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ABSTRACT

If a Room square of side Zn*l contains a f X t block of
empty cells, then t S n. lf t = n \ile say the empty subarray
is maximum. We construct such Room squares of sides g and
11, and show that no such Room square erists of side 7.
Recursive constructions enable one to construct an infinite
number of these, but the spectrum is not determined. Also,
we describe several equivalent formulations of the problem,
indicating connections with other types of designs.

l. Introductlon.
Let n be a non-negative iuteger. A Room square of side 2n * 1 is a

square trray .,l? of side 2n * l, in which each cell either is empty or con_
tains an unordered pair of symbols chosen from a set S of size 2n * 2,
such that each symbol occurs in exactly one cell of each row and each
column of Il, and each pair of symbols occurs in exactly one cell of l?. R.
Mullin and W. Wallis Itl proved

Theorem 1.1. There is o Room square ol sid,e 2n * L i! and, onty il2n*L,*3or5.
Each row or column of a Room square of side Zn * I contains

n * l filled cells and n emptycells. Aaquare t xt subarrayof empty
cells must therefore satisfy t S n. If equelity occurs, we say that the
given Room 6quare contains a marimum empty subanay. We will denote
by MESRS(2n + 1) a Room square of side 2n * 1 which contains a max_
imum empty subarray.

In this paper, rve investigate MESRS. First, in Section 2, we give
several equivalent formulations. In Section 3, we describe direct eonstruc_
tions. Then, in Section 4, we give some recursive constructions and 6ome
consequences. We conjecture that there exists a MESRS(Zn+l) if and
only if 2n * I * 3, 5, or Z; however, we are far from proving this iact.
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I
We close this section by presenting MESRS(9) and MESRS(I1) in Fig.
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Figure l.

2. Equlvalent formulatlonr.
Suppose R is a MESRS(2n + 1). We cau permute rows and columns

so that the maximum empty subarray ? occurs in thoe lower right corner of

n. Hence, we regard r? as being partitioned R = I ' I "' I It ir

[&ITJ' Ir '' easy

to see that F, and F2 contain only filled cells, and D contains precisety one
filled cell in each row and column. Permuting rows and columns, we ean
stipulate that the filled cells of D occur on the main diagonal.

Furthermore, each symbol occurs in z cells of .F,l, in n cells of F2,
and hence in one cell of D. So, the filled cells of D form a perfect
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matching M of the symbol set S, i.e. a one_factor of the complete graph onvertex set ,S.

If we project the cells of ? horizontally, we obtain an(n+l) x (n+t) array Hr= [, t 
"r] 

This aray is a Howeil design

!("+1,2n*2): every symbol oi.urc in 6ue celt of each row and columu ofI/1, and no pair is repeated.-srimilarly if we project the cells of M down_

ward, we obtain Hz = 
tf l, 

which is atso ao H(n*t,2n*21. These

two Howell designs contain no common peirs, except for those in A,I.Every pair of symbols of .S not in M occursin pr"cirely one ol II1, II2.
Thus we 6ay tw3 ll(n*1,2n+Z), Hr and I{2, arc alrnost d,isjoint ifthere exists one row/column ol Hl which containJ the same pairs as one

row/column of Hp, but no other p"i, o..urs in both Hl and I{2.
We have constructed a pair of almost disjoint H(n+1,2n*2) from a

MESRS(2n + l). It is easy to see that the construction is reversible, so we
have

Theorem Z.t. There eri.sts a MESRS(Zn+l) ,/ and, only i! there etists
a pair o! almost di.tjoint I-I(n+l,Zn*2).

There is another rvay \o alter our given MESRS(2n * 1), B. Consider
the array B = lf[l nfl /iJ This array is of size n x (2n*t), and con-
tains every unordered pair of the 2n * 2 symbols exactly once. Everycolumn contains eaeh symbol once, and eaci row contains each symbol
once or twice. Su.ch an array is called t balancecl tournament design,
denoted BTD (n + l).

Not all BTD(n*l) give rise to IIIBSRS(2n*l), however. The neces_
6ary property is that the BTD can be partitioned as shown above. That is,we should be able to partition the columns into 3 sets C1,C2,C3 of sizesl,n,n respectively, 60 that the columns in Cr U C; flrm an
II_(l*1,2n*2), as do the columns in C, U Cr. We wlil say that such a
P1'D 

is partitionable, and denore it pBiO(n i f ). This discussion estab
trsne6

Theorem 2.?. There edsts a MESRS(Zn+I) i! nnd onty if thqe erists
a PBTD(n + t).

3. Dlrect Conetrucilons.
The major direct construction for Room squares is the method ofstarters and adders; however, it seems that MESI1S can not be produced bythis method. The equivalent formulations of Sectiou 2 suggest that we canproduce MESRS by other means. Balanced tournament designs are studied
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in [S], and many constructions are given
yield pertitionable BTDs.

However, none of these appear to

The idea of almost disjoint Flowell designs H(n+1,2n*2) seems to
be more promising, and it was by this method that we constructed the
MESRS(9) and MESRS(ll) given in tlre introduction. In the remainder of
this section lve describe possible methods of constructing almost disjoint
I-lowcll designs. It could be very nice to construct an infinite class of these
designs; however, we only have the two small designs at present.

The graph GtI) of a Howell design I/ is the graph on vertex set S
(the syrnbol set of the design) whose edges are the pairs occurring in the
cells of /1. One approach is to first find two (n+llregular graphs Gr, G2
on 2n * 2 vertices, S, such that lv/r: Grn G2 is a l-factor, and
G, U G2 is the complete graph on vertex set S. We want to find /d
(i = 1,2), such ttrat G(lI,) = G, (r = 1,2), and such that Gr, G2 both
haveMasarow/column.

Alternatively, we can start with an H(n+1,2n*21, Hr. For each

superscript "c" denotes the complement of the specified graph.) Tien,
determine if there is an I/(2n,2n*2), H, with G(/Jz) = Gz, having hf *
a row/column.

This approach quickly rules out the existence of a pair of almost dir
joint H{4,8), and hence a MBSRS(Z). There are precisely six non-
isomorphic 4-regular graphs on 8 vertices. It can easily be checked by hand
tlrat the only one of these that is the graph of an I/(4,g) is K a,a. For any
one-factor F of I{ o,n, I{ n,o' U lr is not isomorphic Lo K q,4, and hence is not
the graph of an I{(4,5). Flence, a pair of almost disjoint I/(4,g) do not
exist.

Let us a.lso mention that the non-existence of a MESRS(Z) can also be
verified from the list of 6 non-isomorphic Room squares of side 7,
enumerated in [5]. S.A. Vanstone observed that the incidence pattern of
empty vs. filled cells of any of these RS(Z) forms the incidence matrlx of
the complemeut of the Fano plane, rvhich certainly does not contain a
3 X 3 submatrlx of zeroes.

Next, we consider almost disjoint /{(S,10). There are 60 non-
isomorphic S-regular graph on l0 vertices, aud the Howell designs having
each of these as graphs were enumerated in [Z]. There is a llowell design
with, graph I(6,6 (this is just a pair of orthogonal Latin squares of order S)
but it is not one of a pair of almost disjoint designs. Of the remaining 56
graphs, only 4 are the graphs of /l(S,10) designs, and only 1 non_
isomorphic design is obtained in each case. Knowing this, we were pes-
simistic that a pair of almost disjoint designs would exist, but in fact the -

search was successful.
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The next case is a pair of almost disjoint H(6,lZl. There are too
many &.regular graphs on 12 vertices to conveniently euumerate all Howell
designs, 60 we wanted to reotrict our search. We pictea a graph C, and aone-factor F- of G, and found a permutation I/ such tnai ffl = .F-, andG' L) F: Gft. If there is a Howell design I{ with graph G having F as a
row/column, then I/ and I{n are almost ai.loirt Howeli designs.

We obtained-the_MESRS(ll) Fig. I as a result. The relevant permu-
tation I/ is (l g 2 4XSX6 8 7 9[10)(rr rZ). Atso note rhar both l{owetl
designs have as an automorphism the cyclic group of order S generated by
(1 2 3 4 5X6 7 8 e lo)(ll)(lz).

Summarizing the results of this section, we have

I'heorem 3.1. There erists a MESRS(g) and MESRS(LI), whe:eas there
doea not exist a h{ESRS(Z).

1. Recuretve conatructlonc.
We have two main recursive constructions, whieh will give rise to an

infinite number of MESRS.

Constructlon 4.1. (Direct product).

Suppose there exisr N{ESRS(2m - t) end MESRS(2n - l), and a pair of
orthogonal Latin squares of order rrr (i.e. nt ,* 2 or 0). fn.o there J,xists a
lvmSRS(2 mn - t).

Proof. Let R be a MESRS(2n - l), partitioned r?
D Itr

,aslnItz T
Section 2. Inflate l? by a factor of m as follows. First, replace everyempty cell by atrmXmarrayof empty cells, then replace a cell ofFt U Fr, contaiuing lr,yl, say, by the superposition of a pair of orthogonal
Latin squares on symbol set ({r} x lr'..rrn l)x ({ x {1,...,rn}). Finally,
for each lr,y\ € D, Iet S(r,y)

D ,
xy Ftq

Fry,2 f,q be a L{ESRS(2m-t)
on lr,yl x {1,....,m}. Replace each cell {r,y} of DbyD cy. Now rdjoin
m 1 new rows and columns to this (2n -t)m x (Zn-l)* array R,.The last m I columns contain the F:ty ,t arrays; the lest m I rowscontain the l7,ry,2 a,ttals; and tlie rest is empty. This modified array is a
RS(Zmn - t), and the lower right corner ts an empty squere subarray ofside m(n- t) + m l=mn l, as required. llence, we have a
MESRS(2 mn - t). a

The second construction is generalty weaker than the direct prorduct,
but can sometimes be applied where the direct produet cannot.
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Constructlon 4.2. (PBD construction).

Suppose (X,A) is a pairwise balanced design, and the blocks in A can be

partitioned as A = U R,, where each R, is a partition of X into blocks of

size n,. If there 
"*i'ri'pmSRS(2n,-l), for I s, s r, then there exists a

IVIESRS(2lxl-t).

Proof. This is a consequence of [4, Constructiou 21. In the notation of [+1,
a MESRS(2n+I) is an H**(Zn-1,2n\. For each R;, define k,: Zn, - |
and apply the above-mentioned construction. tr

One application of this construction is to start with a resolvable
(126,6,r)-BIIID. A I\{ESRS(251) is obtained.

Irinally, we mention how Construction 4.1 can be altered, with the
aid of the array in Fig. 2. We obtain the following.

Construction 4.3.

Suppose there exists a MESRS(+m - f ), and a pair of orthogonal Latin
squares of side rn. Then there exists a MESRS(tZm-t).

Proof. Apply the same operations as in Construction 4.1, starting with
the array of Fig. 2 in plece of the MESRS(2n - f ). o

The only MESRS of side less than 100 produced by these construc_
tions are: MESRS(49) from Consr.4.t with m = n = S; MESRS(S9) from
Const. 4.1 with n = 5, n = 6; and MESRS(3S) from Construction 4.3
with rr - 3.
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Figure 2

There are many other recursive constructions for Room squares, but
none of them seem to be applicable to this problem. Howeyer, we conjec-
ture the spectrum for MESRS(2n + l) is the set of all odd integers exceed_
ing 7.
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