KIRKMAN TRIPLE SYSTEMS CONTAINING MAXIMUM SUBDESICNS

R.C. Mullin, D.R. Stinson, and S.A. Vanstone

ABSTRACT. A necessary condition for a Kirkman triple
system of order v to contain a Steiner triple system

of order (v-1)/2 as a subsystem is that v be congruent
to 3 modulo 12. Tt is shown that, except for 19 possible
exceptions, this condition is also sufficient for the
existence of such a system.

1. Introduction.

A Steiner triple system of order v is a pair (V,T), where v
is a v-set and T 1is a collecticn of triples (three-element sub-
sets) of V with the property that each pair of distinct elements of
V is cohtained in precisely one of the triples of T. It is well-
known that a necessary and sufficient condition for the existence of a
Steiner triple system of order v 1is that v be a positive integer
congruent to 1 or 3 modulo 6. A subsystem of a triple system
(V,B) is a pair (V',B'), where V' <V and B' ¢ B, such that
(V',B') 1is a Steiner triple system in its own right. It is easily
shown that [V'] < (v-1)/2. 1If equality holds, the sub-system is
said to be a maximum subdesign.

A Kirkman triple system of order v 1is a Steiner triple system of
order v whose triples can be partitioned into classes (resolution
classes) such that each member of the underlying v-set V occurs
precisely once in each class . It is known [6] that such a system
exists if and only if v 1is a positive integer congruent to 3 modulo
6. If a Kirkman triple system of ‘order v, when viewed as a Steiner
triple system, contains a maximum subdesign, we refer to the subdesign
as a maximum subdesign of the Kirkman system, despite the fact that it
may not be a Kirkman system. If v' dis congruent to 3 modulo 6, then
2v'+l is congruent to 1 modulo 6, so any maximum subdesign of a
Kirkman triple system must be of order v' congruent to 1 modulo 6,
and hence is never a Kirkman system. This also shows that if v is
the order of a Kirkman system which contains a maximum subdesign,
then v 1is congruent to 3 modulo 12. We show here that that

condition is also sufficient, with 19 possible exceptions, for the
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existence of such a system.

A Kirkman system containing a maximum subdesign was constructed by
Kirkman [2] in 1850, and again by Cayley [1] in 1863. Both of these
constructions used a configuration now known as a Room square [3].
Mullin and Vanstone [4] have shown that a Kirkman triple system of
order v with a maximum subdesign always gives rise to a Room square
of side (v-1)/2, and conversely a Room square with certain incidence
properties can be used to construct a Kirkman system containing a
maximum subdesign.

For convenience, we will denote a Kirkman system of order v which

contains a maximum subdesign by the symbol MK(v).

2. Constructions.
A number of constructions are required in order to establish
results on the spectrum of MK(v)s. We first state several direct

constructions.

THEOREM 2.1. If r <s a prime power congruent to 1 modulo 6 then
there exists an MK(2r+1).

This class of Kirkman triple systems was constructed by Ray-
Chaudhuri and Wilson and can be found in [5].

Suppose v is a positive integer, and K is a set of positive
integers. A (v,K)-pairwise balanced design (or PBD) is a pair
(X,Q) of sets where |X| =v, Beq implies B ¢ X and |B]| e K,
and for any distinct x_,x

1’72
{xl,le S B. A set of positive integers A is said to be PBD-closed

in X, there is a unique B ¢ Q with

if v e A whenever there exists a (v,A) - PBD.

Define RMK = {r : there exists an MK(2r+1) }.

THEOREM 2.2. RMK <8 PBD -closed.
Proof. Let (X,Q) be a (v, RMK) PBD. Let = ¢ X, and let
Z = {=} u X x {1,2}. For any B e Q, we can construct an MK(Z|B| + 1)

on {«} u B x {1,2} which contains blocks {m,xl,xz}, for each
X € B, and also contains a sub-design on B x {1} Do this for every
block B e Q, keeping exactly one copy of each block {m’Xl’XQ}’

for each x e X.
It is easy to check that we have a Steiner triple system, and

that we have a subsystem on X x {1}. Associated with each B ¢ Q
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we have classes R x ¢ B, which form a resolution of the

B,x’
MK(Z]B! + 1) on {=}u B x {1,2}. We may stipulate that
o e ; B. fine = ’ i
{ ,xl,xz} € RB,x’ for each x ¢ Define R ng RB,X It is easy

to check that the Rx'g form a resolution of our design.

Thus we have corstructed an MK(2v+l), as required. J

Before proceeding to the next construction, we require several
definitions. An incomplete transversal array, denoted ITA(m,k,s)
is an m x m array A, and a triple (X,{G,H#},B), such that

(1) !X’ = mk;

(2) every cell is cither empty or contains a k-subset of %X

(3) the empty cells form an s x s subarray §;

’

4) ¢ = {Gl,Cz,...,Gk} is a partition of X into k subsets of

size m;

5 = {H,,H,,...,lI he H., « G : = ¢

B) H {Hl, 9 ,ik}, where i L-Ci and IHil s,
I £3% &%

(6) if B is the set of k-subsctsin the cells of the array, the
then Cl n B] = 1 and I“l n B! <1 for all Be B and 1 < i < k;

(7) for every i and j (i # j) and every x,y € X (x # y)
such that x ¢ Hi or y ¢ Hj, the pair x,y 1is contained in a
unique block of B.

(8) every column of A which is not a column of S contains
each element of X precisely once and exery column of A which is a

column of S contains each element of u (Gi\Hi) precisely once.
i=1
As an example, an 1ITA(6,3,2) is displayed.

3ca 4da Sea 6fa
6dp « 3eB 4LER 5cRB
3dy bey 1fy 5by 2cy bay
4ed 3f8 5ad 1cé 6b§ 2d8
5fe 4ee 2ec bae lde 3be
6cw 5dw 4bw 2fw 3aw lew




Gl = {1,2,3,4,5,6}, Hl = {1,2}.

= g X = 1
C2 {8.b e, dse, ], H2 {a,b}.
Gy = {a,B,y,8,c,0}, Hy = {a,B}.

It is easily seen that the existence of k-1 mutually orthogonal
latin squares (MOLS) of order m which contain k-1 MOLS of order
s 1implies the existence of an ITA(m,k,s). The converse is not true of
course.

Let K be an MK(v). Let r = (v-1)/2. Define a Kirkman array
KA(r) to be an n » r array, where n = (2r+1)/3, such that every
cell contains precisely one block of K, each block of K is contained
in a cell, and the triples of any column form a resolutior class of K.

The array shown below is a KA(7).

[ abe ade afg |  bdf bge cdg cef
d35 b26 b13 a47 a58 al2 a36
el? c48 c57 clé6 c23 b78 b45

h
28 f15 d68 c38 dl4 e56 d27
246 837 e24 225 £67 £34 18

The subdesign is defined on the symbol set {a,b,c,d,e,f,g}.

A KA(r) 1is said to be normalized if

(1) an element © of K which is not in the maximum subdesign
is contained in each cell of the first row of the array;

(2) KA is defined on the symbol set V = I x {x,y} u {=}, where
x #y;

(3) the entry in cell (1,i) is {e, (1,%x), (1,y)};

(4) the maximum subdesign is defined on the symbol set Ir x {y}.

A KA(r), A, is said to contain an n' x r' subarray if there

exists n' = (2r'+1)/3 rows and ' columns of A such that this
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subarray is itself a KA(r') defined on a subset of the symbol set of
A.
Let K = (kij) be an m x m array in which kij is an ordered

k-tuple of some symbol set V. Let L be an ordered k-tuple

Qxl,qz, ...,uk). Deline
KolL= (L, .)
1]
where Rij = {(hl,al),(hz,az),...,(hk,ak)}
if kij = (hl’hz""’hk)'
If L = ¢, then define K o L to be an m x m empty array.

We now state and prove a recursive construction for Kirkman

arrays. The construction is called a singular indirect product.

THEOREM 2.3. Suppoce there exists a KA(rl), and there exists a
KA(rz) which corntains a KA(rB) as a subarray. If for a nonnegative

integer, ‘a < r there exists an ITA(rZ—a,B,r -a) and there exists

3 3
a KA(rl(r3—a)+a) then there exists a KA(rl(rZ—a)+a).

Proof. Let Kl’KZ’KB denote KA(rl),KA(rZ), and KA(r3) respectively,
Without loss of generality, assume that KI’KZ’ and K3 are normalized.

K2 has the following form:

Let a be a nonnegative integer, 0 =< a < r_,. Select the first a

3

columns of K2 and partition the array as follows:
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a

R F
A
C D
| |
i

Let V2 and V3 be the symbol sets on which K2 and K3 are

written, respectively. Clearly, V3 g}Vz. Define K; to be the array

K2‘ written on the symbol set (V2/V3) * {(i,x),(,y)} u V3.

Ai,F_,D_,E_, and C., are defined accordingly. Let the maximum sub-
IR R A i

Of course,

design in K; be written on the symbol set (V2/V3) x {@,y} u

(Ir3 x {y}) u o,

Let L be an ITA(rz—a, 3, r3—a) written on a symbol set V2/V3.

Form the following array N:

T T T
1 2 rl
L o 221 L o k22 L o er]
L o Qn,l Lo Rn,Z L o ﬂn,r
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where Kl = (Qij) and Ti ic the n, x (rz—a) array consisting of

F.,A, and D, of Kz. Let S.. be the (r3—a) x (r3—a) empty

174 i ij
subarray contained in L o £,

Let M be a K/\(r'l(r,j—:n)ﬁn) written on the symbol sct

{1 \Il) x {x,y} % (VJ\W) u (I'l x {X,y}) u @

r
3
Let the maximum subdesign be defined on the symbol set {(Ir \Ij) x {x,y}}
x (1 o {y}) v e . Arbitrarily partition M as follows:
r S
1
1 ! r'
. F *
F —
1 r-1 "1
' 1 q'
S O,
821 Z,rl—l Z,rl
U
1] 1 "
S 5 - “n, T
n1] nysTy 1 nyLTy

where F! is an n, x (r,-a) array (1 <i <r,) and S'  is an
i 3 3 1 i
- - < i < < 3 <
(r3 a) x (r3 a) array (2 <1i < n, 1 <3 <r.).

Form the array N* from N by replacing the subarray Fi in N

by the subarray Fi of M for all i, 1 < i < £ and replace the
empty subarray S_. of N by the subarray Sij of M for all

1]
ij, 2 <1i < n, 1 <3< r- Finally, form the following array A*.
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Lt isatedious but straightforward task to show that A* 4g a

KA(rl(ro—a) + a) defined on the symbol set
{v?_—(la x {x,yD} x (Vl—w) U (Ia x {x,y}) u =,
The maximum subdesign is written on the symbol set

{Vv—([ < {x,y D} x {1 x y} u (1 «x {y}) u o,
z a rl a
COROLLARY 2.4. Suppose there exists a KA(r]) and there exists a

KA(rZ) which contains a KA(r3) as a subarray. If there exists a
pair of orthogonal latin squrares of side Ty = Taqs then there exists
a KA(rl(rz—r3) +or,).

The proof follows from Theorem 2.3 with a = 0.

Having established the PBD-closure of RMK it is useful to have
some constructions for PBD's. These constructions make use of
orthogonal arrays (OA's). For a definition see [3]. Recall

0Alt) = {n: there exists an OA(n,t)}.

THEOREM 2.5. Suppose A is a PBD-closed set, m e OA(l4), 0 < t
and  {6mt+1,12m+1,6t+1,7,13) < A.

Then 84m+6t+1 € A,

In
3

Proof. See [3].

A

THEOREM 2.6. Suppos A is a PBD-closed set, m e OA(43), 0 < t < m,
and  {m,m+6t,43} < A.

Then 43mt+6t ¢ A.
Proof. See [3].

We will use the following well-known result concerning the
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existence of orthogonal arrays.

THEOREM 2.7. Let m have prime power factorization Ip.%. Then
i

me OA(k) Zf k < min{pia + 1}.

We will also make use of the following simple number-theoretic

result.
LEMMA 2.8. TIf m, 18 an integer, then there exists m such that
my - 13 < m < m and (m,2.3.5.7.11) = 1.

Proof. We show that the maximum distance between units modulo
2.3.5.7.11 is 1l4. Any unit is of the form 6t + 1 or 6t + 5.

If u = 6t +1, consider {u,u-2,u-6,u-8}. These four numbers
are each relatively prime to 6, and at most one is divisible by 5,
by 7, or by 1. There must be at least one element left over, which
is relatively prime to 2.3.5.7.11.

If u =6t -1, consider {u,u-4,u-6,u-10,u-12}. These five
numbers are each relatively prime to 6, at most two of them are

c

divisible by 5, and at most 1 is divisible by 7, or by 11. O
We also need some constructions for incomplete transversal arrays.
LEMMA 2.9. (1) If there exist k - 1 MOLS of orders m and m + 1,
k MOLS of order t, and 0 < u < t, then there exists an
ITA(mt + u, k, u).
(2) If there exist k - 1 MOLS of orders m, m+ 1 and
m+ 2, k¥l MOLS of order t, k MOLS of order v, and 0 <u, v < t,
then there exists an ITA(mt + n + v, k, u).
Proof. See [5].

3. Cleosing the Speetrum.

THEOREM 3.1. Suppose v ¢ RMK <Zf 1825 < v < 44905 and v = 1 mod 6.
Then v e S 1f 1825 <v and v = 1 mod 6.

Proof. Let v > 1825, v = 1 mod 6. We proceed by induction. Suppose
that u e RMK if 1825 <u <v and u = 1 mod 6. If v < 44905

then v ¢ RMK by assumption, so suppose v = 44911. Let v = 6n + 1,
so n = 7485.

Write n = l&mo + to,

choose m such that mo - 13 < m < mo and (m,2.3.5.7.11) = 1. Then

n = 1l4m + 1, where tO + 182 2 t > tO.

We show that m » t. We have m = (n-t)/14, so m >t if

with 304 < tO < 317. Using Lemma 2.8,
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n > 15t. But ¢t < to + 182 < 499, and n > 7485 = 15.499,

Now t = 304, so 6t + 1 > 1825. Thus we have
v=_8m+6t+1>12m+1>6m+126t+ 1> 1825.

Since RMK 1is PBD closed, the result follows by induction, from
Theorem 2.5 (note that m e OA(14) by Theorem 2.7).

In order to apply Theorem 3.1 we must show that v € RMK if
1825 < v < 44905 and v © 1 mod 6. It is desirable first to show that
except for a few possible exceptions, if v = 1 mod 6 and v < 1819
then v ¢ RMK,
LEMMA 3.2, If v = 1mod 6 and v < 1819 then v € RMK wunless
veX= {55,115,145,187,205,265,355,415,593,649,655,697,943,955,979,
1003,1243,1285,1819}.
Proof. We list constructions in Table 1. For brevity, we omit prime
power orders (where Theorem 2.1 or Theorem 2.2 applies) and orders
which are the product of two prime pcwers, both of which are congruent
to 1 mod 6. |[J
Notes for Table 1.
Note 1. 8 € OA(8), so there is a group-divisible design with eight
groups of size 8, and blocks of size 8. Take 6 copies of each
point. Replace each block by the blocks of a group-divisible design
having eight groups of size 6, and blocks of size 7 (an affine
plane of order 7 with a point deleted). Replace each group by an
affine plane of order 7 on the 48 points existing plus on new
point o,

To show 1537 ¢ B(7,193) start with 32 « OA(8) and proceed as
above,
Note 8. K. Heinrich has shown that an ITA(n,3,2) exists for all

n = 5.
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TABLE 1.

- 293 =

Order u Y W a v-a w—a u(w-a)+a Remarks
85 7 13 1
275 13 19 1
253 7 37 1
295 7 43 1
319 7 49 7 4 45 3 25 49=7.7,45=15.3
385 see note (1), 385e B(7)
391 13 31 1
445 37 13 1
451 29 19 1
505 7 73 1
- 517 7 85 13 85=7(13-1)+1
535 7 85 13 10 75 3 31 85=7(13-1)+1,75=25.3
565 7 85 13 5 80 8 61 85=7(13-1)+1,80=8.10
583 7 85 7 2 83 5 37 85=7(13-1)+1,83=3.26+5
667 37 19 1
685 19 37 1
715 7 103 1
745 13 25 1
781 13 61 1
799 19 43 1
805 67 13 1
835 7 127 19 9 116 10 79 127=7(19-1)+1,116=3, 35+10+1
865 7 127 7 4 123 3 25 127=7(19-1)+1,123=41.3
895 7 133 7 6 127 1 13 133=7.19
901 25 37 1
913 19 49 1
985 13 85 13 10 75 3 49 85=7(13-1)+1,75=25.3
1015 13 79 1
1045 13 85 7 5 80 2 37 85=7(13-1)+1. Note (2)
1081 7 157 13 3 154 10 73 157=13(13-1)+1,154=3.48+10
1105 84.13+6.2+1
1111 84.13+8.3+1
1135 7 163 1
1165 84.13+6.12+1
1177 7 169 1



TABLE 1 (continued)

Order u v w a v-a W—a  u(w-a)ta Remarks _
1189 VAN 4 7 6 169 1 13 175=7.25

1195 7 175 7 5 170 2 19 175=7.25,170=3.56+2
1207 7 175 7 3 172 4 31 175=7.25,172=3.56+4
1219 7175 1

1255 19 67 1

1309 109 13 1
1315 73 19 1

1345 7 193 i

1357 84.16+6.2+1

1363 84.16+6.3+1

1375 84.16+6.5+1

1405 84.16+6.10+1

1411 84.16+6.11+1

1435 7 211 7 211=7(31-1)+1

1441 7 211 7 6 205 1 13 211=7(31-1)+1

1465 7 217 31 9 208 22 163 217=7.31,208=3.64+11+5
1495 7 217 7 4 213 3 25 217=7.31,213=3.70+3
1507 7 217 7 2 215 5 37 217=7.31,215=41.5

1513 7 217 1

1537 1537¢ B(7,193),Note (1)
1555 7 223 1

1585 7 229 13 3 226 10 73 229=19(13-1)+1,226=3.72+10
1615 7 247 19 18 229 1 25 247=13.19

1633 7 247 19 16 231 3 37 247=13.19,231=3.76+3
1639 7 247 19 15 232 4 43 247=13.19,232=2.76+4
1645 7 247 19 14 233 5 49 247=13.19,233=3.76+5
1705 7 247 13 4 243 9 67 249=13.19,243=3,78+9
1711 7 247 13 3 244 10 73 247=13.19,244=3,78+10
1717 7 247 13 2 245 11 79 247=13.19,244=3,78+11
1729 7 247 0

1735 7 259 37 13 246 24 181 259=7.37,246=3.74+24
1765 7 259 37 8 251 29 211 259=7.37,251=3.74+29
17/1 7 259 7 259=7.37

1795 13 139 1
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From Lemma 3.2 we can obtain the following.
COROLLARY 3.3. If wu < v <1819, v - u = 0 mod 252, u,v = 1 mod 6,
and {u,v} n RMK = @  then (u,v) ¢ {(55,1819), (145,64¢), (187,943) }.

Corollary 3.3 is of use in the following lemma.

LEMMA 3.4. Suppcse x = 43m + 6t = ABml + 6t1’ where m and m, are
prime powers congruent to 1 mod 6, and m < m y L £ m, t1 < m

1
If {m + 6t, m, + 6t1} nRMK =0 and m+ 6t, m

1
< the
1 + 6tl < 1819, then

i 1
one of the following holds:

(1) my < 55 and myo-m = 42
(2) m < 145 and m, - om = 42 or 12;
(3) m,o< 187 and m - m= 42,18, or 12.

Proof. Since 43m + 6t = 43m1 + 6t, we have m + 6t - (ml + 6t) =

42(ml - m). Thus my Zmmod 6, so m+ 6t = my + 6tl mod 252.
Also m + 6t # my + 6tl, and both are congruent to 1 mod 6. Let
m+ 6t - (ml + 6tl) = 252k. Then my - om, = 6k. Corollary 3.3
implies the result. [l

LEMMA 3.5. Suppose My € Mo mS... <mo, wnere each m, 18 a prime
power congruent to 1 mod 6. Suppose mi/mi+2 > 43/49 for

0 <i <n=-2. Then if 1+3ml < x < 49mn_l, we can write

X = 43mj + 6t = 43mj+l + 6tl for some j, 0 < j <n-1, and t < mj’
tl < mj+l'

Proof. Let m = x/43, and let mj be the largest mi not exceeding
m. Now, Xx < 43mj+l and 49mj_l z 43mj+1 so X < 49mj_l < 49mj.
Also x = 42mj 3 43mj+l. Let t = (x - 43mj)/6 and tl = (x 43mj+1)/6
Both t and tl are integers, and 0 < t < mj, 0 < tl < mj+1, as

required. I

LEMMA 3.6. Suppose Ve RMK <f 1825 < v < 6559, and v = 1 mod 6.
Then v e RMK <f 11911 < v < 45031 and v = 1 mod 6.

Proof. Let M = {271,277,...,919,937} be the set of all prime powers
between 271 and 937 which are congruent to 1 modulo 6. Let the
elements of M be ordered m, < m; <...< m . It can be checked that

1

mi/mi_ > 43/49 for 0 <1i <n-1. Let v = 1 mod 6 and

+2

11911 < v < 45031. By Lemma 3.5 we can write v = /43mj + 6t = 43mj+l
+ 6t1 with 0 < t < mj, 0 < tl < mj+1'
{mj 6t, mj+l + 6t1} n RMK # 0 If one of mj + 6t, mj+l + 6t, is

We need only show that

~ 295 -



at least 1825, then it is in RMK by the assumption that v e RMK
if 1825 = v <6559 and v = 1 mod 6. Since m, + 6t = v - 42m, and
J J

+ 6L, = - 42 > have < + < <
m, 0t Y mogs o we have mj+l + 6t mj+l 6tl 7mj+l 7mn

= 6559. Finally, if both mj + 6t, m1+] + 6t] are less than 1825,

Lemma 3.4 guarantees that at‘]eust one of them is in RMK. |
LEMMA 3.7. v ¢ RMK 4/ 8299 < v < 11211 and v - 1 mod 6.
Froof. Let m, = 181, m,o= 193, m, = 199, m, = 211, mg = 211,
m = 223, m, = 229, mg = 241. The proof is that of Lemma 3.6
mutatis mutandis. |

LEMMA 3.8. v ¢ RMK Zf 6493 < v < 8281 and v = 1 mod 6.

Proof. Let my = 139, m, = 151, m, = 157, my = 163, m, = 169. The
proof is that of Lemma 3.6, mutatis mutandis. (Note that mo=my = 12,
but m, - 145, so there is no problem with Lemma 3.4.) [ ]

We summarize the above.
LEMMA 3.9. Suppose v e RMK if v = 1 mod 6 arnd either
1825 < v < 6487, 8287 < v < 8293, or 11227 < v < 11905. Then
ve RMK 2f 1825 < v and v = 1 mod 6.
FProcf. Tmmediate, in view of Lemmata 3.6, 3.7, and 3.8, and Theorem
3k Ls ]

Thus we need to show v € RMK for the above values of v. The
following will be useful.
LEMMA 3.10. Suppose m < 271 is a prime power congruent to 1 mod 6.
Then if 43m < v < 49m, v = 1 mod 6, and v ¢ RMK, we must have
m + 6t ¢ X, where v = 43m + 6¢.
Proof. The result follows from Theorem 2.6 and Lemma 3.2. Note that
m+ 6t < 7m < 1819. ]

Similarly, we have the following.
LEMMA 3.11. Suppose m ¢ OA(14), {6m + 1, 12m + 1} < RMK, and
m <49, If 84m+ 1<v<90m+ 1, v =1 mod 6, and v ¢ RMK, we
must have 6t + 1 ¢ RMK, where v = 84m + 6t + 1.

We now make numerous applications of Lemmata 3.10 and 3.11 in
Table 2 below. Each value of m used in Lemma 3.11 is in 0A(14)

9

by Theorem 2.7, and 6m + 1 and 12m + 1 are in RMK by Lemma 3.2.
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Table 2

Lemma m Interval Remarks

3.10 43 1849 - 2107

3.10 49 2107 - 2401

211 27 2269 - 2431

3.11 29 2437 - 2611

3.10 61 2623 - 2989

3.10 67 2861 - 3283

3.10 73 3139 - 3577

3.10 79 3397 - 3871

3.11 47 3949 - 4231

3.10 97 4171 - 4753

3.10 103 4429 - 5047

3.10 109 4687 - 5341

3.10 121 5203 - 5929

3.10 127 5461 - 6223

3.10 139 5977 - 6487 orders above 6487 covered

3.10 241 11227 - 11809 orders below 11227 covered
3.10 271 11653 - 11905 orders above 11905 covered

We now consider possible exceptiors in the above intervals, and
orders between 1819 and 11905 which are indicated in the statement of
Lemma 3.9 and nct contained in any interval above.

First, we note that, in the overlapping portion cf two consecutive
intervals, both of which are applications of Lemma 3.10, there can be
no possible exceptions other than 5227 and 5983. This follows from
Lemma 3.4. The only possibility is that the two values of m differ
by 12, and the two values of m + 6t are 145 and 649. These
orders are 5227 = 43,109 + 6.90 = 43.121 + 6.4 and
5983 = 43.127 + 6.87 = 43.139 + 6.1. We list the remaining orders in

Table 3 below and give constructions for them.
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43
43
43
43
43
49
49
49
49

49
49,27
27
27
29

61
61
61
61
61
67
67
67
73
79
79
79
79

Order
1861
1921
1951
1993
2011
2113

2551
2581
2617
2677
2707
2749
2767
2827
3001
3019
3079
3331
3583
3673
3733
3811
3877
3883

3889

13

181

31

19

43

157

37

13

325

73
337

127
361

61

19

103

559

Table 3

w a v-a w-a
13 12 73 1
1

13 5 320 8
0
7 6 331 1
0

19 6 355 13
1

1

13 5 554 8
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u(w-a)+a

25

61

13

97

61

Remarks
Prime
85=7(13-1)+1
Prime

Prime

Prime

Prime

Prime

325=13.25,
320=8.40

317=7(49-1)+1

covered (m=49)

361=19.19,
355=3.114+13

Prime

Prime
Prime
Prime
Prime

Prime

Prime
Primé
Prime
Prime
Prime
Prime

Prime

Prime

559=13.43,
546=3.181+8+5

Prime



~47
47

47
47
47
97
47
97
97
97

97

109
109,121
121

121
127,139
139

139

139

241
241
271

Order

3895

3901
3907
3913
3919
3925
3931
3937
3943
4003
4063

4093
4135
4153
4189
4213
4219
4261
4279

4339
5071
5227
5347
5437
5983
6253
6331
6487
8287
8293
11365
11407
11875

43

31

53

7

169

31
521
211

13

691
947

19

Table 3 (continued)

13

91

127

79

625

13

19
13
31
499

13
13

625

w

13

19

30

a v-a w—-a u(w-a)+a
3 556 10 73
10 579 9 73
16 600 9 79

Remarks

559=13.43,
546=3.181+10+5

Prime

Prime

Prime

Prime
Prime

589=19.31,
579=3.190+9

Prime

Prime
covered(m=47)
covered(m=97)
covered(m=47)
Prime

625=25.25,
600=3.197+9

Prime

Prime

Prime

Prime

Prime

84.131+6.67+1



As a result of the above, and Lemmata 3.2 and 3.9, we have shown
the following.
THEOREM 3.12. If v = 1 mod 6 s a poeitive integer, then v ¢ RMK
urless v ¢ X.

The authors wish to thank the referee for his helpful comments.

Addendum. Alex Rosa (private communication) has recently constructed
an MK(111), so 55 ¢ RMK. If we now apply Theorem 2.3 with r, = 7,
By = 295, r3 = 43, and a = 41, we obtain 1819 ¢ RMK (Note tnat

295 = 7(43-1) + 1). Thus v ¢ RMK if v = 1 mod 6 and v > 1285.
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