A GENERALIZATION OF WILSON'S CONSTRUCTION
FOR MUTUALLY ORTHOGONAL LATIN SQUARES

Douglas Stinson

Abstract

Wilson's construction for mutually orthogonal Latin squares is
generalized, and is used to construct 8 orthogonal squares of 98
orders where 8 orthogonal squares were not previously known. If
N(n) denotes the maximum number of mutually orthogonal Latin squares
of order n, then N(n) 2 8 if n > 7474,

1. Introduction

We’assume that the reader is familiar with the terms Latin square and
mutually orthogonal Latin squares (henceforth MOLS). Let N(n) denote the
maximum number of MOLS of order n.

For a list of lower bounds for N(n), n < 10000, see Brouwer [11,
Also of interest are values n_, where n_ denotes the largest order for
which r MOLS are not known. For some small values of 1, upper bounds
for n_ have been obtained. See, for example, [11, [s51, [61, and [71].

Some constructions for MOLS can be more easily described using the
language of transversal designs, which we now define. We use the notation
of Wilson [71.

Let k=22, n21l. A transversal design, abbreviated as ™ (k,n) is
a triple (X, G, a) where X 1is a set of kn elements, or points,

G =1{G, G

12 G oo Gk} is a partition of X into k groups of n

points each, and a 1is a set of subsets of X, called blocks, each
containing exactly one point from each group, such that each pair {x,y}
of points from different groups OCCUIS in an unique block of a.

Thus it follows that each block contains k points, each point occurs
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in n blocks, and there are n  blocks. It is convenient to define a

TD(k,0) as having no points, k empty groups, and no blocks. Also, a
TD(k,1) exists for any positive integer k.

The following is well-known (see, for example, [71]).
LEMMA 1.1, There extist k-2 MOLS of order n <if and only if there exists
a TD(k,n).
In [7], Wilson proves the following recursive construction for transversal
designs.

THEOREM 1.2, Let (X, G, a) be a TD(k + &, t) where

G = {Gy,uueyGp, Hl,...,Hz}.
Let ScH v ... UHR, and let
m 2 0.

Suppose the following two conditions are satisfied.

(7) If 1< 3j <, then there exists a TD(k,hj), where

h. = |S n H,]
] J

(i7) For each block A € a, there exists a TD(k,m + uA) having
u, = 1S n Al disjoint blocks.
Then there exists a TD(k,mt + s), where s = ]S].
In this paper, we extend Wilson's construction, in the direction of

constructing a TD(k,mt + ns). We are then able to construct eight MOLS

of several orders where eight MOLS were not previously known.

2.  The Construction
We first define the terms sub-TD and disjoint sub-TDs. Let
(X, G, a) be a TD(k,t). A sub-TD(k,t') is a triple (Y, H, B) which

is itself a TD(k,t'), with Y c X, H = {Hl,..., H}, H <G, 1<i <k,

k i = 1

and B < a. Suppose each (Y, Hi’ Bi), 1 <4i<4j, is a sub-TD(k,t')
i
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of (X,G,a), a ™(k,t). We say that the subh-TDs are disjoint if

Y nY'= if i# i'.

i 1 B if i4 1

THEOREM 2.1. Let (X,G,a) be a TD(k + &, t), where G = {Gl,...,Gk,
Hl""’Hg}' Let S E_HlU ‘e uHQ, and let m, n = 0. Suppose the

following two conditions are satisfied.
(¢) If 1 <3 < 4, then there exists a TD(k,nhj), where
hj = 1S n Hj]
(i1) For each block A € a, there exists a TD(k,m + nuA) containing
u, = |s n A| disjoint sub-TDs (k,n).
Then there exists a TD(k,mt + ns), where s = |S]|.
REMARKS

(1) . If n =1, we have Wilson's construction.

(2) 1If s =1, we have a Moore—-type construction (see [4] and [81).

Proof. We use Wilson's notation. Let X0 = Gl U G2 U «eos U Gk' For each
block A € a, put A0 =An XO, A' =An S, Let M and N be sets of m
and n elements respectively, and let Ik = {1,2,...,k}. We will construct

(X*, C*, a*), a TD(k,mt + ns).

Let X% = (XO x M) u (I. x NxS). Let G* = {C

* *
K l""’Gk}’ where

G* = (Gi x M) u ({i} x N x S), for 1 < i < k. It remains to describe the

£
7
blocks.

For each block A € a, construct a TD(k,m + nuA) with points
(AO x M) u (Ik x N x A'), groups ((AO n Gi) x M) u({i} x N x A"),
1 <1i < k, and blocks BA. We may specify that we have u, disjoint

sub-TDs as follows. For each z ¢ A', we have groups {i} x N x {z},

1

IA

1 A L -
i < k, and blocks B(A,z). Put BA BA U B(A,z)’ and put

= 1
B U BA'
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Now, for each. j = 1,2,,..,%, construct a TD(k, nh ) on points

]

I xNx (Sn Hj), with groups {i} x N x (S n Hj)’ 1 <1< k, and blocks

€, x
J

Put a* =8 ucC, u C.U ... uC

1 9 g Then (X*, G*, g*) 1is the required

TD(k,mt + ns).
We will verify that two points, x and y, from different groups Gi, G* ,
i
occur in a unique block of g*. We have three cases.

(L) x = (g,m), y = (g'sm'), g € Gi’ g' e Giva m:m' e M

(2) x

(g,m), y=(i',n,h), g ¢ Gi’ meM, he H, ne N

3

(i,n,h), y = (i',n',h'), n,n' ¢ N, h ¢ Hj’ h' ¢ H,'.

3) x 5

1]

Case (1) There is a unique block A € a such that {g,g'} ¢ A. There is a
unique block B ¢ BA such that {(g,m), (g',m")} E‘BA' Since blocks of the
cjs contain only points of Ik x N x 5, therefore, B is the desired
(unique) block.
Case (2) There is a unique block A € g such that {g,h} < A, There is a
unique block B ¢ BA such that {(g,m), (i',n,h)} E'BA' As in Case (1),
B is the desired unique block.
Case (3) We have three subcases;

(a) h =nh" (hence j=3")

() h#h', 543"

(¢) h¢h', j=3".
Subcase (a): Whenever h € A, where A ¢ a, we have,

{(i,n,h), (i',n',h")} ¢ B(A,h)'
Thus {(i,n,h), (i',n',h")} is contained in no block of 8. However,
{(i,n,h), (i',n',h'")} is contained in a unique block C of cj, and is

contained in no block of any Cros if k # j.
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Subcase (b): There is a unique block A € g such that {h,h'} c A, since
h,h' are in different groups of (X, G, a). Thus, there is a unique block
B e BA such that - {(f,n,h), (1" ,a',h')} ¢ BA. B is the desired unique
block of a%*.
Subcase (c): (i,n,h) and (i',n',h') are contained in a unique block of
cj, and in no other block of a¥*,.

We desire a corollary to theorem 2.1.
COROLLARY 2.2. Suppose there exists a TD(k+l, t), TD(k,nu), ™ (k,m), and a
TD(k, m+n) containing a sub-TD(k,n), where 0 < u < t. Then there exists a
TD(k,mt + nu).
Proof. In Theorem 2.1, take £ = 1. Then, for each block A, u, = 0 or 1.
The results follows.
3. Eight Mutually Orthogonal Latin Squares

It is shown in [5] that ng < 9402, and N(n) 2 8 if n 2 7768,
n # 9402. In [1], Brouwer indicates that N(9402) 2 9, but does not give
details of the construction. For completeness we give the details here.

The following three corollaries of Wilson's construction are needed.
COROLLARY 3.1. If 0 <w < t, then N(mt + w) 2 min {N(m), N(m+1),
N(t) - 1, N(w) L,
Proof. See [9].
COROLLARY 3.2. If 0 < t < w, then N(mt + w) = min {N(m), N(@mt+l), N(wtw)
- 1, N(t) - w}.
Proof. See [111.
COROLLARY 3.3. If t 2w+ %v(y-l), then N(mt +v + w) 2 min {N(m), N(mt+l),
N(m+2), N(w), N(t) - v - 1}
_ Proof. See [71.

As well, we use the following lemma.
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LEMMA 3.4. If n 2 2 hgs prime power factorization

@ oy oy
= Z mir -1 3 —‘-Svo

D= Pt Py e, Py then N(n) = min ,{pi 1:1<i<k}

Also, N(1) <is greater than any finite number.

Proof. For n 2 2, see [2]. The statement regarding N(1) follows from

lemma 1.1, and the existence of a TD(k,l) for any positive integer k.

LEMMA 3.5. N(9402) = 9,

Proof. The following sequence of constructions implies the result.
TABLE 1
n bound for N(n) m t vV oW Corollary or Lemma
31 30 3
32 31 3.4
23 22 3.4
41 40 3.4
723 12 31 23 10 3.2
724 10 31 23 11 3.1
725 24 3.4
1 o 3.4
13 12 3.4
9402 9 723 13 2 1 3.3

A list of orders for which 8 MOLS are not known can be found in [1].
Using our construction, we are able to eliminate many of the previous unknown
orders. In order to apply corollary 2.2 we need a TD(10, m+n) containing
a sub-TD(10, m). We will use the following.
LEMMA 3.6. (1) There exists a TD(10, 82) containing a sub-TD(10, 9).

(2) There exists a TD(10, 100) containing a sub-TD(10, 11).

Proof. The TD's are constructed in [3]. Although it is not explicitly
stated there, they do contain the desired sub-TD's. This is evident from the
fact that the TD(10, 82) is ™constructed from" GF(73), together with 9
ideal elements. A similar remark applies to the TD(10, 100). For details

of the method of construction, see [10].
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Thus, we ohtain the following,
COROLLARY 3,7, If 0 <u < t, N(t) 29, and N(Q9u) 2 8, then N(73t + 9u)
> 8,
Proof. The result follows immediately from lemma 1.1, corollary 2,2, and
lemmata 3.4 and 3.€.

In an analagous manner, we also have
COROLLARY 3.8. If 0 < u < t, N(t) 29, and N(llu) = 8, then N(89t + 1lu)
vz 8.

We list applications of corollaries 3,7 and 3.8 in Table II below.
Orders for which 7 MOLS were not previously known are indicated by *. The
required number of MOLS of orders t, 9u, and 1llu are guaranteed by lemma
3.4, with the exception that N(315) 2 8, which can be obtained by taking
m=16, t =19, and u = 11 in corollary 3.1, since N(16), N(9), N(11) = 8,

and N(19) =2 9, all by lemma 3,4.

TABLE II

£ u Corollary order of MOLS constructed
11 1 3.7 812 *
11 3 3.7 830 *
11 9 3.7 884 %
13 1 3.7 958 *
13 9 3.7 1030

13 11 3.7 . 1048

11 9 3.8 1078 *
17 1 3.7 1250 *
13 9 3.8 1256

17 3 3.7 1268

13 11 3.8 1278

17 11 3.7 1340

19 1 3.7 1396

19 3 3.7 1414

17 1 3.8 1524

17 9 3.8 1612 *
19 1 3,8 1702

23 3 3.7 1706 *
23 11 3.7 1778
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19
23
23
25
23
25
25
27
27
27
27
23
25
29
29
31
25
31

25,

31
31
31
37
29
29
37
29
31
31
37
37
37
31
37
41
43
43
43
37
43
43
37
37
47
47
49
41
49
49

13
17

19
13
17

11
19

14
25

11
13
17
19
23
27

13
23
17
25

13
23
25
29
19
31
17

11
13

19
33
27
31
23
25

17
19

TABLE II (continued)

Corollary
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order of MOLS constructed

1790
1796
1832
1834
1850
1942
1978
1980
1998
2070
2142
2146
2236
2270
2342
2344
2346
2380
2412
2434
2470
2506
2710
2724
2834
2854
2856
2858
2902
2908
2926
2962
2968
2980
3146
3166
3238
3256
3304
3310
3436
3590
3634
3638
3656
3658
3660
3730
3748



TABLE II (continued)

t u Corollary order of MOLS constructed
49 25 3.7 3802
53 3 i 3896
49 37 3 3910
43 9 3.8 3926
43 27 3.8 4124
43 29 3.8 4146
53 35 3.7 4184
53 37 3.7 4202
53 39 3= 4220
53 41 3.7 4238
43 37 3.8 4234
59 13 3.7 4424
59 19 3.7 4478
47 29 3.8 4502
47 31 3.8 4524
59 31 3.7 4586
59 33 3.7 4604
61 , 17 3.7 4606
53 29 3.8 5036
67 17 3.7 5044
67 23 3.7 5098
67 51 3.7 5350
61 25 3.8 5704
83 27 3.7 6302
79 61 3.7 6316
71 1 3.8 < 6330
97 33 3.7 7378
101 9 3.7 7454
103 1 3.7 7528
79 67 3.8 7768
We obtain the following new bound for ng.
THEOREM 3.4, n8 < 7474,
Proof. In [5], it is shown that N(n) 2 8 if n > 7474 and n # 7528,

7768, or 9402. Eight MOLS of order 9402 exist by lemma 3.5. In Table
II, eight MOLS of order 7528 and 7768 are constructed. Thus, we have

the result,
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5 Conelugion
Thus, we have constructed eight MOLS of 98 new oxders, and
obtained the new bound ng = 7474,
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