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We prove that the number of non-isomorphic Kirkman triple systems
g(v=1)(v—3)/48
of order v (v = 3 mod 6) is at least -

v!

1. INTRODUCTION

A Steiner triple system of order v is a pair (X, @), where |X| = v, and
B is a set of v(v — 1)/6 3-element subsets of X such that any distinct pair
of elements (points) of x are contained in a unique member (block) of B.
A Steiner triple system of order v exists for all v=1 or 3 mod 6. A
Kirkman triple system of order v is a pair (X, %) which satisfies the condi-

tions (0) |X| = v; (1) P = {Py, ..., Pu_p}, where each P; is a set of v/3
(v— )
blocks that partitions X; (2) (X U P) is a Steiner triple system of order

v. A Kirkman triple system of order v exists if and only if » = 3 mod 6
[5]. We abbreviate the phrase Steiner (Kirkman) triple system of order
v to STS(v)(KTS(v)). The STS(v) of condition (2) is called the underlying
STS(v) of the given KTS(v). An STS(») is said to be resolvable if it is the
underlying STS(v) of some KTS(v).
Let (X, B)) be STS(v), i = 1, 2. These are said to be isomorphic if there
is a permutation ¢ of X such that for every B € B, B* € B,, where
= (x¢:x € B}. We denote by N(v) the number of pair-wise non-iso-
morphlc STS(v) (on a specified point set X). In [6], Wilson proved that
(e=v)¥6 < N(v) < (e~1Pv)v%s.
Isomorphism of KTS is defined as follows. Two KTS(v), say (X, @),
i =1, 2, are said to be isomorphic if there is a permutation ¢ of X such
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that P = P, (where P¢={{B*: B P}: P P})). Note that non-
isomorphic KTS(v) can have underlying STS(v) which are isomorphic.
This happens, for example, at order 15. There exist precisely 80 non-
isomorphic STS(15). Four of these are resolvable, but three of these four
give rise to two non-isomorphic KTS(15). The number of non-isomorphic
KTS(15) is therefore 7. (These results can be found in Mathon, Phelps,
and Rosa [3]). We denote by NK(v) the number of non-isomorphic KTS(v),
and by NR(v) the number of non-isomorphic resolvable STS(»). Hence
NK(15) = 7 and NR(15) = 4. Of course NK(v) > NR(v) for all .
. {v—1)(v-3)/48
In this paper we prove that, for any v = 3 mod 6, NR(») > i
Hence NR(v) — oo as v — . We observe that it was previously unknown
if NK(v) > 1 for all but finitely many ». The best previous result is found
Guiv-3)/54
vl

in Lenz [2]; he proved that, for allv = 9 mod 18, NR(v) =

2. A RECURSIVE CONSTRUCTION

We use a well-known recursive construction for KTS. (See, for example,
Wilson [7].) We briefly review this construction.

A PBD (pairwise balanced design) is a pair (X, B), where B is a set of
subsets of X (blocks), each of size at least 2, such that every pair of points
in X is contained in a unique block of . For each block Be& B,
suppose that there is a KTS(2|B8| 4 1) (this requires that |B| = 1 mod 3).
We construct a KTS(2|B| + 1), ((Bx {1, 2}) U {oo}, Ps), where Pp=
{Pp,x: x € B} and {0, X, X2} € Py, , for all x & B. This is done for each
block B. We then observe that (X x {1, 2}) U {0}, P) is a KTSQ2|X| + 1),

where we define P ={P,: x& X}and P, = (U Pg,,, for each x € X.
xeB

3. A BounD

This recursive construction can be used to construct large numbers of
distinct KTS(») (on a specified symbol set), by using different component
KTS. For example, suppose we have a block B & @B of size 4, say
B = {a, b, ¢, d}. It is not difficult to see that there are precisely 8 distinct
resolvable STS(9) on point-set {o0, ay, as, by, by, ¢1, ¢2, dy, dp} in which the
underlying STS(9) contains the blocks {00, ay, az}, {00, by, b2}, {=, ¢}, c2},
and {e, dy, d2}. Suppose we take (X, B) to be a (w, 4, 1)-BIBD (which
exists for any w = 1 or 4 mod 12). B consists of w(w — 1)/12 blocks of
size 4. The recursive construction produces 8¥*-DI'2 distinct resolvable

STS(v) (v = 2w + 1). No more than »! of these can be mutually isomorphic,
{w(w—1)/12 8(v—1)(v—3)/48

so NR(v) > 5 = o . This works for all v = 3 or 9 mod 24.
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For v = 15 or 21 mod 24, we use a slight variation. Start with a PBD
(X, B) on w=7 or 10 mod 12 points, containing one block of size 7 and
(w(w — 1) — 42)/12 blocks of size 4. Such a PBD is shown to exist for all
w =7 or 10 mod 12, except w = 10 and 19, by Brouwer [1]. Blocks of size
4 are handled as before. For the block of size 7, we need distinct resoly-
able STS(15). For example, suppose we begin with STS #£ 61 in the list of
80 (see [3]). This STS(15) is resolvable, and has an automorphism group
of order 21. There are 27.7! permutations of {eo, @y, ay, b, ba, ¢y, ¢, dy, da,
e, e, f1, 2, &1, g2} which fix o, and also fix the set of blocks {00, ay, ay},
-+ o5 {0, 81, £2}. We get at least 27-71/21 > 8712 distinct resolvable STS(15)
which contain blocks {0, a;, Az}, ..., {0, g1, &2}

So, when we fill these resolvable STS into one of Brouwer’s PBDs, we

get 8(v=0-49/12.872 — Gw(w-1/12 djstinct resolvable STS(2w + 1). Hence,
(v=1)(v—3)/48
as before, we obtain NR(v) = §—~—-~~~-~- for v = 15 or 21 mod 24, v £ 15,

v!
39. The exceptions » +* 15, 39 can in fact be removed since this bound is less
than 1, and resolvable STS(15) and STS(39) exist. Hence, we have our
main
Q(v—1)(u=3)/48 )
THEOREM. For all v = 3 mod 6, there are at least —- o1 hon-isomor-

phic resolvable Steiner triple systems of order v.

4. COMMENTS

Lower bounds on NK(v) for small » can be found in [4]. These are
generally obtained by ad hoc techniques. The recursive techniques we use
do not yield new bounds until » is about 75. At that point, an explosion
occurs, since v! is roughly ev!o¢v and the numerator is about e**. Hence
NK(v) > c,e** for constants C1, €2, and sufficiently large v.

The true value of NR(») is probably ce<:¥*1osv, but it does not seem
possible to prove this using known constructions,
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