SNAPPY CONSTRUCTIONS FOR TRIPLE SYSTEMS
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1. A triple system T(),v) is a way of selecting unordered triples from a v-set

so that every pair of elesments appear together im A triples. They are the first non-
trivial case of balanced incomplete block designs. The best known systems are the ones
with A = 1, which are called Steiner triple systems because they are the Steiner systems
with block-size three, or 51(2,3,v) systens. (In classical notaticn a T(},v) is an
SA(2,3,U) system.) . -

Elementary counting arguments show that 1f a T(A,v) exists then there are
tegers r and b such that

A(v-1) = 2r, vr =3

(each element belongs to precisely r triples, and b 1s the total number of triples in
the system). These conditions can be expressed in terms of the primacy of X to 6:
(A,6) = 1 implies v Z I or 3 (mod 6J;
(X,6) = 2 implies v Z 0 or 1 (mod 3);
(),6) = 3 implies v

1 (mod 2);

while (A,6) = 6 imposes no restriction. Another obvicus necessary condition is that
vV # 2. These conditions are together sufficient. Clearly if (X,6) = d, so that A = &d

for some integer s, one could form a T(),v; by taking s copies of a Ti(d,v).

So to prove
sufficiency it is enough to show that the following

systems exist,
T(1,v) for all v
T(2,v) for all v

1,2 (mod 6);
0,¢ (mod 6);
T(3,v) for all v = § (moc 6);
T(5,v) for all v

2 (rod 6), v # 2.

2 The sufficiency of the condition v S 1 or 3 (moZ §) for Steizer triple systems
was proven independently by several hands in the nineteenth century [3,5]. Bose (1]

sertled the case A = 2, and the others vere dome by Hanani [2]. Howvever, as Street [8]
poiznts out,

Most preofs of sujficiency are awiesard;
Stomvon ana Goulden's recent recursive
proof ... ts an eleganz ezception ... .

But even the existence proof for Steiner triple systems given by Stanton and Goulden [2]

is lengthy and recursive. For example, to comstruct a T(1,32) you first need a T(1,25),
which requires a T(1,7).

But Lindner, in [4] and in his lectures, has observed that easy direct
constructions of T(J,v) have been available since 1958, by combining the regult of (1]
and [6]. They are simpler for practical use and quite suitable for teaching. Inspired
by bis work we have sought equally easy direct comstructions for all triple systems.
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" mo room for a pair to occur twice.

The results appear below, starting with the construction (in Section 3) of T(1,v)'s.
A word about the presentation is in order.
readers will be familiar with these beasts; for teaching purpcses, if Latin squares
are not mentioned before triple systems, then the approach presented is a convenient
way to introduce those interesting and important arrays. But the whole construction
can be done without overtly using latin squares; instead of mentioning the array L,
one can give a suitable formula for l_y. We omit verifications after the first, as
they all follow the same patterm.

We use Latin squares, as most

3. A Latin square of side (or order) & is an 8 x g array with all entries from
the set S = {1,2,...,s)}, such that each row and each colum is a permutation of S. A
ser of positions in a latin square is called a troisversal if it contains one represent-
ative of each row and one representative of each columm, and if the positions contain
betwveen them each member of the set precisely once. A transversal square is a Larin
square with a transversal. Given a transversal square of side s, one could first
peroute the colurms so that the transversal positions formed the main diagonal, then
percute the names of the elements

so that the diagonal becomes (71,2,...,s) in order.
We say a transversal square in this form is standardised.

- Let L be a symmerric transversal square of order 2n+1. Such squares are
€asy to construct: one example is L = (iij)’ where

L..
J

We define a T({1,6n+3) based on
1l <z s 2n+3, The triples are

(n+1)(1+7) (mol 2n+1).

three sets of symbols {IJ}, (12} and {zs], where

:1,.1'2,:3 1 sz < 2n+tl
1 1
{=", ,l‘j} !
:2,32,252} 2 1<z <y < intl
’ T
\:3,y3,£_u)

To verify that this is a Steiner triple system, observe that twc members of the same
set occur together exactly once in one of the blocks of form {:L,yz,iizz}; two
members of different sets which have the same z-value occur together e;actly once:
for example, if = # z, consider =1 and z ;.there is exactly one colum y of L such that
2:u = 2z, this y satisfies y # =, and :1 and 22 meet tegether in the tripie {:1,31,22}
and nowhere else.

Although it is easy to see that no pair of elements occur together more

than once, there is really no

(2n+1) + 3n(2n+:

need to verify this. For we have constructed

2
= 6n2 + dn + 1 triples. Betveen them they contain 18n° + 251 + 3
unordered pairs. We have verified that each wordered pair of én + 3 elements has

: ; 2 .
occurred at least ome: that makes (6n+3)(€n+Z)/2 = 18n° + 15n + 3 pairs. So there is

This argument will apply to all our comstructions.
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Next, let M be a latin square of side 2n which is

(1 2,...,n,1,2,...,n) Such a square alvays exists:

We define a T(1,6n+1) based on {:1)
the triples

4. For the

= % (i+7)

{:.

3
"

= ¥ (1+5+1)

{zz,:z,:s},

{=;:1,(:—n)2}'
{=,2, (z-n)%) |
{°,:3,(:-n)1)‘
{1,y ..m 5l 1
{22 2 3

am _.y f

<

{:,y m }

J

case A = 2 wve need

every order n (except order 2, which

construction is as follows., If n is

n is even, n > 2, define T to be the Latin sg 1
replacing the (1,2),(2, 3),...,(n—2 n-1) and ’r-:

last row and colimn vhich make the square latin: the last column is (n-1,1.2
and the last row (n-2,n-1,1,...,n-3,n).
squares exist for all orders except 2,

of Section 3, instead of L » transporting the ent

the same way.

There exist a 7(2,6) and
T02,5) : 123,124,12¢
T(2,7) : 122,124,125

(Or one could duplicate the T(1,7) of Sectiom 2

Now suppose n # 2. Let A=

T(2,2r) on the symbols {:1),

»138,187,127 232,247,255, 257, 3€8,247,367,4¢85

4
vhen | 2+] Is even

(mod 2n)
vhen <+ is odd

5 {32} and {:3} for 1 £ = £ 2n and an object ®, by

l1sz=<n

n+l £ =< 2n,

P 1sz<ys2n,

to know that there is a transversal square

symsetric and has diagonal
for example M = (m..) where

of

is impossible). But this is easy. One simple

odd, define L (i ) by ! = 2i-J (mod r).

uare of otder n derived from L -

if
by

i,1) elezects by n and then appending a

(Ve couid also have usad

a T{2,7). Suitable sets of trisles are:

[ 99

u o~

3.)

-:) be a transversal squars of order n.

L. I {: ) 1szsn, is formed by the triples.

{zl,:z,:s : 1sSz<n, twice each
t=y',dl )

{zz,yz,as b 1s5s=z¢ n, Isysn, z#y
{zs,ys,al }
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sesesni=2,11)
Tn is also a transversal square. So transversal
the transversal squares

Ties just after the main diagomal in
But the above exacples are even sizpler to write dowa.)



‘triples

A T(2,3n+]) on the

{:1,: »T }
{: 3T ,=}

3

{: ,T,=)

{:3,:1,5}
1 12
{z ,y;axgl
2
=%,y a;y)

(:3 3 a1
Py 'y

S. The case of T(3 J)
simply takes all the tr‘ples

‘{y,:+y,2:+y}

o e a0 o Tt e o .4,
—— . e ’

same symbols together with symbél = 1is forzed by the

lszsn,

¢ 1szsn, 1sysn,z# V.

for v = 5§ (mod §) is the easiest of the constructions. One

-~

f0<sz<kv, 0y <y

where all the additions are reduced modulo p.

6.

fors a T(6,3n+Z) based on {z’

Suppose 4 = (at .J is a t*ansversal square of order n.

The following triples

1, {z){:), :Sn,{m,m}:
=108 )
=<
2 2.2
{z5,4%,27 ) Plszsn, 1sysn, z# Yy, each triple taken
2 3 ; three tizes
=", ’zzy}
2 2
{= ,:1,:2},{= ,:1,: ]
{=‘,:2,:3),[ﬂ°,:2,:31 2 <z <n, each triple taken three tiges
1 3 2 2 3 1,
==, =525,
2 2 v oo 1 2 .
{= ,”2,11},{ 1,° ,121,\° ,“2 1%},
k4
{nz’zJ,JZ},{Ql,lz,Jw},{ 2,13,1‘),
k4

twice each.
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