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1. Introduction.

Perpendicular arrays are not as well-known as orthogonal arrays, but
one day they will be! However, in the interim, a definition is a good place

to start. A perpendicular array, or PA, is an (g) by k array A such that
each cell is occupied by one of the numbers 1,2,...,n, and such that if we
run our fingers down any two columns of A, we obtain each of the (g) 2-

element subsets of {1,...,n} exactly once. The number n is called the order,
and the number k is called the strength of the array A. We will abbrevi-
ate the phrase “perpendicular array of order n and strength k“ to
PA(n k).

A trivial necessary condition for the existence of a PA(n,k) is that
k =< n and n is odd. Whether or not these conditions are (generally) suffi-
cient for the existence of a PA(n,k) is, not too surprisingly, an open prob-
lem. However, except for a few cases, the existence problem has been set-
tled for £ = 3, 4, and 5, by Mullin, Schellenberg, van Rees, and Vanstone
[6]. In particular, they show that a PA(n,3) exists for all odd n = 3; a
PA(n,4) exists for all off n = 5 (except possibly n = 87); and a PA(n,5)
exists for all odd n = 5 (except possibly n € {33,39,51,87,219}).

If Ais a PA(n,k) and a is any permutation in S; (the symmetric
group on {1,...,k}), we will denote by A« the perpendicular array obtained
from A by permuting the columns of A according to a. Two perpendicular
arrays are equal if they contain the same rows (not necessarily in the same
order). Two perpendicular arrays A and B are conjugate if there exists
a € S, such that Aa = B. If Aa = A, for some a, we say that A is

invariant under conjugation by . The subgroup of S; consisting of all a
such that Aa = A is called the conjugate invariant subgroup of A.

ARS COMBINATORIA, Vol. 18 (1983), pp. 51 - 60



Example. A PA(5,5) with conjugate invariant subgroup < (12345)>

1124|513
3112|415
S |3 11(2]4
4 53|12
214531
1{413[|2]5
51114132
215)11(4]3
312|514
413|151

In this paper, we investigate the following natural problem. For a
subgroup H of S, (k = 3), determine the set of all integers n (i.e. the
spectrum) for which there exists a PA(n,k) having H as its conjugate
invariant subgroup. We give the solution of this problem (except: for a
handful of cases) for k = 3, 4, and 5. Apart from being of interest in its
own right, the solution of this problem has (at least) two significant appli-
cations.

(1)  The nesting problem for Steiner triple systems (STS).

For which n does there exist an STS of order n, (S,T), with the pro-
perty that one can adjoin one point of S of each triple in T, obtaining a
BIBD with block-size 4 and )\ = 2? We say that such an STS can be
nested. A necessary condition is n wm | (mod 6). It turns out that an STS
which can be nested is equivalent to a PA(n,4) having conjugate invariant
subgroup Cy = <(123)>. We show that these designs exist for all n = ]
(mod 6), with 15 possible exceptions. (This result has been obtained
independently by Colbourn and Colbourn in [1]).

(2) The Steiner pentagon problem.

In 1966, Alex Rosa proved that the complete graph K_ can be
decomposed into edge-disjoint pentagons if and only if n m ] or § (mod
10) [6]. Subsequently, the authors [3] obtained such a decomposition with
the additional property that every pair of distinct vertices of K, is joined
by a path of length two in exactly one pentagon. (Such a decomposition is
called a Steiner pentagon system, or SPS.) An SPS of order n 18
equivalent to a PA(n,5) having conjugate invariant subgroup
Cs = <(12345)>. In [3], the authors show that the spectrum for SPS is
precisely the set of all positive n == | or 5 (mod 10), except n = 15. We
also remark that an SPS is equivalent to a quasigroup satisfying the identi-

ties z2 = z, (yz)z = y, and z(yz) = ¥(zy), 8o the spectrum for these
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quasigroups has also been determined.

These examples provide some indication of the importance of the con-
jugate invariant subgroup problem for perpendicular arrays. An extensive
amount of work has been done on the analogous problem for orthogonal
arrays; the interested reader is referred to [2] for a detailed account of pro-
gress to date.

2. Preliminaries.

A bit of reflection reveals that a perpendicular array of strength &
cannot be invariant under conjugation by a transposition, a product of dis-
joint transpositions, or any permutation which moves less than k—1 sym-
bols. Hence the only possible conjugate invariant subgroups are: <1> and
<(123)> for k = 3; <1> and <(ijk)> for k = 4; and <1> and
<(¢jklm)> for k = 5. In the sequel, we consider the subgroup <(123)>
of 54 and <(12345)> of S; the other nontrivial subgroups give rise to the
same spectra.

We also observe that a Steiner triple system of order n is equivalent
to a PA(n,3) with conjugate invariant subgroup <(123)>. This is quite

easy to see. Let (S,t) be an STS of order n. Define A, an (g) by 3 array

by: for each triple {z,y,z} € t, place in A the three rows (z.,y,2), (y,2,2)
and (z,z,y) (or the three rows (z,z,y), (z,y,2), and (y,z,z)). Then A is a
PA(n,3) with conjugate invariant subgroup <(123)>. Conversely, suppose
A is a PA(n,3) (based on a set S) with <(123)> as its conjugate invariant
subgroup. Define a set t of triples of S by: {z,y,z} € ¢t iff (z,9,2), (y,2,2),
and (z,z,y) are rows of A. Then (S,t) is an STS of order n.

3. Conjugate Invariant subgroups of Sqe

We observed in the last section that a PA(n,3) with conjugate invari-
ant subgroup <(123)> is equivalent to an STS of order n (n = 3). Hence
the spectrum is precisely the set {n = 3: n = 1 or 3 (mod 6)}.

The other possible conjugate invariant subgroup is <1>. First, we
note that there are two distinct PA(3,3)'s, and both are invariant under
conjugation by <(123)>. So, let n = 2k+1 = 5. Define A to be the (g)
by 3 array with rows (i,i+5,i+2;) (mod n), 0 < i < 2k, 1 JSk. It
can easily be shown that A is a PA(n,3) with conjugate invariant subgroup

<1>. So, the spectrum for PA(n,3)'s with conjugate invariant subgroup
<1> is precisely the set {n = 5: n odd}.
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4. Conjugate Invariant subgroups of S 40

We first consider the case of the conjugate invariant subgroup <1>.
Suppose that n > 3 is odd, n ¢ {33,39,51,87,219}. Then there exists a
PA(n,5), say A, by the results of [5]. Let B be the PA(n,4) cousisting of
the first four columns of A, and let C be the PA(n,4) formed from
columns 1, 2, 3, and 5 of A. It is straightforward to see that at least one
of B and C has <1> as its conjugate invariant subgroup.

It remains to consider n = 33,39,51,87, and 219. For n = 33,39,51,
and 219, there exists a PA(n,4), by [5]. We have observed in the introduc-
tion that a PA(n,4) with conjugate invariant subgroup <(ijk)> is
equivalent to an STS of order n which can be nested, and this requires
n = 1 (mod 6). Thus, any PA(n,4) with n = 3 or 5 (mod 6) has conju-
gate invariant subgroup <1>. So, in particular, the perpendicular arrays
PA(33,4), PA(39,4), PA(51,4), and PA(219,4) have conjugate invariant
subgroup <1>. Hence the spectrum for PA (n,4)’s with conjugate invari-
ant subgroup <1> is the set of allodd n = 5, except (possibly) 87.

The case of the conjugate invariant subgroup <(123)> (or nested
Steiner triple systems) is more difficult. We first construct an STS which
can be nested for all orders n = 1 (mod 6), with 19 possible exceptions.

The technique of proof is the same as was used for an unrelated prob-
lem, which we now describe. If a Kirkman triple system (i.e. a resolvable
STS) of order v contains an STS of order (v=1)2 as a subsystem, then
v = 3 (mod 12) (and (v—1)/2 = 1 (mod 6)). In [4], Mullin, Stinson and
Vanstone investigate the existence of such designs, it is established that,
except for 19 possible exceptions, if n = 1 (mod 6), then there exists a
Kirkman triple system of order 2n +1 which contains an STS of order n as
a subsystem. This is done as follows: 1) PBD-closure is established, 2) a
prime-power construction, and singular direct and indirect products are
given, and 3) enough “small“ designs are produced using the constructions
of 2) so that 1) can be applied to determine the spectrum (modulo the 19
aforementioned possible exceptions).

The constructions of 1) and 2) depend only on the orders n of the
subsystem of the KTS of order 2n+1, and we have noted that n = }
(mod 6). So if we have constructions for nested STS analogous to those of
1) and 2), then 3) can be applied without change. This is what we proceed
to do. It is most convenient to describe a nesting of an STS (S,T) as a
mapping a:T -S such that (S,B), where B = {{ab,c,ta):
t = {a,b,c} € T}, is a BIBD with block-size 4 and )\ = 2.
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The prime power construction: If n = 6t+1 is a prime power, let
F = GF(n) and let z be primitive in F. Define B = {{x’,z’+2‘,z""“}:
0s jst—1}, and T = {{a+i,b+i,c+i}: {a,bc} € B and i € F}.
Also, let a:T = F be defined by {a+i,b+i,c+i}la = i. Then (F,T) is an
STS of order n and « is a nesting.

The singular direct product: Let (V,v) be an STS, and take a fixed (but
arbitrary) ordering of the three points in each triple in v. Let (Q,q) be an
STS containing a sub-STS(P,p), and write X = Q\P. For each i € V, let
(P U (X x {1}), g(¢)) be the STS obtained from (Q,q) by replacing each
z € X with (z,) in each triple of ¢ in which it appears. Let (X,0) be a
quasigroup, denote S = P U (X X V), and define T to consist of the fol-
lowing set of triples of S

1)  the triples in P

2)  for each i € V, the triples in q(i)\p

3) for each triple {abcl€v (a <b <c) the triples
{(z,a),(y,5),(z 0 y,c)}, forall z,y € X.
Then (S,T) is an STS, which is called the singular direct product of
(V,v), (Q.9), (P,p), and (X ,0).

Theorem. Suppose that the STS (V,v) can be nested, and that the STS
(@,9) can be nested in such a way that the restriction of the nesting to P
i3 a nesting of (P,p). If | X| # 6, then there is a quasigroup (X ,0) such
that the singular direct product (S,T) can be nested.

Proof. Let (X,0) be a quasigroup with an orthogonal mate (this requires
| X| # 6). Then (X,0) can be partitioned into transversals t,, z € X.
Let o be a nesting of (Q,q) which induces a nesting of (P,p), and denote by
(i) the corresponding nesting of (P U (X X {i}), q(¢)). Let § be a nest-
ing of (V,v). We now define 6:T - S by

r{a,b,c}oz, if {a,b,c} €p

{a,b,c}e(i), if {a,b,c} € q(:)\p

(z.{i,5,k}8), if {a,b,c} = {(z,i).(y,5).(z o y.,k)}
Lwhere {f <j<k}€vand(r,y,zoy)€ L,

{alb!C}g = *

It is straightforward to see that 0 is a nesting of (S,T).
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The singular indirect product: Before plunging into a descnptlon of the
singular indirect product we need a few preliminaries. Let X ' CX. A
quasigroup (with hole X ) is a partial quasigroup (X ,0) in ,Which z o y is
defmed if and only if ( ,y)(X XX,andzony if z EX or
y € X'. Two quasigroups (X,0,) and (X ,0,) with the same hole X ° are
sald to be orthogonal if the set of ordered pairs resulting from the superpo-
sition  of the corresponding partxal Latin squares is precisely

(X X X)\(X" x X ‘). Now define = {(x,y Z0,y):z o0,y = a},
e €X. Ifa €X', thenltl |X|—|X|andwecallt a short
transversal. If a € X\X then It | = |X]| and we call t, a long
transversal.

As before, let (V,v) be an STS, and Jorder each triple in v. Let (@.9)
be an STS contalmng a sub-STS (Q q ) a.nd let PC Q Define
X=QW ad X' =¢Q \P Let q(s) (resp. g (n)) denote the triples
obtained from g (resp. ¢ ) by replacing any z € X by (z,i). Let
(P,U (X" x V),t) be an STS. Finally, let (X,0) be a quasigroup with hole
X' andlet $ = P U (X X V). Define a set T of triples of S to consist
of the following:

1)  the triples in ¢

2)  for each i € V, the triples in g(i \g (i)

3) for each triple {a,b,c} € v (6 <b <c), , the , triples
{(z,a).(y.6),(z 0 y,c)}, for all z,y such that (z,y) ¢ X x X°.

Then (S T) is an STS, called the singular indirect product of (V, v),
(@.,9), (@°,¢"), and (X, o)wnth hole X °.

Theorem. Suppose there are nestings of the STS (V,v),
(PU (X" x V)t), and (Q,q) (in which the sub-STS Qg ) can be
nested). If the quasigroup (X,0) with hole X' has an orthogonal mate,
then the singular indirect product (S,T) can be nested.

Proof. As described above, we can partition (X ,0) into transversals (short
and long) ty) Z € X. Let a be a nesting of (Q,q) which induces a nesting
of (@ ,9 ), and denote by ofi) the corresponding nesting of
(P U (X X {1}), g(¢)). Also, let 8 be a nesting of (P U (X X V),t), and
let v be a nesting of (V,v). We define 6:T - S by

56



({a,b,c}ﬂ, if {a,b,c} €t

_ {a,b,c}a(i), if {a,b,c} € q(i)\q.(i)

(0be¥ = 10, 40,7k, if {a,6,c} = {(.1).(y,9).(= 0 y,k)}
where {{ < j <k} € v, and (z.9,2 0 y) €¢,.

As with the singular direct product, it is straightforward to verify
that 0 is a nesting of (5,T).

PBD-closure: If (X,A) is a PBD, and for every block ¢ € A, we have an

STS (a,t(a)) with a nesting 6,, then (X, t(a)) is an STS, and 6 is a nest-
a€A

ing, where 8(t) = 6,(t) where t € t(a).

As previously mentioned, the above constructions, together with the
machinery in [4], are sufficient to construct a nested STS for all orders
n = 1 (mod 6), with the possible exceptions of n = 55, 115, 145, 187, 205,
265, 355, 415, 493, 649, 655, 697, 043, 955, 979, 1003, 1243, 1285, and
1819. In [1], Colbourn and Colbourn have constructed nested STS of ord-
ers 55, 115, and 145. The methods of [4] then enable one to eliminate 1819
as a possible exception. Hence, the spectrum for PA(n,4)’s which are
invariant under conjugation by <(123)> is precisely the set of all n = }
(mod 6) except possibly n = 187, 205, 265, 355, 415, 493, 649, 655, 497,
943, 955, 979, 1003, 1243, and 1285.

6. Conjugate Invariant subgroups of S..

As mentioned in the introduction, the case <(12345)> has been han-
dled in [3]. For completeness we restate it. The spectrum for PA(n,5)'s
with conjugate invariant subgroup <(12345)> is precisely the set of all
n =1 or 5 (mod 10), except n = 15. We remark that this removes
n = 51 from the list of unknown PA(n,5)'s in [5]).

We now consider the case of the conjugate invariant subgroup <1.>.
Any PA(n,5), where n = 37 or 9 (mod 10), must have conjugate invari-
ant subgroup <1>. By the results of [5] we have PA(n,5)'s for all such
n 2 7 (except possibly n € {33,39,87,219}).

So, we now suppose that n = 1 or § (mod 10). We handle each case
separately. First we consider n = 5 (mod 10). A straightforward argu-
ment shows that any PA(5,5) has a conjugate invariant subgroup of the
form <(ijklm)>, so 5 is not in the spectrum for <1>. On the other
hand, since there is a PA(15,5), and since no PA(15,5) can have a conju-
gate invariant subgroup of the form <(ijklm)>, 15 belongs to the spec-
trum for <1>.
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So we assume n = 25. A careful inspection of the PA(n,5)'s with
conjugate invariant subgroup <(12345)> (n = 5 (mod 10)), constructed in
[3] shows that each has at least one PA(5,5) as a subsystem. Let A be one
of these PA(n,5)'s, let B be a sub-PA(5,5), and let B’ be the PA(5,5)
obtained from B by interchanging the first two columns. B’ has conju-
gate invariant subgroup <(2134_5)>. If we construct A by unplugging B
from A and replacing it by B , we obtain a PA(n‘,S) which must have
<1> as the conjugate invariant subgroup (since A cannot be invariant
under conjugation by (12345) and (21345)).

Now we assume n = 1 (mod 10). The PA(n,5)'s with conjugate
invariant subgroup <(12345)> (n = 1 (mod 10)) constructed in [3] each
have either a sub-PA(5,5) or a sub-PA(11,5), except for n = 31, 151, 331,
and 751. The cases with a sub-PA(5,5) can be handled as before. The
cases with a sub-PA(11,5) can be handled similarly, by replacing the sub-
PA(11,5) can be handled similarly, by replacing the sub-PA(11,5) by one
with conjugate invariant subgroup <1> (assuming it exists). But, we
have a prime construction which produces the desired PA(11,5), and also
handles n = 31, 151, 331, and 751. Suppose n = 1 (mod 10) is a prime,

and define an (g) by 5 array A having rows (i,i+j,i+25,i+3j,i+4))

(mod n), for all 05§ <n, i S j S (n—1)2. It is clear that A is a
PA(n,5) with conjugate invariant subgroup <1>.

Combining all of the above, we have a PA(n,5) with conjugate
invariant subgroup <1> for all odd n = 7, except possibly n = 33, 39,
87, or 219. Also, such a PA cannot exist for n = 3, or 5.

6. Summary.

We summarize the results of this paper in the following table.
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subgroup spectrum comments
<1> alloddn =5
k=3 <(123)> alln 2 3, equivalent to a Steiner
n = 1 or 3 (mod 6) triple system of order n
<1> all odd n = 5, except
possibly n = 87
k=4 <(123)> | alln =3,n = 1 (mod 6) | equivalent to a Steiner
except possibly n = 187, triple system of order
205,265,355,415,493,649, n which can be nested
655,697,943,955,979,
1003,1243, or 1285
<1> allodd n = 7, except
possibly n = 33, 39,
87, or 219
k=5 | <(12345)> | alln = 1 or 5 (mod 10), equivalent to a Steiner
except n = 15 pentagon system of order
n, and to a quasigroup
of order n satisfying
the identities 22 = x,
(yz)z = y, and
z(yz) = y(zy)
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