H(n+1,2n +2). '

There is another way to alter our given MESRS(2n +1), R. Consider
the array B = [FT| M| I |. This array is of size n X (2n +1), and con-

tains every unordered pair of the 2n + 2 symbols exactly once. Every
column contains each symbol once, and each row contains each symbol

once or twice. Such an array is called a balanced tournament design,
denoted BTD (n +1).

Not all BTD(n +1) give rise to MESRS(2n +1), however. The neces-
sary property is that the BTD can be partitioned as shown above. That is,
we should be able to partition the columns into 3 sets C,C,,C5 of sizes
Ln,n respectively, so that the columns in C;UC, form an
H(n+1,2n+2), as do the columns in C'y U Cy. We will say that such a
BTD is partitionable, and denote it PBTD(n+1). This discussion estab-
lishes

Theorem 2.2. There ezists a MESRS(2n+1) if and only if there ezists
a PBTD(n +1).

3. Direct Constructions.

The major direct construction for Room squares is the method of
starters and adders; however, it seems that MESRS can not be produced by
this method. The equivalent formulations of Section 2 suggest that we can
produce MESRS by other means. Balanced tournament designs are studied
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in [3], and many constructions are given. However, none of these appear to
yield partitionable BTDs.

The idea of almost disjoint Howell designs H(n+1,2n+2) seems to
be more promising, and it was by this method that we constructed the
MESRS(9) and MESRS(11) given ir the introduction. In the remainder of
this section we describe possible methods of constructing almost disjoint
Howell designs. It could be very nice to construct an infinite class of these
designs; however, we only have the two small designs at present.

The graph G(H) of a Howell design H is the graph on vertex set S
(the symbol set of the design) whose edges are the pairs occurring in the
cells of H. One approach is to first find two (n =+ 1)-regular graphs G, G,
on 2n + 2 vertices, S, such that M = G, N G, is a 1-factor, and
G, U G, is the complete graph on vertex set S. We want to find H,
(¢ = 1,2), such that G(H,) = G, (# = 1,2), and such that G,, G, both
have M as a row/column.

Alternatively, we can start with an H(n+1,2n+2), H,. For each
row/column M of H,, construct the graph G, = G(H,) U M. (The
superscript "c" denotes the complement of the specified graph.) Then,
determine if there is an H(2n,2n+2), H, with G(H,) = G,, having M as
a row/column.

This approach quickly rules out the existence of a pair of almost dis-
joint H(4,8), and hence a MESRS(7). There are precisely six non-
isomorphic 4-regular graphs on 8 vertices. It can easily be checked by hand
that the only one of these that is the graph of an H(4,8) is K, ,. For any
one-factor F' of K, ,, K4, U F is not isomorphic to K, 4 and hence is not
the graph of an //(4,8). Hence, a pair of almost disjoint H(4,8) do not
exist.

Let us also mention that the non-existence of a MESRS(7) can also be
verified from the list of 6 non-isomorphic Room squares of side 7
enumerated in [5]. S.A. Vanstone observed that the incidence pattern of
empty vs. filled cells of any of these RS(7) forms the incidence matrix of
the complement of the Fano plane, which certainly does not contain a
3 X 3 submatrix of zeroes.

Next, we consider almost disjoint H(5,10). There are 60 non-
1somorphic 5-regular graph on 10 vertices, and the Howell designs having
each of these as graphs were enumerated in [2]. There is a Howell design
with graph K ; (this is just a pair of orthogonal Latin squares of order 5)
but it is not one of a pair of almost disjoint designs. Of the remaining 59
graphs, only 4 are the graphs of H(5,10) designs, and only 1 non-
isomorphic design is obtaired in each case. Knowing this, we were pes-
simistic that a pair of almost disjoint designs would exist, but in fact the
search was successful.
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The next case is a pair of almost disjoint H(6,12). There are too
many 6-regular graphs on 12 vertices to conveniently enumerate all Howell
designs, so we wanted to restrict our search. We picked a graph G, and a
one-factor F' of (', and found a permutation I7 such that F7 = I, and
G° U F = G If there is a Howell design H with graph G having F as a
row/column, then / and H" are almost disjoint Howell designs.

We obtained the MESRS(11) Fig. 1 as a result. The relevant permu-
tation IT is (13 2 4)(5)(6 8 7 9)(10)(11 12). Also note that both Howell

designs have as an automorphism the cyclic group of order 5 generated by
(12345)6789 10)(11)(12).

Summarizing the results of this section, we have

Theorem 3.1. There ezists « MESRS(9) and MESRS(11), whereas there
does not ezist a MESRS(T7).

4. Recurelve constructions.

We have two main recursive constructions, which will give rise to an
infinite number of MESRS.

Construction 4.1. (Direct Product).

Suppose there exist MESRS(2m —1) and MESRS(2n—1), and a pair of
orthogonal Latin squares of order m (i.e. m # 2 or 6). Then there exists a
MESRS(2mn —1).

Fo | T

Section 2. Inflate R by a factor of m as follows. First, replace every
empty cell by an m X m array of empty cells, then replace a cell of
Fy U F,, containing {z,y}, say, by the superposition of a pair of orthogonal
Latin squares on symbol set ({z} X 1,...m}) X ({y} X {1,..,m}). Finally,
D':zy ’ Flzy,l
Fzy,?, ley
on {z,y} X {1,...,m}. Replace each cell {z,y} of D by D';,. Now adjoin
m = 1 new rows and columns to this (2n—1)m X (2n—1)m array R'.
The last m — 1 columns contain the F’zy'l arrays; the last m — 1 rows
contain the F', , arrays; and the rest is empty. This modified array is a
RS(2mn—=1), and the lower right corner is an empty square subarray of
sidle m(n—1)+m — 1= mn — 1, as required. Hence, we have a
MESRS(2mn —1). O

The second construction is generally weaker than the direct product,
but can sometimes be applied where the direct product cannot.

F
Proof. Let R be a MESRS(2n —1), partitioned R = & - ], as in

for each {z,y} € D, let S(zy) =

be a MESRS(2m —1)
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Construction 4.2. (PBD construction).

Suppose (X,A) is a pairwise balanced design, and the blocks in A can be
L4

partitioned as A = |J R,, where each R, is a partition of X into blocks of

t=1
size n,. If there exist MESRS(2n,—1), for 1 < { < r, then there exists a
MESRS(2]| X | —1).

Proof. This is a consequence of [4, Construction 2]. In the notation of 4],
a MESRS(2n +1) is an H**(2n—1,2n). For each R,, define k, = 2n, — 1
and apply the above-mentioned construction. O

One application of this construction is to start with a resolvable
(126,6,1)-BIBD. A MESRS(251) is obtained.

Finally, we mention how Construction 4.1 can be altered, with the
aid of the array in Fig. 2. We obtain the following.

Construction 4.3.

Suppose there exists a MESRS(4m —1), and a pair of orthogonal Latin
squares of side m. Then there exists a MESRS(12m —1).

Proof. Apply the same operations as in Construction 4.1, starting with
the array of Fig. 2 in place of the MESRS(2n—1). O

The only MESRS of side less than 100 produced by these construc-
tions are: MESRS(49) from Const. 4.1 with m = n = 5; MESRS(59) from
Const. 4.1 with m =5, n = 6; and MESRS(35) from Construction 4.3
with m = 3.
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There are many other recursive constructions for Room squares, but
none of them seem to be applicable to this problem. However, we conjec-
ture the spectrum for MESRS(2n +1) is the set of all odd integers exceed-

ing 7.
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