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ABSTRACT

A method for testing isomorphism of Steiner triple sys-
tems in time O(v'°®") is improved and implemented. We con-
Jecture that the method works in time O(v'log v) on average.
Empirical evidence supports this conjecture.

1. Introduction.

A Steiner triple system of order v is a set B of b = v(v—1)/6 unor-
dered 3-subsets (blocks), chosen from a set (of points) {1,2,... v} in such a
way that every unordered pair of points occurs in a unique block. We will
abbreviate the term Steiner triple system to STS. It can easily be shown
that an STS of order v exists only if v = 1 or 3 mod 6. This necessary
condition for existence was shown to be sufficient by Kirkman [4] in 1847.

Suppose B, and B, are two STS of order v. We say that B, and B,
are isomorphic if there exists a permutation IT of {1,2,..,v} such that
{z,y,z} € B, if and only if {I1(z),I1(y),I[1(z)} € B,. Isomorphism testing is
usually done by means of invariants. An tnvariant is a mapping [, defined
on the set of all STS, such that f(B,) = f(B,) if B, and B, are iso-
morphic. The image f(B) of an STS B is called the form of B. The use
of invariants is most useful when testing several STS for isomorphism. If
we want to test d STS, we can calculate the d forms, and then sort them
(in time O(d log d)). This provides a significant time saving over testing all

(g) pairs of STS directly for isomorphism.
The difficulty with most invariants is that two STS may have the
same forms, yet not be non-isomorphic. See, for example, [1] and [2].

The method we investigate in this paper is a complete invariant: two
STS are isomorphic if and only if they have the same forms. We refer to
this invariant as the canonical form. In section 2, we describe the basic
algorithm, due to Miller [8]. In section 3, we discuss methods of improving
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the performance of the algorithm, and examine its behaviour in practice.
In section 4, we compare the method of canonical forms to similar tech-
niques used in graph theory.

2. Canonical forms and labellings.

The basic method described in this section js due to Miller [8]; in [1],
Colbourn describes a generalization to Steiner systems S(¢,¢ +1,v).

Let B, = {z,y,,;} and B, = {zo,y2,25} be two 3-subsets of
{1,2,...,v}, where 1 <y <zyand 7, <y, < 2,0 We say that B, < B,
if z) < 2y 0r 2y = 2, and Y1 < Yg 02y = 29y, = y, and z, < T, An
ordered STS is a list B = (By,...,By) of blocks such that {B,,...,.B,} is an
STS, and B < B, < -+ < B,. Let B and B’ be two ordered STS (of
order v), where B = (B,:1 < < b)and B'= (B': 1< i < b). We say
that B < B’ if there is a j (1< j=b) such that B, = B', for
1=1 <j,and B, < B',.

Given an STS of order v, B, one can produce v! 1somorphic STS
from it by permuting the v points in all possible ways. Of the !
corresponding ordered STS, the least is denoted /(B) and called the canon-
tcal form of B. The permutation J7 which gives rise to it is called the
canonical labelling. The following result can be easily proved.

Theorem 2.1. A canonical form i3 a complete invariant Jor Steiner tri-
ple systems.

Calculation of /(B) by naive methods requires exponential time.
However, we do not need to consider all v! permutations of points to find
the canonical form. Define a partial labelling to be a partial permutation
IT of {1,...,v} where {I1(i): ¢ € dom M= {i:1=; < | dom (M|} A
point ¢ in dom (I1) is said to be labelled; its label is IT(s).

For any block B = {z,y,2} in B with precisely two labelled points, z
and y, define JI(B) = {I(z),1(y),v}. Now suppose that I7, is a canonical
labelling which extends 1T, and suppose there is at least one block with pre-
cisely two labelled points. Choose this block B so that IT(B) is minimized.
Then IT\(z) = |dom (IT)| + 1, since the forms arising from permutations
I, extending IT will first differ in the way B is labelled. The number
| dom (IT)] + 1 is the smallest available label. We can now describe
Miller’s algorithm.

IT: = null partial permutation;
while | dom (IT)] < v do
begin
choose any unlabelled point z:
H(z):=|dom (IT)] + 1;
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while there is a block with precisely two labelled points do
begin
of those blocks, let B be that one which minimizes
11(B);
if z is the wunlabelled point in B, then
(z):=|dom (IT)] + 1

end
end

A form produced by the above algorithm is said to be legitimate. By the
preceding discussion, we have

Theorem 2.2. The canonical form of an STS is legitimate.

Thus, in order to calculate the canonical form, we nced only calculate
all legitimate forms, and find the least of them. It is not hard to see that
any legitimate form can be produced in polynomial time (we will be more
piacise later). The immediate question is: how many legitimate labellings
does an STS have? This depends on the number of times we are faced to
choose an unlabelled point z.

The only time we must choose a point is when | dom (MNB| +2
for any block B. Thus B;; = {B: B C dom (I1)} forms a STS in its own
right on pont set dom (I7T). (We say that B is a sub-STS). In the process
of producing a legitimate labelling we build up a sequence of sub-STS, each
contained in the next. It is not difficult to prove that is an STS of order v
contains a sub-STS of order w, then v = 2w + 1. Hence, there can be no
more than log v "nested" sub-STS encountered in producing a legitimate
labelling. At any time, there cannot be any more than v choices for the
next labelled point. Thus we obtain

Theorem 2.3. There are 0(v'*8") legitimate forms.

In fact, the projective space PG/(n,2), which is an STS of order
v =2""1— 1 has (v ") legitimate forms. However, one can "recog-
nize" PG(n,2) in time 0(v®), by checking Pasch’s axiom (given two inter-
secting blocks {z,y,,2,} and {z,y,,2,}, the two blocks containing y; and y,,
and z, and z,, should intersect in a point).

Theorem 2.3 provides a worst-case bound, but the average-case
appears to be much better. An STS with no sub-STS, other than single
blocks, is said to be planar. It is easy to prove
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Theorem 2.4. A planar STS of order v has n(n—1)(n—3) legitimate
Jorms.

There is a conjecture, due to Quackenbush [9], that almost all triple
systems are planar. If this conjecture is true, it would be likely that one
could test isomorphism of STS, on average, in polynomial time.

3. An improvement.

We can improve on the basic method, as follows. Suppose we have
an STS, say B, and a partial labelling IT. A block B is said to be labelled if
B C dom (IT). The idea is to implement the algorithm for generating a
legitimate form so that blocks become labelled in order. That 1s, if
B, = {z,,y,,2,} is labelled before By, = {z,,y,,2,}, then
{IH(z,),11(y,),11(z,)} < {H(xz),H(yz),H(zg)}.

If legitimate forms are generated in this manner, then it can happen
(and it usually does) that we can determine that a given partial labelling
can not be extended to any canonical labelling. We simply keep track of
the "best” form at any stage of the algorithm. As we generate a new legi-
timate form, we compare each labelled block of the new form to the
corresponding block of the "best" form. If this new block is greater, we
can quit, for we will not improve on the "best" form, and try building
another legitimate form. If the new block is less than the one in the "best"
form, we know that the new form we are constructing will improve upon
the previous "best” form, and so it will become the "best"” form when we
have finished constructing it.

In the case of planar STS, it is not difficult to find the canonical form
in time 0(v®). Indeed, if we actually construct all legitimate forms, the pro-
cess requires time 6(v®). The above approach enables us to determine the
canonical form without actually constructing all legitimate forms. We
suspect, but cannot prove, that this will reduce the running time to
O(v%log v). In any event, we can do no better than 2(v?) by this approach.

We programmed this algorithm in PASCAL/VS, and ran it on the
University of Manitoba AMDAHL 5850 computer. STS were generated by
means of a hill-climbing algorithm described in [11]. This hill-climbing
algorithm enables one to generate many STS in a very short time. [t
appears to work in time O(vQIog v), although we know of no proof that the
algorithm will succeed in any amount of time! We hope that STS gen-
erated by this approach are "random" in some sense. (See [11], for a dis-
cussion.)

The following timings were obtained.
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Table 1

average time to find
Order  canonical form (sec.)

15 1.2
19 3.4
21 5.0
25 8.5
27 11.1
31 18.4

The above timings are consistent with our conjecture of O(v"log v),
and indeed, are consistent with 0(v4).

For purposes of comparison, we also generated canonical forms of
STS by means of the general-purpose graph isomorphism programs of B.
McKay [6] and W.L. Kocay [5]. As far as the author is aware, these are
the fastest general-purpose programs in existence. One deals with STS in
this setting by constructing a bipartite graph (with vertices being the
blocks and points of the STS), joining a block and a point if and only if the
point is a member of the block. Such a graph is equivalent to the STS.

These programs were run on STS of order 15, on the same machine.
The time taken for Kocay’s program was an average of 6.5 sec., and for
McKay’s program 17.8 sec. Thus our approach is significantly faster. This
1s, of course, due to the fact that we are investigating a more specialized
problem, and we were able to find improvements that could not apply in
the general situation of graph testing. However, we should note that the
testing of balanced incomplete block designs has traditionally been
regarded as a difficult subcase of graph testing (see Mathon (7).

4. Remarks.

The graph isomorphism problem has received considerable attention
(see, for example, [5], [6] and [10]). No sub-exponential algorithm is known,
nor is the problem known to be NP-complete. The special case of testing
1somorphism of balanced incomplete block designs (BIBDs) is isomorphism
complete: it is as difficult as the general problem (this was proved by Col-
bourn and Colbourn [2]). An STS is just a BIBD with block-size 3 and
A = 1. As we have seen, there is an O(vl°‘”) algorithm for testing isomor-
phism of STS, which is subexponential. We have suggested that the aver-
age case behaviour of this algorithm may in fact be O(v*log v).
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