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, APPLICATIONS AND GIiNnRAI-IZATIONS OF THB VARI/LNCE I\{ETHOD

IN COIUIINA]'0RIAL DITIiIGNS.

D. R. Stinson

1. fntuoduction - An Inequality.

Many well-known i-nequalities for clesigns can be proved by the

ruethod of rrintersection numbers". This mettrod is based on the fact

that a sum of squares is non-negative. We prove a single inequality,

and derive several other inequaliCies as corollaries. In later

sections, we consider extensions of this method.

A pairwlse balancecl deslgn, or pBD, of index l, is a pair

(X,E), where X is a finite set, and B is a family of subsets of X,

such that, for each unordered pair {xr,xr} a X, there are precisely

), B e B with {*1,*2} S B. Elemenrs of X are ca11ed points, ancl

elements of B are called blocks. We will denote the number of

points by v, and the number of blocks by b. Notice that we al1ow

both repeafed blocks and bloclcs of size 1.

/rn (rildesign) is a PBD of lndex I in which every point occurs

in precisely r blocks. A balanced incomplete block design

(or BIBD) is an (ry')-design ln which every block has size k, for

some constant k < v. The parameters of a BIBD are usually written
(v,b,r,k,), ) . The relations bk=vr and ), (v-1) = r(k-1) follow

easily.
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We now prove our j.nequality. This inequallty was established

for (r,1)-designs in [91, using the same method of proof as is used

here. An alternate pr:oof is given in [6] (for (r,tr )_clesigns).

THEOREM 1 . t . S'upp,ess a pjtD (X, il) of irttlex ), has y points
and b blocks, anrl euer,lJ po.Lnt occ.t,t.t1s t_rt at Least r blocks.

)
T'he,n b r'*;+ I,ut,tlrcr,mor.e, equctlttg o(:cu.rs tf and" ortl.y if
(X,B) is a BIItD.

['t'o,t-,f . Let kr, f or t < i ! b, clenote the size of the tth block.

The following sunrnations are over the block set B:

Il = b,

tk. > vr,

anrl r(!r) = ) 'v''z \(z);
2thus rk.

1
< vO v+r-i. ) .

If t- denctt,s the mean of the k its, then the variance is
r(ki [)2 = ,ur' - ]fitrl2 , o

1

x > --_(vr2-" - v(Av+r-I)
2

Thus rv
=+

tr ylr-il

A1so, equality occurs if and only if

kt =lc =[
b !

2. Consequences.

In this section we derive several inequalitles as corollaries
to the inequality proved in the introduction. For the remalnder of

2thls section, let f (r,). ,v) = {ft; .

vr
b
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Flrst, L/e prove Fisherrs inequallty [31.

COROLLARY 2.1. fn a BIRD b > y. Further,, b = v if qnd only

if any .tao ltlocil<s Lruue \. cornrnon y.,oirrbs.

Pt"ctc,f. Let BO be any b1ock. Then (BO, {BnB.: B e B, B # B0})

is an (r-1, ).-l)-design with k points and b-l blocks. Thus

b-l > f(r-1, l-1, k) or k(b-l)O-(k-1)+r-k)-k2(r-1)2 = 0. Uslng

the basic relations, the left side equals (r-k)(v-k)(r-I). We have

v > k and r > ), ; thus r > k. Since vr = bk, we obtain b > v.

In rhe case of equallty, every block meers Uo in ns+'= te\!l= I
points. Since BO was an arbitrary block, the result fol1ows. I

our next inequallty is due ro Stanton and Sprott t131. (See

also Bose t.1 I . )

A parallel class in a PBD ls a set of blocks whlch forms a

partiti-on of the point seL. An (r,).)-design is resolvable if lts

blocks may be parti.tioned into parallel classes. A resolvable BIBD

is called affine resolvable if any two blocks contain either zero
,

or k'/v conmon points.

COROLLARY 2.2. If a BIBD (X,B) contairrc a parallel class P

then b > v*r-l. Furth.et,, a resoluable RIBD is affine resoluable

if and only if b = v-i-r-1.

PyooJ'. Let P c_ B be a parallel class, and let B, be any

block in P. Then (BO,{BnnO : B e B\P}) is an (r-1, tr-l)-design

with k points and b - v/k blocks. Thus U-v/t< > f (r-1, tr-l, k).

This reduees to b > v*r-l (see [13]). For equality, BO meets
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every block of B\P in iffi = 4 potnts. D

Next, we consider Ehe situation of pBDs of index 1.

denote by g(k,v) the rninimurn number of blocks ln a pBD

1) which has v points and conraJ-ns a block of size

following rdur.s proved ln [. 12].

Let us

(of index

k. The

COROLLARY 2.3. g(k,v) >

Proof. Let (X,B) be a pBD of index I on v points, with

I]0 " ll having slze k. The pIlD (X\80 , {B\80: B e B, U I BO }) has

v*k points, b-l blocks and is of tnclex 1. Further every point occurs

in at least k bloclcs. Thus b-1 > f(k,l,v-k), and the result
follows. n

A well-known Theorem of de Ilruijn and IIrdBs [2] states that,
in a PBD of index 1, b > v w.Lrh equallty if and only if the pBD

is a projective plane or a near-pencil (v_1 blocks of size 2 and one

block of size v-1). Using Corollary 2.3, Stanron and Kalbfleisch

t12l give a very concise proof of this resulr (see also I l1l).

We now turn to a problem which has received considerable

attention recently. Let S be a set of size kn. Define a (krn)_

round to be a partition of S into k blocks of size n. Denote

the minimum number of pairs coilunon to two (k,n)-rounds by o(k,n).

The Cordes problem is to determine the maxlmum number R(k,n) of
(k,n)-rounds, any two of which contain o(krn) palrs j-n common.

McCarthy and van Rees [5] obtain an upper bound for R(k,n). More

recently Mullln et al [7] investlgated a more general form of the

1 a lirre-
v-1
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Cordes problem, and proved the resulr of Corollary 2.4. (The bound

of McCarthy and van Rees is an inunediate consequence of thls result.)

COROLLARY 2.4. Let C be ct finite grcrplt hauinct E

Su;r1'to::e ll1, . . .,H6

such tha'b H. ctrLtl
1

tl'lzen 5.fG-Q-
n2*Eo

Pt'oof. Let X denote the set of edges of G; for 1 s i < 6 ,

let B. = {x e H. : x € X}; anrl 1er B = {8.; I < 1 J 6}. B is a1it-

set of 6 e-subsets of the E-seE X, any two of which have 0

points (i.e. edges of X) in conunon. (X,B) is the dual of an (e,0)_
^2rdesign with v = 6, b = E. Thus E < t t c,r ' [f,Jffi . solving for 6, the

result follows. I

3. Iixtens.[c:ns.

Let us consider the equations used to prove Theorem 1.1 :

Il = b, Iki ) rv, and l(k.2-ki) = Iv(v-l). Let L be an inreger;

ttren

0 < r(ki-r) (k.-.e,-1)

= r(ki2-kr) - ztrt . + U.2+9.)b

< ). v(v-l) - 29.rv + (9,2+p.)b

are sab{JrctTh:; of C, eaclL hauing

ll . |ta'ue 0 cornmon edge:; for aLL
J

edges.

e edge,s,

r f J.

Thus we have

TI1IIOREM 3.1. Suppose q pt)D of indeu ), has v points" b blocks,
artd euery potnt occuys tn at Least r blocks, If .(. ts any integer
then b > v 2tt;;(J:! Further,, equality occlnls if and. only if
euer,lj block Vuts si;:e l" or l-+L, and euery point occLLTS
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in precise.Ly r blccks.

Let us defir lzl-l(v-r)\ne h(r, tr,V,r")= v(::ffi';v-r// . We have b > h(r, ),,v,e);
for fixed r, ),, and v, we wish to maximize h(r, L,v,l). We compute

h(r, tr,v,.t) - h(r, ),,v,.Q,-1) ?..ryilzr, t r(v-t)-(!,-r)rl Thus h is
maxi-mizecl , for fixecl r,l, and v, by letting [, = L@. Oj

THIIOREI'I 3.2. If l- = then h(r, ). ,v,{) f(r, tr, v).

Pt oof. Let us consider the inequality

IQ:]Jg
1:

"(-_n+fo1
2.rv

t-G-l)+r

This reduces to

,2p.2 - (2rr(v-1)+r2)p. +L 2iv*r)2 + 11 (v-t) < 0

Ttre lef t side is a quadratic in .Q,, having roots

2 ).r + 2 V-
22r

2 lr(v-l) + t 2 + r 2

)
2r"

i 1lL1,r ot: \_CEDII.
r

r

is ob tained . Il

r (v*l):lr so the result
r

rtr (v-1)+r 
rL-- .-

Thus Theorem 3.1 is an improvement of Theorem 1.1. As before

we can obtain a lower bound for g(krv). The proof is the same

as that of Coroll ary 2.3.

v-l-

I
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COROLLARY 3.3.

g(k,v)>1+(v-k)

L
1(v-k-l )+k

Fon any integep L,

Ihe opt.irnun L is.
2Lk- v-k-1

,c, 9"

_t
v-Il L

1
k

-k

Woodall [14] ftrst proved the following lnequality, which is obtalned
by settlng !,=1 in Corollar:y 3.3.

CSRSLLARy 3.4. g(k,v) > 1+(v*kX-lk-"+!)
2

In [10], Stanton et al establish that, for v]1 s k ( 2v,
g(k,v) = 1 * v-k 3k-v+1 (These are preclsely the values for)

whlch L + I = f ,l In rhe same paper, 1r is shor^m rhat, for kbkJ

odd, g(k,2k+1) = I + k(E+l) In [8], it ls proven rhat, for k

even (k > 2), g(k)(r) = 1 * k(&+1) ..'. [] I . The nexr cases are

2k+2 < k < 3k. Here 9" = 2 gives the optimum value, and

corollary 3.3 yields g(t<,v) 2 ]- * (v-k)(It*v+r) prellminary
6

investigati.on suggests that this bound can usually be attained.

We hope to repor:t further in a future paper.

We finish ttlis section by proving a result uslng Theorem 3.1.

It is well-known (see [4J) that a BIBD(X,E) with parameters

t2+3t+z , k+2, k, 2 can be embedded into a BIBD wirhe 2

paranreters e'.3&t!
2.

k2+3k+4
2

,)k+2, k+2, . (trle say that such

a BIBD is quasi-residual, with ), = 2.) The first step in the proof

is to show that any two blocks hzrve one or two points j_n cormnon.

We can obtain this result as a cor:ollary to Theorem 3.1.

COROLLARY 3 .5. fn ct qtnsi-.r,esi.dual BIISD ,,titlt I = 2 , any tuo

blocks meet t n e:ither one oy tuo potnts.
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ProoJ'. Ler UO be any block. Then (ll,, {BnBO :

is a (k+1,1)-clesign wirh k poinrs and l2*lt*q blocks.

e. = L. we rravc r2gr*g , upl&tu=th-r_))' = t&:ua2 ''\ 2 I :--1

BelJ,n*nO))

On setting

Thus

B, meets every other block in one or two points. Since B

arbitrary, the result follows. D

0 was

Finally, we consider t-wise balanced designs (t > 2). A

t-wise balanced design (of index 1) is a pair (X,B), where B is a

family of proper subsets of X, such that each t_subset of X is
conLained in a unique block. As before, v and b will (respectively)

denote the nunrber of points and blocks. The term t_wise balanced

design will be abbreviared ro rBD. We wil1 denore by g(t,k,v) the

minimum number of blocks in any tBD on v points, where one block

has size k.

Let BO be a block of size k in a rllD (X,B).

denote the blocks which have t-l points in common with

denote [x = lBr-1. The following straunarions are over Br_ (ki

denotes the length of B where 81 ={B.:1<i<o}):i'

Let Ba:B

Bo;

and

11 = 0

r (k.-t+t) = t.1r) (v-k)

r lki-t+t, (r-1) . (.:l) f"rui

The seeond equation ls obtained by countlng E-subsets of X which

meet BO in t-l poinEs. The third equation is obtained by

counting t-subsets which contain t-2 points of BO (not all such

t-subsets need be contained in the blocks of Br; hence the

inequality). Let us denote .Q,. = kr-t+1 , 1 < i < o . If we

calculate the variance of the .Q,_ts, \n/e obtain the followlng
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inequality due ro StanEon and Kalhfleisch t12l.

THrioRriM 3 .6 . g(r,k,v)>l+k-t+2,-.+T (t
k
-1 ) (v-k).

0 < I(!.i-.0) (l.-L*t) , for anyIf, however, we observe that

integer 9, we obtain

TNIIOREM 3.7. I;'c;r arL11 'Ln'beger. L,

(.lr)rzu*r - ffilv-k
72+t

g(t,k,v) > 1 +

It is easy to show that the optimuru l, is given by L
As before we have

v-t+l
k-r+2 l

THEOREM 3'8' For L = I v-t*l I

L p-.*2 ), the bouncl of Theorem

3.7 ts greater than or equal to the bound of Theoten 5.6.

Iale also observe that Woodallts bound [14] can be obtained from

Theorem 3. 7 by set tlng .e,=1 .

THEOREM 3.9.

Finally, it is not difficult to see when equality occurs in

Theorem 3.8.

4. Suntnary.

I^Ie have attempted to unify some well.-known inequalities for

combinatorial designs. Thi-s can be accomplished since the proofs

use a conmon technique, the calculatlon of a variance. This idea

can be generalized by investigating other quadratlc functions.

Improved bounds are obtalned ln thls way.

g(t,k,v))1+(v-k)( )(1 -2ffi,)k
r-1
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