i  APPLICATIONS AND GENERALIZATIONS OF THE VARIANCE METHOD
IN COMBINATORIAL DESIGNS.

D. R. Stinson

1. Introduction - An Inequality.

Many well-known inequalities for designs can be proved by the
method of "intersection numbers'. This method is based on the fact
that a sum of squares is non-negative. We prove a single inequality,
and derive several other inequalities as corollaries. In later
sections, we consider extensions of this method.

A pairwise balanced design, or PBD, of index A, is a pair
(X,B), where X is a finite set, and B is a family of subsets of X,
such that, for each unordered pair {Xl’XZ} ¢ X, there are precisely
A B e B with {Xl’x2} ¢ B. Elements of X are called points, and
elements of B are called blocks. We will denote the number of
points by v, and the number of blocks by b. Notice that we allow
both repeated blocks and blocks of size 1.

An (r\)-design) is a PBD of index X in which every point occurs
in precisely r blocks. A balanced incomplete block design
(or BIBD) is an (r,\)-design in which every block has size k, for
some constant k < v. The parameters of a BIBD are usually written
(v,b,r,k,A). The relations bk=vr and A (v-1) = r(k-1) follow

easily.
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We now prove our inequality. This inequality was established
for (r,1)-designs in [9], using the same method of proof as is used

here. An alternate proof is given in [6] (for (r,\)-designs).

THEOREM 1.1. Suppose a PBD (X,B) of index A has Vv points

and b blocks, and every point occurs in at leqst r blocks.
2

Then b = X%;%:r . Furthermore, equality occurs if and only if

(X,B) s a BIBD.

Proof. Let ki’ for 1 < i < b, denote the size of the ith block.
The following summations are over the block set B:

I = b,

Lk, 2 wvr,
i
and ki, _ v, .
IGH =
2
thus Zki S v@Avir-r).

If k denctes the mean of the ki's, then the variance is

=2 2 1 2
I = B)° = 1k, ~(Tk)% 2 0
2 2
Thus WPSRON o) o

VOvHrA) Avtra

Also, equality occurs if and only if

2. Consequences.
In this section we derive several inequalities as corollaries
to the inequality proved in the introduction. For the remainder of

this section, 1let f(r,\,v) =
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First, we prove Fisher's inequality [3].

COROLLARY 2.1. In a BIBD b > vy. Further, b =vy <f and only

1f any two blocks have X  common points.

Proof. Let B, be any block. Then (BO, {BnB

s : Be B, B# BO})

o
is an (r-1, A-1)-design with k points and b-1 blocks. Thus

b-1 2 £(r-1, A=1, k) or k(b=1)( -(k-L)+r-k)~kZ(r-1)2 > 0. Using
the basic relations, the left side equals (r-k) (v-k)(r-A). We have

v >kand r >X; thus r 2 k. Since vr = bk, we obtain b > v.

In the case of equality, every block meets B0 in kéf11)= k5511)= A

points. Since BO was an arbitrary block, the result follows. []

Our ﬁext inequality is due to Stanton and Sprott [13]. (See
also Bose [11.)

A parallel class in a PBD is a set of blocks which forms a
partition of the point set. An (r,\)-design is resolvable if its
blocks may be partitioned into parallel classes. A resolvable BIBD
is called affine resolvable if any two blocks contain either zero

or kz/v common points.

COROLLARY 2.2. If a BIBD (X,B) econtains a parallel class P
then b z v+r-1. Further, a resolvable BIBD is affine resolvable

if and only 1f b = v+r-1.

Proof. Let P ¢ B be a parallel class, and let BO be any

block in P. Then (BOiBﬂB : B € B\P}) is an (r-1, A-1)-design

0
with k points and b - Vv/k blocks. Thus b-v/k > f(r-1, A-1, k).

This reduces to b 2 vi+r-1l (see [13]). For equality, B0 meets
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2
. k(r-1) k ,
every block of B\P in e points. []

Next, we consider the situation of PBDs of index 1. Let us
denote by g(k,v) the minimum number of blocks in a PBD (of index
1) which has v points and contains a block of size k. The

following was proved in [12].

2
k™ (v-k
COROLLARY 2.3, g(k,v) 2 1 + ——;(%—f)- .
Proof. Let (X,B) be a PBD of index 1 on v points, with

BO e B having size k. The PBD (X\BO,{B\BO: Be B, B # BO}) has
v-k points, b-1 blocks and is of index 1. TFurther every point occurs
in at least k blocks. Thus b-1 2> f(k,1,v-k), and the result

follows. [

A well-known Theorem of de Bruijn and Erd8s [2] states that,
in a PBD of index 1, b = v with equality if and only if the PBD
is a projective plane or a near-pencil (v-1 blocks of size 2 and one
block of size v-1). Using Corollary 2.3, Stanton and Kalbfleisch

[12] give a very concise proof of this result (see also [111).

We now turn to a problem which has received considerable
attention recently. Let S be a set of size kn. Define a (k,n)-
round to be a partition of S into k blocks of size n. Denote
the minimum number of pairs common to two (k,n)-rounds by o(k,n).
The Cordes problem is to determine the maximum number R(k,n) of
(k,n)~rounds, any two of which contain o(k,n) pairs in common.
McCarthy and van Rees [5] obtain an upper bound for R(k,n). More

recently Mullin et al [7] investigated a more general form of the
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Cordes problem, and proved the result of Corollary 2.4. (The bound

of McCarthy and van Rees is an immediate consequence of this result.)

COROLLARY 2.4.  Let G be a finite graph having E edges.
Suppose Hl""’Hd are subgraphs of G, each having e edges,

such that Hy and Hj have 8 common edges for all i # j.

Then § < E(e-8) .
e2-Ep
Proof. Let X denote the set of edges of G; for 1 < i < & ,

let Bi = {x € Hi : x € X}; and let B = {Bi; 1 <1 <4}, B is a

set of & e-subsets of the E-set X, any two of which have @
points (i.e. edges of X) in common. (X,B) is the dual of an (e,B)-
2
e<d

design with v =68, b = E. Thus E < Béte—p - Solving for &, the

result follows. [J

3. Extensions.

Let us consider the equations used to prove Theorem 1.1
I1 = b, in 2 rv, and Z(kiz—ki) =Av(v-1). Let £ be an integer;
then

0 < X(ki—l)(ki—ﬁ—l)

2_ _ 2
Il "=k,) - 28Tk, + (2242)b

IA

Av(v-l) = 28rv + (2242)b

Thus we have

THEOREM 3.1.  Suppose a PBD of index \ has v points, b blocks,

and every point eoccurs in at least y blocks. If £ is any integer

2240
every block has size L or £+1, and every point occurs

Further, equality occurs if and only if
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in precisely r blocks.

28r=A(v-1)
L AVEL

Let us define h(r,A,v,8)= v( 251 ). We have b 2 h(r,A,v,2);

for fixed r,A, and v, we wish to maximize h(r, A,v,2). We compute
h(r,A,v,2) — h(r,\,v,2-1) = %%%Ezji)[k(v—l)—(l—l)r] . Thus h is

maximized, for fixed r, )\, and v, by letting & = L%L!:%)i}ﬂ

i -1)+
THEOREM 3.2,  If £ = —A-(-Yr——)-r— s then h(r,A,v,£) > f(r,\,v).
Proof. Let us consider the inequality

S 28r-A(v-1) 5 r2v
2244, T Mv=1)+r
This reduces to

r2g2 - (2Ar(v—l)+r2)£ +-)\2(v--l)2 + i\ (v-1) <0 .

The left side is a quadratic in %, having roots

2 r (v-1)+r2 + /(2%r(v—l)+rz)z—4r2(XZ(v-l)2+rk(v—l))

2r2
_ 2 (v-1) + r2 + r2
)
2r~
- A=y o ALl
r r
However A (v-1) < [}(v~l)+rj < A (v=1)+r so the result
r - r - r ’
is obtained. {1

Thus Theorem 3.1 is an improvement of Theorem 1.1. As before,
we can obtain a lower bound for g(k,v). The proof is the same

as that of Corollary 2.3,
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COROLLARY 3.3. For any integer &,

22k—(v-k-1
g(k,v) 2 1+ (v-k) (“‘EZ%%“‘;»- The optimum £ is

1(v-k-1)+k -1
Sl | - | 5

Woodall [14] first proved the following inequality, which is obtained

by setting 2=1 in Corollary 3.3.

COROLLARY 3.4. glk,v) =2 1+(v-k) (3k=v+1)
2
In [10], Stanton et al establish that, for v+l < k < 2v ,

(v=k) (3k—v+1)
2

glk,v) =1+ (These are precisely the values for

which L Xil_J =1.) In the same paper, it is shown that, for k

odd, g(k,2k+l) =1 + Ei%il) . In [8], it is proven that, for k

+ k(g+1)

even (k > 2), g(k)(v) =1 5

+ r-% 1 . The next cases are

2k+2 < k < 3k. Here & = 2 gives the optimum value, and

(v-k) (5k-v+1)
6

investigation suggests that this bound can usually be attained.

Corollary 3.3 yields g(k,v) 2 1 + Preliminary
We hope to report further in a future paper.
We finish this section by proving a result using Theorem 3.1.

It is well-known (see [4]) that a BIBD(X,B) with parameters

2 2
(k';k', L: +§k+2 s, k+2, k, 2) can be embedded into a BIBD with
2 2
4
parameters (k +§k+* , k +3k+4 s, k+2, k+2, 2) .(We say that such

a BIBD is quasi-residual, with X = 2.) The first step in the proof
is to show that any two blocks have one or two points in common.

We can obtain this result as a corollary to Theorem 3.1.

COROLLARY 3.5. In a quasi-residual BIBD with A = 2, any two

blocks meet in either one or two points.




Proof. Let B, be any block. Then (BO, {BnB, : B e B, B # BO})

0 0
2
is a (k+l,1)-design with k points and k~i§kig blocks. On setting
2 2
2 —(k-
Lo 1, e have K2 k(:ﬁc:r_l_)7<.1<__l_>) T
BO meets every other block in one or two points. Since BO was

arbitrary, the result follows. [J

Finally, we consider t-wise balanced designs (t > 2). A
t-wise balanced design (of index 1) is a pair (X,B), where B is a
family of proper subsets of X, such that each t-subset of X is
contained in a unique block. As before, v and b will (respectively)
denote the number of points and blocks. The term t-wise balanced
design will be abbreviated to tBD. We will denote by g(t,k,v) the
minimum number of blocks in any tBD on v points, where one block
has size k.

Let BO be a block of size k in a tBD (X,B). Let Bl c B

denote the blocks which have t-1 points in common with B :

O’
denote o = |Bl|. The following summations are over Bl (ki
denotes the length of B, , where Bl = {Bi :1<1i<al):

Il =0
Z(k-t+1) = (5 ) (v—k)
i t-1
and

I YO P S YA

The second equation is obtained by counting t-subsets of X which
meet BO in t-1 points. The third equation is obtained by

counting t-subsets which contain t-2 points of B (not all such

0

t—subsets need be contained in the blocks of Bl; hence the
inequality). Let us denote li = ki-t+1, l1<i<oa. If we

calculate the variance of the Zi's, we obtain the following
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inequality due to Stanton and Kalbhfleisch [12].

k—t+2 k

THEOREM 3,6. g(t,k,v) 2 1+ —= (o) (v=k).

If, however, we observe that 0 < Z(li-z)(li—l~l), for any

integer £, we obtain

THEQREM 3.7. For any integer %,
v-k k v—t+1
g(t,k,v) > 1 + m (t“l) (22+1 - k—t+2)'
It is easy to show that the optimum & 1is given b I_lthEL
Y P 8 y k—t+2
As before we have
v—t+1
THEOREM 3.8. For L= | = 1 the bound of Theorem

3.7 is greater than or equal to the bound of Theorem 3.6.
We also observe that Woodall's bound [14] can be obtained from

Theorem 3.7 by setting 2=1.

THEOREM 3.9. g(t,k,v) 2 1 + (v-k)(tfl)(l '2%§%%%29 .

Finally, it is not difficult to see when equality occurs in

Theorem 3.8.

4. Summary.

We have attempted to unify some well-known inequalities for
combinatorial designs. This can be accomplished since the proofs
use a common technique, the calculation of a variance. This idea
can be generalized by investigating other quadratic functions.

Improved bounds are obtained in this way.
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