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ABSTRACT:

A method for testing isomorphism of Steiner triple sys-
tems in time 0(uloru) is improved and implemented. We con-
jecture Lhat the method works in time 0(u{log u) on ayerag,e.
Empirical evidence supports this conjecture.

l. Introduction.
A Steiner trtple system of order u is a set B of D = u(u-ll6 unor_

dered 3-subsets (blocks), chosen from a set (of points) {1,2,..'.,u1in such a
way that eyery unordered pair of points occurs in a unique block. We will
abbreviate the term Steiner triple system to STS. It can easily be shown
that an STS of order u exists only if u E I or 3 mod 6. This necessary
condition for existence was shown to be sufficient by Kirkman [+l in lg47.

Suppose B, and 82 are two STS of order u. We say that 81 and 82
are isomorphic if there exists a permutation If of ll,Z,...,ul such that
lr,y,r\ € Br if and only fi ln@),il(y),nk)I € Br. Isomorphism resring is
usually done by means of invariants. An inuariant is a mapping /, defined
on the set of all STS, such that / (Br) : / (Bz) if Br and 82 are iso-
rnorphic. The image /(B) of an STS B is called the lorm of B. The use
of invariants is most useful when testing several STS for isomorphism. If
we want to test d STS, we ean calculate the d forms, and then sort them
(in time 0(d log d)). This provides a significant time saving over testing all
([) nritt of STS directty for isomorphism.

The difficulty with most invariants is that two STS may have the
same forms, yet not be non-isomorphic. See, for example, If] and [:].

The method we investigate in this paper is a complef e invariant: two
STS are isomorphic if and only if they have the same forms. We refer to
this invariant as the canonical form. In section 2, we describe the basic
algorithm, due to Miller [8]. Iu section 3, we discuss methods of improving
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the performance of the algorithm, and examine its behaviour in practice.In section 4, we compare the method of canonical forms to similar tech-niques used in graph theory.

2. Canonical forms and labellinga.
The basic method described in this section is due to Miller [gl; in [lf,Colbouru describes a generalization to Steiner systems S(t,t+i,r;l-,,

rr n t.l B.r : {xt,ar,zrl and Bz = {rz,yz,zzl be two B-subsets oftL,z,...,uf, wnere zr l gr (21 and frz { yz { zz. We say that B, l Bzit z1 1 22; ot ,r 1.22 and yr ( y2., ?. zL = zz, Ur = az, and r, { xz.Anordered STS is a_lisr B = (8r,...,8) of'blockl ,u"n inlt {8r,,:..,io1is anSTS, and Br l Bz { ... t Bt. Let B and B, be two ordered bfS 1oforder u), where B = (.B,: I sr =,1) and B, :1g,,,: t = ; ; ;I iV. .r,that B <8, if_ there .is L j (f 
's j 

=s 6) iu.t rhat Bi = B,i forlsi(7,andB,{8t,.
Given an STS of order u, B, one can produce u! isomorphic STSfrom it by permuting the u points in all'possible ways. Of the u!corresponding ordered STS, the least is denoted / (B) and .ull.d ii" 

"onon_ical form of B. The permutation If which giuJ, rise to it is called thecanonical labelling. The following result can be easily proved.

Theorem 2.1. A canonical form is a complete inuariant lor Steiner tri_ple.sy.+tems.

Calculation of / (B) by naive methods requires exponential tirne.However, we do not neecl to consicler all u! p"._ururions of points to findthe canonical form. Define a partial tabeiliig to be a partial permutationII of {1,...,r} *l:r9 {ng): i (. d,om (rr)} = i;,-r-= ,. =-tilil- t'iiltt Apoinr i in dom (ff is said ro be labeilid;'it, toirtis ff(;). ' r--/

For any block B - {r,y,zl in-B with precisely two labelled points, r
31d.y., 

define n@) =, {1@),il(y),r1. Nol, .upfor. tt u* r/, i, a canonicalIabelling which extends If, ancl.rppor" there is at teast one block with pre_cisely two labelled points. Choose this block B so tha,t If@) is minimized.
|h*o IIr(r) = | dom @)l * l, since ilre forms arising from permutations.I7, extending tI will first differ in the way B iu- trt.tt*a. The number
l!!* (n)l + I is the smallest available label. We can erow describeMiller's algorithm.

If: - null particl permutation;
while laorn (II)l (u do

begiu

choose any unlabelled poiut r;
II(r):=l dom (n)l * l;
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while there is a block with precisely two labelled points do
begin

of those blocks, let B be that one rvhich minimizes
n@);
if e is the unlabelled point in B, then
II(z)::l dom (II)l + I

end

end

A form produced by the above algorithm is said to be legitimate. By the
preceding discussion, we have

Theorem 2.2. The canonical form o! an S?S is legttimate.
Thus, in order to calculate the canonical form, we need only calculate

all legitimate forms, and find the least of them. It is not hard to see that
a:;rr legitimate form can be produced in polynomial time (we will be more
pir.cise later). The immediate question is: how many legiiimate labellings
does an STS have? This depends on the number of times we are faced to
choose an unlabelled point r.

The only time we must choose a point is when ldom (q n Bl * 2
for any block B. Thus Bn : lB B e dom (f!) form, u Sfb in its own
right on pont set dom (tI). (We say that B11 is a su6_S?^g/. Iu the process
of producing a legitimate labelling we build up a sequence of sub_STS, each
contained in the next. It is not difficult to prove that is an STS of order u
contains a sub-STS of order u, then u Z 2w * l. I{ence, there can be no
more than log u "nested" sub-STS encouutered in producing a legitimate
labelling. At any time, there cannot be any more than u choices for the
next labelled point. Thus we obtain

Theorem 2.3. There are O(urrsr) legitintate lorms.
In fact, the projective space pG(n,Z), which is an STS of orderu:Zn+l - l, has. g@r"lr) legitimate forms. However, one can ,,recog-

nize" PG{n,2) -in time O(r.),. by checking pasch's axiom (given two inter-
Secting blocks lr,gt,ztI and {r ,Uz,zzl, the two blocks containing y1and, y2,
and z, and zr, should intersect in a point).

Theorem 2.J provides a worst-case bound, but the average_case
appears to be much better. An STS with no sub_STS, other than single
trlocks, is said to be planar. It is easy to prove
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A planar STS ol ordr u has n(n-t)(n-Zl legttimate

There is a conjecture, due to euackenbush [g], that almost all triplesystems are planar. If this conjecture is true, it would be likely that onecould test isomorphism of STS, on average, in polynomial time.

3. An lmprovement.
We can improve on the basic method, as follows. Suppose we havean STS, say B, and a partial labelling I/. A block B is said to be labeilect itB E dom (11). The idea is to implement the atgorithm for generating alegitimate form so that blocks become labelled in order. That is, if

Pl .: _{rt,yt,ztl is labelled before Bz = {rr,yr,rr},- then
{n@ ) ,n(y ,) ,II(z t)} < {il(, z) ,n(y 2),rr(z 2)l .

If lcgitirnate forms are generated in this manner, then it can happen(and it usually does) thrt we can determine that a given partial labellingcan not be extended to any canonical labelling. We simply t*.p track ofthe "best" form at any stage of the algorithm. As we generate a new legi-timate form, we compare each labelled block of the new form to thecorresponding block of the "best" form. If this new block is greater, wecan quit, for we will not improve on the ,'best,, form, and tiy building
another legitimate form. If the new block is less than the one in the ,,best,,
form, we know that the new form we are constructing will improve uponthe previous "best" form, and so it will become the ',best,, forrn when we
have finished constructing it.

In the case of planar STS, it is not difficult to find the canonical formin time O(ru). Indeed, if we actually construct all legitimate forms, the pro-
cess requires time 0(uu). The above approach enables us to determine thecanonical form without actually constructing all Iegitimate forms. Wesuspect, but cannot proye, that this will ,"du." the running time to0(ualog u). In any event, we can do no better Lhan O(ua) br rhtr;pprou.t.

We programmed this algorithm in PASCAL/VS, and ran it on theUniversity of Manitoba AMDAHL SgS0 computer. STS were generated bymeans of a hill-climbing algorithm describerl in If fl. fnis i;tt-climbing
algorithm enables one to generate many STS in a very short time. Itappears to work in time.0(u2log u), although we know of no proof that thealgorithm will succeed in any amount of time! We hope that STS gen_erated by this approach are,,random,'in some sense. (See [flJ, for a dis-cussion.)

The following timings were obtained.

Theorem 2.4.
f orms.
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Table I

aYereg,e time to find
Order canonical form (sec.)

l5
19

2L

25
27
31

r.2
3.4
5.0
8.5

11.1

18.4

The above timings are consistent with our conjecture of 0(ualog u),
and indecd, are consistent with 0(ua).

For purposes of comparison, we also generated canonical forms ofSTS by means of the general-purpose graph isomorphism programs of B.Mcl(ay [6J and W_.L. I(ocay [SJ. As far as the author is a*are, these arethe fastest general-purpose programs in existence. One deals with STS inthis setting by constructing a bipartite graph (with vertices being the
blocks and points of the STS), joining a block and'a point if and only if thepoint is a member of the block. Such a graph is equivalent to the SiS.

These programs were run on STS of orcler 15, on the same machine.
The time taken for l(ocay,s program was an average of 6.5 sec., and for
McKay's program 17.8 sec. Thus our approach is significantly fasier. Thisis, of course, due to the fact that we are investigating u _or" specialized
problem, and we were able to find improvements thai could noi apply inthe generll situation of graph testing. However, we should note that thetesting of balanced incomplete block designs has traditionally been
regarded as r difficult subcase of graph testing (see Mathon [7]). 

r

1. Remarks.

. The graph isomorphism problem has received considerable attention
(see, for example, ISJ, [6J and ItOJ). No sub-exponential algorithm is known,nor is the problem known to be Np-complete. The special case of testing
isomorphism of balanced incomplete bloci designs (BlBDs) is isomorphism
complete: it is as difficult as the general problein (tnis was proved by Col-bourn and Colbourn [2]). An STS is juit a BIBb wirh block_size 3 andX: l. As we have seen, there is an 0(ulosr) algorithm for testing isomor-phisnr of STS, which is subexponential. We'have suggested that the ayer_
age case behaviour of this algorithm may in fact be O(rrtog ,).
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