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! SOME CONSTRUCTI0NS FoR FRAI,{ES,

ROOM SQUARES, AND SUBSQUARES

D.R. Stinson

Abstract
Several constructions are given for frames, Room squares,and subsquares. Among the results obEalned are the followlng:
(1) There is a skew Room square of side 69,
(2) There are skew frames of rype t4ZL and 446I ,
(3) For all s = 3 modulo 8, s > 3, there ls a Room

square of side 3s * 2 with a subsquare of side s.

A Room square of side s is a square array R of side s, which
sati,sf ies the following:

(1) each cell of R either is empEy or contalns an unordered pai"r
of elements (called symbols) chosen from a set S of slze s * 1,

(2) each symbol occurs precisely once in each row and each colunn,
(3) every unordered pair of symbols occurs in a unique ce11 of R.

Suppose R is a Roonr square of sicle s, on symbol set S. A
squarc t by t subarray of I1' is saicl to be a Room subsquare of
side t provided it is itself a Room square (of side T). lJe sha11
refer to a Room subsquare simply as a sttbsquare.

A Room square R, on symbol set S, is said to be stand.ardized
with respect to the spnbol - t: S, provided the rows and columns of
ll have been permutccl (if nLrccs:;ary) so ttrat @ occurs in the cells
r-rf ll on the m;rin cliagonal . Given a standardized Room square, it is
natural to inde-_x the rows and columns of R so that {_rx} occurs
in cell (x,x) of R, for every x e S, x * *.

A s;tandardized Room square R (of side s) is said to be a skea
Room square (of side s) provicled that, for any palr of cells (frj)
and (j, j,), whr:re f I j, pr:ecisely one is empty.

A subsquare of a skew Room square R is said to be a skeu subsquare
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provided it is located syrunetrically with respect t.o the rnain diagonal
of R.

Let S be a ser, and let {S1,... rtr} be a partitlon of S. An

{sl, . . ., sr.,}-frame is an ls I by ls I array, F, indexed by s,
which satisfies the properties:

(1) every cell either is empty or contains an unordered pair of
symbols of S,

(2) ttre subarrays t: are empty, for 1 s I < n (these subarrays
are refereed to as holes),

(3) each symbol of S\S. occurs precisely once in row (or colurnn)

s, where s e S. ,

(4) the pairs occurring in
2n)e S-\ u Sl.

1=1 r

F Ls skeu lf, for any pair of cells (s,t) and (trs), where,na(s,t) € S'\ u S;, precisely one i-s empty.
Ia=I

The type of an {S1,...,So}-frame T will be the multiset
{lsll ls.,l}.wew111 say that F has type .r"....u'u provided

ther:e are u. Sr's of cardlnality ti, for 1 < i < k.

If a Room square of slde s ls standardlzed, wlt.h respect to -,
say, and then the contents of the cells containlng @ are deleted, a

frame of type ls is constructed. Conversely, one can produce a

Room square of side s frou a fraue of type ls. A1so, a skew Room

square of side s is equivalent to a skew frarne of type ls.

More generally, a Roou sguare of slde s containing a subsquare
of side t gtves rlse to a frame of type lt-t tl. If t is odd,

t I 3 or 5, then these two arrays are equlvalent. However, there do

exlst frames of type ls-ttl wlth t = 3 or 5, nhereas no Room

square has a subsquare of side 3 or 5. (See Theoreru 1.L). We wilL
refer to a fra.me of type ls-ttI as an incomp\ete Room square (of side
s) uissing a subsquare of side t.

In/e have the following existence results.

F are precisely those {srt} where
(s, t)
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THEOREM 1.1 (t'tu11in and Wallis [12]). Iltere erlsts a Room square of side
s if and only if s is ctn odrl posttue integer othey, than B or S.

THEORD{ 1.2 (Stinson [15]). There erists a skeu Room squate of stde
s if and. only if s is an odd positiue integer other tLnn S or 5.

THEoREM 1.3 (Srinson [14]). If s > max{t+644,6t+9}, a,t odd positi,ue
tntgers, then tlrcye is a frune of type ,s-trl ,

THEOREM l./r (Dinitz and Srinson t5l). Let t and u be posi.ttue
integers. ff any of the follouing eonditions hold, then there ertsts a
;^.u

JTame oI tape 't :

(1) u > 6 and t(u-l) is euen.

(2) u=5 ctnd qcd(t,210) l1
(3) u=4 arul t=0modulo4.

Notice that Theorem 1.3 says nothing if s < 6t. One of the
purposes of this paper is to establish the existence of Room squares
(of side s) with subsquares (of side t) where t is "1arge" compared

to s. In this situation one must have s > 3f * 2 (see section 5);
we establish that equality can be attained infinitely often.

We require several definitions concerning designs. A group-dtuisible
destgn (cDD) is a rriple (x,GrA), where X is a finire ser (of. points),
G is a partition of X into subsets called g"oups, and A is a set
of subsets of X (ca11ed bl,ocks), such that (1) every unordered pair
of points *1,*2, not contained in a group, is contained in a unique

block, (2) a group and a block contain at mosr one coruuon point.

A pairwise baT.anced desigtn (PBD) is a pair (x,A), where x ls
a finite set of points, and A j-s a set of blocks, such that every
pair of points is contained ln a unique block.

Let K be a set of positive integers. (XrA) is said to be a

(v,K)-PllD if v = lXl, ancl A e A implies lal e K. K is sald ro
be PBD-closed provided v e K where ever there exists a (v,K)-PBD.

A subset of blocks P : A is a parallel class if P partitions
X. A PBD is resolpable if. A can be partitloned into para1lel classes.
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A Latin square (of order s) based on symbol set S, where

lsl = x, is an s by s array L of the synbols of S, such that
each syrubol occurs preci-seIy once in each row and each col_uur. Two

LaEin squares, L and M of order s, based on symboL sets S and

T respectlvely, are said to be orthogonal provided their super.position
yields every ordered pair in S x T exactly once. Several Latln squares
ate mutually orthogonal if each pair is. We referr,to a set of mutually
orthogonaL Latin squares as (a set of) MOLS. A pair of orthogonal Latin
squares will be called a pair of OLS.

The following is a well-knoum result concerning MOLS.

LEMI'IA 1.5 Suppose rL z 2 has psrinrc pouer> facborizatton n = np;oi..

?hen there esisb k MOLS of orden n if n > min{p-.0Lil.,L

Let L be a Larin square of order s, on symbol set S. A

t-by-t subar:ray Lr of L is said to be a subsquare (of L) provided
it 1s a Latin squarcr of order t 1n 1ts own right (on some symbol set
t' : t). Simi,larly, if L and M are a pair of OLS of order s, \./e

say that t-by-t subarrays L' of L and Mr of M are sub-)LS
(of order t) lf Lt and Mt are respectively subsquares of order t,
and their superposition (within the superposition of L and M) yields
a pair of OLS of order t.

Suppose one removes a pair of sub-OLS (of order t) from a pair of
OLS (of order s). Ttre r:esulting arrays are called a pair of incomplete
OLS (of order s) missinq a pair of sub-OlS (of order r). If t * 2

or 6, then the i.ncomplete OLS rnay be t'completed" by inserting any
pair of OLS of order t on the relevant synbol sets. (It is well-knovm
that a pair of OLS exist for all positive integral orders except 2 and
6). However if t = 2 or 6, the incomplete OLS nay stillexist(and,
of course, they cannot be completed.)

lJe need to define one more array related to a pair of OLS, which
resemlrles a frame ln some ways. Let {S1r...rtr} be a partition of S.

Apartitionedpair of incornplete OLS, having parri.rion {Sl,...,tr}
consists of two S by S arraysr. L and M, indexed by S, whose
cells either are empty or contain a symbol from S, such that
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(1)

(2)

lrhere s €

(3)

pre c iri el.y

The subarrays of

row or colurnn s

S.,
l-

the ordered pairs which occur in { (l(s, t) , M(s, r) ) } are,n
those in S-\ u S

i=1

T}:.e type of the partition {Slr...rtr}r 8s for frames, wil1 denote

L,M indexed by Si are empry, 1 S i S n,

of L or U contains the symbols S\Si

2

1

-the multiser { I sr I ,. . ., I snl }.

Fina1ly, we need to define a special type of
-sets of MOLS. A transversal design TD (mrn) is
which lXl = mn, G consists of rD groups, each

and A consisEs of n2 blocks each of size m.

the existence of a TD(m,n) is equivalent to the
M0LS of order n.

GDD associated with
a cDD(x,G, A) in
of cardinaltiy n,

It is well-known that
existence of m- 2

frorn frames

generality
squares

AS

A TD(m,n) is said to be resoluable if its block set can be

partitioned into parallel classes, and j-s denoted RTD(m,n). The

exi-stence of an RTD(m-l,n) is equivalent to the existence of a TD(rurn).

In this paper we establish several new results concerning frames
and Room squares. The necessary theory is developed in sections Zr3
and 4, and applications are given in section 5.

Section 2 describes three recursive constructions for frames.
These constructions are quite general, and supersede other constructions
which appear in the literature, some of which are indicated as corol-
laries.

In Section 3 we discuss some starter-adder methods for constructing
franes. We descrlbe a mettrod where by intransitive starter-adders can
be produced by algebraic tecl.rni.ques: we make use of projecting sets
in st:rrter-adders i_rr conjunction wj.th strong orthourorphisms in Galois
fields of even order:.

Section 4 describes a method for producing Room squures
by filling in the holes. This construction is of sufficient
that several of the most irnportant product theorems for Room

(u.g. slngular direct ancl lndirect products) can be obtained
s traight for-ward corollarles .
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In Section 5 we prove several new results, based on the methods

described in Sections 2-4. We construct skew frames of types 44ZL
l1

and 4'6-, and a skew Room square of side 69. A1so, we show that
for all s = 3 modulo B, s > 3, there exists a Room square of side
3s + 2 with a subscluare of side s. Such a subsquare is as large as

possible.

:1 . Three recursiue cons ty,uctions .

In this scction, we describe thrcc recursive constructions for
1r:rnres. 'f he f ir:st consf ruction inf _lates f rames by means of Latin
:i(luirres; tlre s;e:cond utilj,zes CDDs; thc ttrird is :r doubling construct j_on.

Suppose F is an {S1,...,trr}-frame, and let L and M be a
pair of OLS on synbol set X, both indexed by S.

Define tire array FLI'I by first choosing an ordering, say (a,b)r
of the contents {a,b} of every ce1l of F, then defining

ot'((",x),(s',x'))
F(s,st) = {a,b}.

CSNSTRUCTION 2.1 ff F is an {5i,. . .,S_}-frcrne, and L,M are a pair
of OLS on symbol set X, then ful ," o, {SrxX,. . .,Sn*X}-frane.

JM[,1tnther, F-" is skea if and only if F is.

Proof. First, the subsquares (Sixx)2 of FLM are empty. A1so, iE
is clear that this construction preserves skewness.

Next, choose a row (srx) and a symbol (st,xt), where

{s,st} t Sr, for any i = 1,2,...,n. There is a unique t such thatTr
s'< F(s,t), and let I'(srt) = {st,tt} for some t'. Suppose first
that {st,tt} was ordered (st,tt). Now L(xry) = x' has a unique
solution for y, whence rH((",x),(t,y)) = {(s,,:i,),(t,y,)} for
some yt.

If {strt'} was ordered (t',st), the argr:ment proceeds similarly.

. Pick tvo slmrbol-s (s,x) and

i. There is a unique ceIl), with

_ f"*r.r, if F(s,s') is empty
- 

L,.,L(x,x')), (b,M(x,x')) ) if

(,st,xt

(t,tt)

solve

Now let us checi', the pairs in 
"1,

t tr, for any

such that F(trt') = {srst}.
L(y,yt) = x, M(y,y') = xt for

If the ordering was (s,st),
y and y' ; rhen rw((t,y),

{srst}
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(E',yt)) = {(s,x),(s',x')}. Tire second case proceeds similarly.

Finally, 1t is clear that no pairs { (s,x) , (s t ,x') } occur with
{s,s'} c Sr, for some i. Thus F]]{ is the desired frame. n

Let (x,G,A) be a GDD. tr ueighttng is a map w: x -> z+ u {0i.
!'or any subset Y : X, and \4r a weighting, let w(Y) denote Ehe

rnulciset {w(y): y e Y}. The following construction closely resembles

Wilsonrs fundamental construction for GDDs t16].

CONSTRUCTION 2.2 Suppose (X,G,N is a GDD and u is a ueighttnl1.
Suppose tlnt, for euery block A e A, t?we exists a (skew) frmne of
type u(A). Then there is a (skew) frune of type { | u:(t): G e G}.

Pt,oof. For each x e X, 1et S* be a set of size w(x). For G e G,

let S^ = u S By hypothesis, for every A e A, we have anG -xx€G
{S*: xe A}-frame I'A.

G*ptv,
F(s,t) = {

[a(*,y)

We construct tr', an

(s,t), otherwiseo where

andseS*rteSr.
us check the necessary properties. tr'irst the subsquares S

y. Next plck a row r e S* and a symbol " u tr, where

G for any G e G. Then s occurs in a unique ceIl of row

if

{sa: G e G}-frame,

{ s, t } ! SG, for some

by defining

G€G.

A(x,y) is the block containing {x,y},

* G for
and in

Let
are empt

Ix,y] 4.l

2
G

r
in Fa(*ry), and in noother ce1l of row r.

Now, plck two symbols s e S*, t e Sr, agaln wi-th ixry)
any C e G. Then {s,t} occurs in a unique ceI1 of FA(x,y),
no other celI of l1 .

are.
(x, y)

eel1s

and

l,astly, 1,et us check that F i,s skew provided that all the f at"
P j-ck two cells (r, s) and (s, r) with r e S*, s e Sr, and

f G for any G e G. Since Fa(*,y) is skew, precisely one of
(r,s) and (s,r) is filled. Thus skewness i-s preserved. I

Define F. = {u: there exi-sts a frame of typet
SF- = {u: therc exists a skew fraure of type tu}.t

ru)
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COROLLARY 2.3 (t4l) I'or any positiue integen t, the sets F
SO, are PIJD-cLosed.

and+

Proc,tJ'. Ler (X,A) be a
CDD. Dcl-ine w: X., Z'ru
App1y const.ruction 2. 2.2.,
v = lxl.

(v,I'r)-PBD. Then (X,{{x}: x € X},A) is a

{0} by settinB w(x) = t, for all x e X.
to obtain a frarne of type t', where

Similarly, SFa is pBD-clesed. !
One drawback to constructton 2.1 is that one cannot ildoubLe,,

frames using lt: there does not exist a pair of OLS of or:der 2.
is partially remedied by the following construction.

This

CONSTRUCT]ON 2.4

(1) A skeu

7). . . rSnj.

{Sl , rZ,...,Sn

Ptoof. Define G, on symbol set ( ;

Suppose the follouing exist:

t51,. . .,Sn\-frctn€ F,

(2) A partitioned pait, of incornplete Latin squares L,M, hauing
partition {S

Then an , f rr\ frune exists, ahere f Z 
: {1,2}.

St) , T2
k=1

empty,ifilj
1<ksn

or {s,t} : SU for some k,

by G((s,i),(t,j)) = {(x,l),(y,1)} ir F(s,r) = {x,y} and i=j=1
{ (x,2) ,(y,2) } ir F(r,s) = {x,y} and i.=j=1
{ (L(s, t) , 1) , (u(s ,t) ,2) } ir i=j =2.

Note that G is well-definecl since F is skew.

The other verificati-ons are almost imrnediate. First pick a
symbol (s.ri), 

"k.Sk, I<k<rr,1<i<2, andarow (snrj),

"g.S.Q,, l(n<or1<; <2. If k=1,, thensymbol (sn,i) does
notoccurinrow (sn,j)r soassrnne k*1,. If i= j=1, then
(s0,1)eG((sn,1),(sr,1)), where sOeF(sn,"*). If L=2 and j=1,
then (sn,2) e G((sn,l), (s*,1)), where sU e F(s*,sn). If i = 1

and j = 2, rhen (..;0,1) n c((sn,2), (srr2)), wher:e sU e M(sur"r).
A similar argument shows; that the cot:rect symbols occur in the coluruns
of C.
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Let us now check pairs of symbols, say

wirh k * e..

(sU, i) , and (sorj ) ,

There is a unique cell Ctr,tr) such thar F(tI, 12) = {sn,s,}.
If. i = j = 1, then C((tr,l),(.r2,1)) = {(sn,l),(s0,1)}. If ! = j - Z,
then c((t2,1),(t1,1)) = {(sk,2),(s0,2)}. There is a unique cell
(t,t.) such that L(r3,rO) = sU and M(r3,rO) = sr. Thus, if I = 1

and i = 2, G((t3,2),(t4,2)) = {(sn,1),(srr2)}. A similar arguuenr
applieslf i=2 and j=1.

Thus G is the desired frame.

3. Starteys and Adders.

I

Let G be an additive abelian group, and

lcl = e, lul = n, and suppose g - h ts even.
in G\H is a set of unordered pairs

H a subgroup. Denote

An (n,fr) -frone starter

(1)

(2)

S = i{s.,t.}, 1 < i . +} sarisfying

{s.}u{tr}=G\H
{t(".-tr)} = c\n.

Ler S be a frame starter in G\H, with S = {{s.,t.}}. An
ad.d.er for S is an injecrive roapping A: S + G\Il such that
{s.*a.} u {t.+a.} = G\H, where A(si,rr) = a.. An adder A Ls skeu
provided a. I - a. for any 1rj.

Suppose S is a frame st;trter in G\H, and A is an adder.
We con.struct the array FSA, a square array j-ndexed by G, by
defining rro(*,x-a.)={x+s.,x*t.} for 1<I.+, andfor x<G.
Note that at most one unordered pair occurs in each cell of FSA,
since A is injective. Also, the subsquares (tt+x)z of FSrt are
empty since the range of A is C\H.

LEMMA 3.1 Suppose .g is a ft une starter in
I'hen FSI is ctn {H+r: r e G}-frune of type
is skea, then TSA ts a skeu frone.

G\,?, and A is an adder.
79/h. Fltrther,, if A

Proof. The cells of row 0 of FSe contain precisely the pairs in S.
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Thus the elements occurring in row 0 are those in G\H. In row

x, f or any x e G, rtre elemenrs of {x} + G\lI = C\ (U+{x}) occur.

A slmilar: argument applies to the colr-unns. The palrs in coltunn

0 are precisely those {s.*a.,t.*a.}, so the elements occurring are
tliose in G\H. A11 other columrrsi are translates of column 0, as was

the case for rows.

Next we show the pairs in ISe are precisely those {SrrSr}
with (s'sr) . c2\ u (tt+x)2. For any x, (x+sr) - (x+rr) I rr-.r,
so no pair {gt,gZ}*(Go"crr" if gl and CZ are in the same coset
of H. Thus, suppose gl and E2 are in different cosets of H,

so gt - gZ = s. - t., for some i. Then {gt,gZ} = FrO(x,x-ar)
for x - gl - s.. Thus FSA is a frame, as claimed.

Let us consider the skevmess of ,SA. For any E1rE2 € G, cell
(Sr,Sr) of ,Sn is filled if and only if E1 - E, = a. for some a..
If A is skew, we cannot have both of cells (Zr,Sr) and (S,Sr)
filled, for then E1 - E, = a. and EZ - Et = .j, whence, d. = -d.r
contradicting fhe skew condition. Slnce UrO contains C" celIs,
exactly C(+) of which are filled, frO rnust be skew if ancl only
if A is a skew adder. n

A frame starter S = {{s.rt.}}
provided s. + r. I H for all i,
i = j. A ls cafled skeu-stt,ong Lt
any i,j.

in G\H is said to be strong
and "i * ai = "j * aj irnplies
(further) 

"i * ti # -(s.+t.) for

for
is

LIX{MA 3. 2

an adder,

skea.

A strong frune starter S -- {{s..,t^.}} Lns A = {a^.Jeuu
ahere a-.: -(s-.+t^.). ff S is skeu-strong, then AL1-L'

Proof. {sr*ar,ai*"i} = {-s.,-ar}.

The frame FSA, arising from a frarne starter in G\H and an adder,
is constructed by determining a first row {{sr,t.}}, a first column

{Is.+a.,t.+a. }}, and then constructing all other rows and columns by
terking translates. Thus FSn Lras G acting on it as an automorphism
group, and G is transitive on the rows, and also the colurnns of F

SA

I
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In the next construction, we produce frames which will have an
automorphism group G, say, but the action of G on the rows (and
columns) of the frame will not be transitive: thus the name intransitive
frame starters.

Let (l bc :ur ,rrbcl_ian group of order gr having a subgroup H of
order h, with g - h even. A Zk-intrqnsittue frcune t;tatter_ad.d.ey,
in G\ll (abbrevi;rteri IFSIA) is a quaciruple (S,C,R,A) where

S = i{s.,r.}: 1i i r 5!-2ki,u {ui: 1< i < 2k} (rhe srarrer),
C = {[p.,q.]: 1 I i: kl, R = {{pl,ql}: 1< i < k},

and

(1) {s

{s

s'C\u

.] u {t.} u1a

( tlrc adder)

{u.} u {p.}1 '1.

is an injection, satisfying

u {qi} = C\H,

+a u {t-+a.} u {.i*bi} u {rri} u {qi} = G\H

(where a. = A(s. , rl) , b. = A(ur) ) ,

(2) {1(".-t.)l u tt(pi-qi)t u ft(pi-ri)} = crn.

(3) any elemenr pi-eir or pi-qi, wirh 1 < i < k, has even order.

Given a 2k-II'SA (SrC,R,A) in G\H, r4/e construct an array
F = FSCRA as fol1ows. Ler - I G, and define 0 = {*} x [1,2,..,,2k].
Forany xeG and y€0 define x+y=y. F willbeasquare
array of side g * k, where lCl= g, indexed by G u e.

Nowdefine F(x,x-.i) = {x*s.,x*t.} forall 1s i.2k,
and x e G. Leave all other cells f(x,y), with . (*,I) , G2, empty.

Now suppose d is an element of even order e in G. Define a
graph Gd, having vertex set G, joining two vertices x and y
by an edge if and only if (x-y) = t4. The graph Ga rhus defined is
a disjoint unlon of cycles of even length e, and thus we may parEition
E = El' u 82, where E is rhe edge ser of Gd, and E1rE2 ;r;-;"r-
fect matchings (i.e. go has a^ 1-factorizatlon). Thus, for 1 < I s k,
we obtain matchings E1 and E: wirh ,, = Urt u U:,, where Ei is
the edge set of Gtnr-Ar). Now defi-ne, for 1 < I < k and x e G

F(x, (-r2i-1)) C tr,*p. ,x*e. ) if
I'I
Lurr.r, orherwls,

{:erp.r:crqr} e f}

a
.)
l-

e
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r(x, (-,2i) )

2Similarly, for 1 < i < k, obtain matchings D and D frou
and define

!-t**r.,x*qi] ir 1x+pi,**qi] . r?
I

I empty, otherwise
L

F((-,2i),x) = fj"*i'**qi] 'f {:rrp!'x+qi} t 
'1

(-.nntv, otherwise

({x+pl,x+qi} if {x+pi,x+ql} e o
F((-,2i=1),*) = I

) "rpty, otherwiseL

I
i l-

G ( :)'
l--q1P

2

Lastly leaye cells (x,y) of F empty, where (x,y) , Q2.

Note that, since A is injective, at most one ordered pair occurs

in each cell of F.

LEI'{MA 3. 3 Suppose

an {it+r: xe G}

(S,C,R,A) is a ?k-IFSA in
u {a}-frctne of type lr7/hztJ .

l-

G\4. Then FSCno 40

Proof. Denote F = FSCne. f'or any x e G, ro\,r x of F contaj-ns

precisely the symbols (c\(H+x)) u ft by property (1), and the way F

was constructed. In row (-,i) Ehe symbols which occur are those in
G, since the ,rt" are all perfect atchings. Similarly the correct
symbols occur in the coluuns of I'.

Which pairs occur in F? First, no pair fo - 1r-J occurs, and no

siippose x-y = ri-ti

pair {x,y} occurs if. x and y are in the same coset of H. Secondly,

an -i occurs wi-th each x e G, since the equation u. * y = x has

a unique solution yr and then {-r,x} = tr'(yry-bi).

Now consider a pair {*ry} with xry in distinct cosets of H.

Exactly one of the following holds, by property (2): x-y = t{".-tr),
+. +x-y = -(nr-sr), or x-y = -tni-ti), for some i. in the first case,

(without loss of generality). Then

F(z,z'a.) = {X,yl, where z = x - s..'l-1
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Ifx-y=p ei, then {x,y} = f(2,(*,2i-d)) where z - x-pi, and1

f_U- I

For a given i,
havlng rhe edges:

+L(4) {-ar} u {-bO}: c\r.
(5) If pt - el has order
order, 2flm' a'tth m I ocld,

ns a skew IFSA).

x e G, and Q2, are empty.

F, since the range of A

SCRA

ll

will be skew. We have

odd, then pi - qi Lns

(ae refer to such an fFSA

E1
l-

if {x,y} e

v] . f?-1x,if {

A :;imil itr arllum()nt applies to the thir:d case.

Finally the subsquares (u+*)2, for
This ir; seen easily by the definition of
is G\lt. This completes the proof.

It is natural to ask when the array f,

tlre following.

LF.I'otA 3.4 Suppose (S,C,R,A) is a 2k _ IFSA in G\.ry. Then the
fnane F : FSCRA can be rnade skew prouided the follouing ertra cond"i_
tions are sat'tsfied:

Znn Dtth m

fot,7<i<k

Ptoof. The condition (4) is the same as the one which ensures skevmess
of a frarn" ISA constructed frorn a starter and skew adder. Thus we

check only whether the last 2k rows of F are skew with respect to
the last .2k columns of F. This ls where we use condition (g).
We want to know if for 1 < i < k, n|,u?,o| and D1 can-be consrrucred
so that {rFp.,x+qr} . r} if and oory ii ix+pi,x+qi, . ,1. Denore
di=pi-ei,.i=pi.-qi.

construct a graph S, on vert.ex set G x {1r2},
*1y1 iff *-y = t6-
*zY2 iff *-v = t"i
*1*2 for all x e G.

Thus the edges *lyl yield a subgraph isouorphic to the edge graph of
tU, (vertex *1 corresponds to edge pi * *, g, + x), and the edges

*ZyZ yield the edge graph G...

ut



We show that S is bipartite. Suppose S has a cycle C of
length rtrrnr odd.. This yields an equation kd. + [e. - 0, with
k + l, odd. Suppose without Loss of generality that k ls odd and g"

is even. ,"trtr*I.l, tlT where t is rhe (even) order of d, and
ei, fo obtain lt= = O, a contradition.

Thus we mey properly 2_colour the vertices v
abipartition V=VluyZ,

Let * = V, n (cx{k}), for !,,k = L,Z. Then

vtr yierds ;i, ;l yields E?, and v1 yields D?

completes the proof.

of S, obtaining

1yields Ei,
as desired. This

I

vl

Next, we describe a constructlon for ITSAs.
are required.

first, soue definitions

Let 51 = {{s.,t.}} Ue a frame starter in G\H, and let At be
an adder. A prOjectinq set of size u is a set p = {{p.,q.}: 1 s i <m}

of unordered pairs of elements of G\H, which satisfies:
(1) n, f ni I lj f s, for all i,i', j,j'
(2). l{pi,qr} n {s.,.j}l s 1 for arl l,j,
(3) ith.-cr) ) u {t(r,r+a, (rr)-rr-a, (cr) ) }=

{t(u.-t.): l{r.,t.} n {p.,qr}'l = f for some i}
G) rhe differences pi - 9i and pi + At(nr) - t, * Ar(or) all
have even order.

If the adder At is skew, a projecting set p is sald to be skeu
provided

(5) there exists a bijection cr,:

that if pi = {i has order 2nm

aa(cfi) has order 2tr', with mr

qL*Artri) ].

Given a projecting set p

FirsE, ler Jf = {j "j . {pr,ei} for some i, 1 s i < n},
for some i, 1 s i < nl. Define (S,C,RrA) by.1, = {j: t. c {pi,qil

{{s.,t.}: j I I
JJ

P * {{n.+Ar(nr), ei*At(crr) }} such

with m odd, rhen r:i + nr(nil - oi -
odd, where ct(pi,qi) = {pl+Ar(pi),

of size n we will define a 2n-IFSA.

S I
C=P,R={q(fr,tr),

u Jr) u {{s.}:
{lr,tr} e P},

j e J^] u {{t.}:LJ
and define A =

j e Jr),
At
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LEMMA 3.5 ff Sl is ct frane stav,ter tn G\11, 41 is an adder,, and P

is a projectinq set of size n, then (S,C,R,A), defined aboue, [s a

hL-IFSA. If P is :;kea, then by Labelling ,? : {{Oi.,qi}} uhere

{pi,qi} = cr(pi,ql, (S,C,R,A) 'i.s skeu.

Proo-l-, The verif ications are r:outine.

Suppose P and Q are projecting sets for a frame starter S

and adder: A. l.le say that P and Q are disjoint provided P n Q = 0

and P u Q is a projecting set.

The above construction for IFSAs is very flexible when used in
conjunction with a multiplicarion construction for frame starEers and

adders, which we now describe. This constructlon has been used by

Anderson and Gross tI].

Let G be an additive abelian group. A strong ortlnmorphism is a

permutation o of G suchthat o*I and o-I areboEhpermuta-
tions of G, where I is the identity permufation. Thus

{o(x) +x: xe G} = {o(x) - x: xe G} =G. Strongorthomorphisms are

known to exist in rnany groups (see [ 1], for example) . We have the
following construction. Suppose S is a frame starter in G\H, and

A is an adder with S = {{sr,t.}}. Let o be a strong orrhomorphi.sm

in an abelian group K. Define So = {{ (srrx), (tr,o(x)) }:
x e K). Ao((sr,x),(ri,o(x))) = (A(sa,11), -(x+o(x))), for
eS and xeK.

{sr,tr} e A,

all {s..t.}1- r-

G\H and o is a permutation.
(ri+ai,-x)] = (c\tt) * r. Ao

and A is an adder. it("r-rr

LEMI'1A 3.6 So and Ao, as described aboue, dxe a frune startet, and

adder in (G x K)\(H , K). Futther,, if A is skeu" then so is Ao.

Pnoof. {Gr,x),(ti,o(-x))} = (G\H) x K si.nce S is a fra.me starter in
Since A is an adder {(sr*ar-o(x)),

is an adder since o + I ls a peruutation

, x- o(.x))) = (C\tt) * X sinee S ls a

frame starter and o - I is a permutat.ion.

Now suppose A is skew. Thus {1". } = G\H. Then we have
+

{f(..,-(o(x)+x);1 = (c\H) " K, so Ao is also skew. This compleres

the proof. n

u3
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By ltself, the above construction does not yield any new frames.
Construction 2.1 enabled us totroultiply,f franes by any integer other
than 2 or 6, and there is no strong orthomorphisru in a group of
order 2 or 6. Our interest lies j.n constructing ITSAs by alterlng
starEers and adders by means of projectlng sets. Strong orthomorphisrus
in the addttlve groups of GTOn), n 2 2, are very useful in thls
context "

rn cl'(2n), n ) 2, ler
GI'(2n) defined by oo(x) = ox

morphisursj-nce olI.

cr be priuitive. The oap oo, GI.(2n) ->

is easil-y seen to be a strong ortho-

LEMI'{A 3. 7

in C\fl,

Suppose S -- {{sr,t.}} ts a fnone stayter,, and A an adder
Lwuingaprojecting set p= {{pr,qO}: 1 <i<m}. Asswne

characteristic 2. Define J and J as before. Then1 2

T'roof. The projecting sets
distinct values of x.

{p;} : [s, ] qncl {qr} c {t r}. Let r be any elernent of GF(Zn ),D_J"L_J
uhere fl, 2, and. Let o be a strong orthomorphism. Define
Q* = {{(pO,r),(qi,o(r))}: 1 s i < m}. Then Q_ is a projecting set
for the starter sq and ad.d.er Aa . If p i" Zknr, then so is A_.

Ptoof. The construction works since the additive group of Gf(2n) tras

{ (nr-ci,x-o(x) ) } u { (nr+41p. 1-Ci-A(qi),o (x)-x) } = { (s. -t.,x-o (x) ) :

j e J, u Jr) 
r J J

A1so, the order of (y,x-o(x)) e G * Cl,(2n) equals the order of
y € G provided y has even order. Thus skewness is preserved. I
COROLIJ,RY 3.8 Suppose there etcists a (skeu) pz,ojecting set of size m

for a frcme starter S arul a (skea) adder A in G\H. Then, fot,
1 < !, t 2't, fl > 2, tLLere erists a (skeu) projecting set of size Inl

for the fncvne stay,ter so ard. ndcler Ao in (G*cF(zn) )\(HxGF(zn) ).

Qx constructed above are disjoint, for
U

Iie may prove a result under weaker hypotheses than Lenma 3.1.3.
Deflne a pz,e-projecttng set of size u to be a set p = {{pi,gf}: lsiSur}
satisfyi-ng all the conditi.ons to be a projecti.ng set exeept possibly
(4). That is, we do not require that alL the differences pi _ gt
and Pi + A(pr) - qi - A(qi) have even order. A pre-projecring ser p-
is skeu provided it sati.sfles eonditioos (5), aIlowing, of course, that
n=0.
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Ltrl"OIA 3.9 Suppose S is fnatne starter, A is an ad.der, and p

a pye-pyojecting set in C\H. Let x be any non-zero element of
GF(zn), uhere n > 2. Then Q*, d.efinecl as in Lermna 5.1.5, ts a
ptojecting r;t:t fot the s'Lctrtcr so arul Ao in (CxCp(2n))\(H*GF(Zn)),

If P 'Ls skeu, t-hen so i:; t)r.

Ptoof. (lr-tr,x-o(x)), {pr'qt}for eP and

has even order, so Qx is a projecting set.

COROLLARY 3.10 Suppo:;e theye erists a (skeu) pre-projecting set of size
m for a frone statter ,S and add.er A in G\,?. ?hen for 7 < 9, . Zn-|,
fl > 2, there erists a (skeu) projecting set of size Lrn for the frone
stanter so orLd ad.d.er Ao in (GrGF(zn))\(Hxcp12n11.

Ptoof. The proof is that of Corollary 3.Brmutatis mutandis.

4. Room sqtares from frctnes,

Suppose G is an {S,,...,S_}-frame, and let T. c S. for 1S1<n.n r n n ' i- i
Denote S = U S= and T = u T_.. The subarray H of G determtnedl--1
by the cetrslii T x T i" "1i* io uu 6 {T1,...,T,}-subftane Lf. H is

" {Tr,...,T-}-frame in its ovm right. If G is skew, it is said toIN
be a skea.:;ubframe ^rovided 1t is ltself a skew frame.

The following result descrlbes a general method for constructlng
Room squares from frames,

x # 0, x e ctr'(2n),

Also, skeumess is presenred.D

H lsa
a20.

with a sub-

CONSTRUCTION 4.1 Suppose G is an {S1, . . . , Srr}-frame, and

{Tlr...rTrr}-subframe, where S = u S. and T = u T.. Let
Suppose the following Room squares exi-st:
(1) for lsi-<n, aRoomsquare Ri ofside lsrl+u
square of side lrrl + .,
(Zi A Room square R, of side

n
i

i-=1
lri I

+a.

n
Then a Room square of side I

and R. for l<i<n and i=i;1i -- -
Room square F is skew.

lsrl + " exlsts. Furrher, tf G,

are skew, then the resulting

Ptoof. Let 0 n S = O; lOl = d, and ler
ttraL, for 1 S i < n, Ri has symbol set

- y' S u 0. We may suppose

S. u 0 u{-}, and ls

us

I



standardized wlth respect to

Define f as follows;

F(x,y) =

G(x,y) lf
nr(x,l) if
R-(x,y) lf

@

(-x,y) e S

(x, y) €

(*, y) €

,TL,-\ uSli=I 1
7

(srun) -\ 6r
2

UCI)
1

(
n
U

The above three cases are mutual-Iy exclusive and cover all possibilities.
It is irnroediate that the array f is a Room square, and that sker,rness

is preserved. n

Remrrks:

(1) It is clear, from the definltion of F, that the sub{rame H of
G need not exist. Also, the subsquares of side" lTil +. need not
exist. (ttrat is, if lfrl + a = 3 or 5, Ri can be taken to be the
relevant incomplete Room square (should it exist)).

(2) The Room square I will have various subsquares, depending on how

the construction 1s executed. We witl consider the existence of sub-
squares in seyeral of the corollaries which follow.

We now describe two methods for producing frames with subframes.

a=
t.un)2

11

COROLLARY 4.2 fn C'onstruction 2.2, there erists a subfrune

for euery block A e A.

COROLLARY 4.3 fn Constyaction 2.7, if L and M

sub-LLS on synboL set y, then FI'M contains an

subfrmne.

Fa of F,

contain a pair of
{SrrY, ...,}r*Y}-

COROLLARY 4.4 (The Singular direcr producr) (ttOl). Suppose ther.e
exist:

,#

Remark:

If L and .M are "missing" the sub-OLS, then FLM is missing
the subframe. This can be useful when lYl = 2 or 6.

We are now able fo derive several vrell-knor"m constTuctions for
Room squares as corollaries Lo Construction 4.1.



(1) a (skeu) Room squctre ctf side u

(2) a (skeu) Room square of s'tde 7), contatning a (skeu) subsquare of
side L), uith u-u/6.

Then there exis'Ls a (skea) Roorn square of stde u(u*u)+u, containing
(skea) subsquares of sides u,u and a,

Proof. Start with G, a frame of type lu on symbol set

- u {lr...,u}. Multip1y by a pair of OLS, L and U, of side v - w

having symbol set {1,... rv-w} (Construction 2.1-). Final1y, apply

Construction 3.2.1, with T = 0r €t = wr to obtain tr', a Room square

of side u(v-w)+w.

R_ is a subsquare of side rd, and for any i, Ri is a subsquare
of side v. We may ensure the existence of s subsquare of side u by
stipulating that L(1,1) = M(1,1) = 1. Then the subarray indexed by
{1,...,u} " {1} ls a subsqLrare of side u. I

COROLLARY 4.5 (the Singular indirect product) (t8l). Suppose there
exist:
(1) a (skeu) Room square of side u

(2) a(skeu) Room square of side 1), containtng (or mtssing) a (skeu)

subsquare of side D

(3) a pair of )LS of side D-c containing (or missing) a pair of sub-

)LS of si.de u-a (uhey,e 0 < a < u)
(4) a (skea) Room square of side u(u-d+a,

Then there e*tsts a (skea) Room square of side u(u-a)+a" containinq
(skeu) subsquanes of sides u and u(u-a)+a.

Proof. SLart with G, a frame of type lu and then rnultlply
by a pair of OLS of order v-a containlng (or mlssing) a pair of sub-

OLS of orcler w-a (2.1). The resulting fraroe of type (v-a)t has a

subframe (possibly missing) of type (r-.)t. Now apply Constructi.on

4.L. The resul-ting Room square of side u(v-a)+a has a subsquare of
side u(w-a)+a (Ro,), and a subsquare of side u, as ln Corollary 4.4. D
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A useful modification of the aboye two corollaries is to start
with a frame of type t', with t > 1, instead of a Room square of
side u. The fol-lowing is obtained.

COItOLI-r\ltY 4.(r (l'lre fr;rnrc singular direct product) . Suppose there erist:
( 1) a( skeu) frmne of ttlpe tu
(2) a (skeu) Room square il contairting a (skeu) subsquare of sirLe u
(3,) a pain o{ )LS oJ' orJer '+
l|lLen ct (:;ken) floom squat,et of si.de u(u-u)+u c.xists, containLng (skeu)
::ub:;quares of :,;icles u dnd a,

Proof. Ttre proof is that of Corollary 4.4, mutatis mutandis. Notice
that here we do not have a subsquare of side u. n

COROLLARY 4.7 (The frame singular indirect producr) (J21) . Suppose
there exist:
(1 ) a (skeu) frune of type tu
(2) a (skeu) Room square of side u conto.ining (oy, missing) a (skea)
subsquare of side ?)

(3) a pair of OLS of order '+ containing or. missing a pair of sub-
oLS of ond.et, 9+ (aherc 0 < a < u)'t
(4) a (skeu) Room square of side ufu-a)+a,

Then a (skea) Room square of side u(u-a)+a eri.sts, eontaining a
.(skeu) subsqunre of si.de u(u-d+a,

Ptoof. The proof is that of Corollary 4.5, mutatis mutandis. I
We derive two further corollaries to ConsEruction 4.1.

COROLLARY 4.8 Suppose there erists a(skeu) frune of type ,r'r...rO'O,
and suppose there eststs a (skea) Room square of sid.e tin, containing
a (skeu) subsquare of side a,. for, 7 s i s k. Then there etists a
(skeu) Room squane of sid.e .f -rOr, * o, containtng (skeu) subsquares

t=1
of side t.ta, fon 1<i<k, and.sid.e q.

u
Srr)-frame of type al 1uk...rk ,

Pnoof. Ler G, be an
K(where n= )"-.).

1=1 1

4.L. R., 1(13n,

{sr,...,
Define T

and R
@

i = 0, I s i ( n and apply Construction

are subsquares of the resulting square. I
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COROLLARY 4.9 Let a > 0. Sul,pose there exists a (skea) frane oft u2 u7.
t,Jry t-ltZ ".-.blr'', ancl, for' 2 < i < k, a (skea) Roorn square of
s'Lclc t. * ct c:ctntai.n.t.rtg (or m.i.sstrLg) a (skeu) subsquare of sid.e a.
'l'LLen tlLt:r,e erists ct (:.;kea) J'nrtnr.: pf Llyte { t ,+a)1 1D alutre

/t
tt : \' t,.u.. Ituy,LlLt,tr,, 't.J' o (t;ki ts) Iloom sque)ae of sifle 'L1+d exists,

tLten o (t;keu) Iloorn squarc: of :;ide tJ n .|.^tOui * o ex.tst:;, containing
L:Z

a (skeu) stiltsquare of :;i.de l;J + a.

This is a slight extension of Construction 4.1. Let

1,...,Sn) frame of typc ,:rr"'...ru'u, wherc lrrl

Deflne Ti=Q, 15i,sn.

Then, proceed as in Constructi-on 3.2.1, but define

Proof.

an {s
Gbe

= tl, and

k
r + ) ,r. = n.

:=z r

fcr",vl if (*,v) c s2\

f*r,*,r, ir (*,y). (si

n
uS

i=1
UCI) 

2

2

1tr'(x, y )

a2 2<i<n.

It may be checked that F is the desired frame. Now suppose further
that a (skew) Room square of side tr*a exists. Apply Corollary 4.8
with a = 0, noting that a (skew) Room square of sj-de one exists. I

5. Appltcations

In [15], a short proof is given that a skew Room square exists for
all odd sides exceeding five. The proof depends heavily on the following
frames.

LEI"IMA 5.1 ?here erist skea frames of type 44, 4421, 45, and tr4ol .

Ptoof: It may be checked Ehat S and A, given below, are a
starter and skew adder in (24 * z?\i(0,0),(0,2), (2,0), (2,2) j.

starter 32,LL 30,31 21r33 02,13 10,23 12,01

adder 01 23 30 32 11 31

S and A give rise to a skew frame of type 44, drawn in Figure 5.1

below (note: chis frame \^/as presented in [13], but the picture given

there is incorrect). We have three disjoint projecting sets
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Pl,P2, and Pr: tf = {31,32}, V, = {13,21}, f, = {01,t0} . They are

eaclr skew, since all differences involved have order 4. By Lemmata

3.5, 3,3, and 3.4, the desired skew frames result.

Tlie skew f.ranre of typc: t4Zl is given in Figure 5.2 below. n

As we1l, a skew Room square of side 69 is required. We give a
more general result.

LEl,,lMA5.3 Fctr I<9. s3, theteisaskeuJ'rameof type LZ5 49.L

['r,oof : Tiri: f ollowing is a starter and skew adder in 2Z15\{0,5,10};

starter L,2 9,11 3,6 8,12 L3,4 7rL4

Tlien

2. 10

adder: 1 2 6 1l J 7

P = { {2,3), {4,7} } ts a skew pre-projecring ser. Apply Corollary
wirh m=2,n=2. n

COROLLARY 5.4 There eris'ts a skeu Room square of side 69
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Fiqure 5. I A skew frame of type 4

00 0? 2A 22 0t 03 21 23 t0 12 30 32il 13 3t 33

t0
23

4

00

02

20

?2

0l

03

21

23

l0

12

30

32

II

l3

3'l

33

00

lt
32

30
3I

)1
??

03
l3

0r
12

t3
30

32
33

0
I

I
I

23
3t

03
l0

12
21

t0
il 3l

12
0t
t3

t1LJ

33
30
0:1

21

32

I
I

2
3

33
l0

21
3l

03
I

32
0 I

23
30

12
33

3t
32

0t

02
l3

il
20

22
30

00
t0

l0
3t

')')

30
00
ll

l3
?2

02
12

20
32

I
?

32
13

3t
00

2?
1a
JJ

02
t0

20
30

I
I

3
0

30
lt 33

02
20
3t

2? 00
12

3l
03

l3
23

20
33

il
22

l0

21

02
00
0l

ll
21

33
0t

22
3l

t3
20

23
00

20
21

02
03

I
23

33
03

3t
02

00
t3

0t
22

3l
0 I

t3
2)

33
00

a2
lr 22

?3
03
20

21
30

12
23

32
00

l0
20

22
03

0t
02

1t

23
32

l0
21

12
22

30
02

20
C I

03
00

JL
O3

0t
l0

12
20

30
00

21
22

02
23

30
0l

03
12

32
02

t0
22

23
20

00
21
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Fi qu 5.2 As frame f 4

00 a2 20 22 0t 03 21 23 t0 12 30 32 ]t 13 3t 33 -t

I

00

02

2A

22

0t

03

21

?3

IC

12

30

32

tt

l3

I

33

I

2

lt
2

30

I

21

33
03
t3

0l
12

l0
23

3l
32

I3
*2

I

0t
ll

23
3t

03
l0

12
21

33
30

ln

I

3l

?

0t
t3

23
12

30
03

21
32

n
12

00

1'

I

33

c

21

3t
03
lltt

32
0t

)1

30
13
l0

12

?

3l

I

0?
l3
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Proof: Start with the skew frame of type tZ5g1, constructed above.
Now apply Corollary 4.8 with a = 1. Skew Room squares of sides
9 and 13 exist, so one of side 69 may be construcred. u

The remainder of this sectiori is concerned with subsquares in Room
squares. I^le give a numerical example to illustrate how the methods of
this paper can be applied to produce Room squares with subsquares: r^/e

construct skew Room squares of side 123 with various skew subsquares.
It. is worth noting that a skew Room square of side 123 was one of the

'1asL to be constructed (see [14]), and until quite recently, there was
no known example of any Room square of side 123 containing a subsquare
of side exceeding 1.

LEMMA 5.5 0 < g . 21, there erLsts a skeu frane of type 813 29"
I

Pt oof: Consider the following starter and skew adder over Ztl

starter 2,8 12,3 6,11 10,9 5,7 L,4

adder 7 9 B 1 11 13

It is easy to verify that we have the following three disjoint skew
pre-projecting sets: tr_ = {8,12} , p2 = {11,10}, and p3 = { 7 ,I} ,
For each of Pl,P2, and n3 (independently) r sr€ may apply Corollary
3.10 with m = l, D = 3. The result is obtained.

COltOLLAIty 5.6 ?here t:: a skea Room square of side 123 hauing skea
suttsqu-at'es of s'tdes 9 attcl 19

Proof: With g" = 7 in Lemma 5,5, we obtain a skew frame of type
gl3tgl . Apply Corollary 4.8 with a = 1, f i1ling in the skernr

subsquares of side 9 and 19. u

LEMMA 5.7 'I,hr:re exists ct skeu Room :;quare of side 123
subsquares of sides 11 arul 29.

tnoi.ng

Proof: Ler (x,G,A) be a TD(5,7). Let 6={G.:1<i<5},
l-let *l,*2,*3 be three points in % . Define w: X -* {O,2,4} Uy

and

2ai



if x ( Gf u G2 u G3 u G4 u{x'xr},
w(x) if *=*3

if x c Cr\{x,x,xr}

Apply Construction 2.2 , nrakinpl use of skew Frames of type 44, 442L,
and 1n5 (Lenrma 5.1). A skew Frame of type Zg4 tOl j.s constructed.
Now.rpply Corollar:y 4.8 with a = I, filling in the skew subsquares of
sides 11 and 29 . u

In the remainder of this section we consider Room squares with
"lilrge" subsquares.

4

2

n

LEI,IMA 5. B Suppose

Irrl - Irzl= ...-lr.,l.
F isan

Let S=

+ Irzl . lsl.
since I s 

I

{s',. .. ,u.} - frane at)th
n
uS

i=1 t_
rhen :lsrl + lsrl

+ I s lsl.

lsl,

and, if lsl is odd, then :lsrl + lsrl

Ptoof: Let s be any element of s2.

and

The syrnbol s oceurs lt,- |

times in the columns indexed by St
indexed by Sl. A1so, s occurs

Itrl times in the rows

Itfl times further, once with each
element of Sl. Since s occurs a total of lsl _ ItZl rimes in F,

:lsrlwe obtai.n Now suppose IS I is octd. Then 1S

ls.l
' l-'

must be even.

l

ls.l
' l-'

+ lsrl

then

odd, 1<i<n, rnus 3lSrl
must be even, and the result follows.

COROLLARY 5 .9 (t"Iullin and Collens t9I )
If a Room squere of stde s has a subsquane of sid.e t,

s > 3t + 2.

Proof: A Room square of side
rise to a frame F of type all
yields 3t + 2 < s. I

with a subsquare of side t gives
. Slnce s is odd, Leruna 5.8

S

s-t

I.Ie sha1l construct infinite classes of frames of type ItL'2
uZ

2v



where

frames.

t> 3

3r+2

3E1 + 
"2 

= t 
-*u2tz. 

We refer Eo such frames as tr-marirm,m

Using tr-maximum frames, we can show that for aII positive
congruent to 3 modulo 8, there exisEs a Room square of side
having a subsquare of side t.

tt I

LEMMA 5.10 Suppose that there erists ct t r-maxirrum fnune of type
1

u2

2
Let c > 0 , and suppose t'h"at there erists a Room square of

Proof: Apply Corollary 4.9 wirh a and k=2.

lde , (tr-\*g containing (or missing) a subsquare of sid.e :f .
2

Then there erists a Room squarle of side 3t + c containing a subsqu.ane

of side r, fot, r = r *-1{:t-tl

Ez-"
=-

2
l

Thus it is deslrable to construct ta-maximum frames. We have such
frames already: a frame of type 6L4a was produced in Lemma 3.3.1.,
and 3.6+ 4= 22= 6+ 4.4. Also, a frame of type 4n4 exisrs for
all n ) 1 by Theorem 2.4.4, and 4.4n = 3,4n + 4n

LEI'{I'IA 5. 11 rf n 2 I , a frame of type 6.,1 4r,4 ex,tsts,

Ptoof: For n = 1, the frame is thaE one described above. Thus if
n > 1, n * 2 or 6r w€ may obtain the desired frame by multiplication
by Latin squares (Construction 2.1).

lior o = 2r w€ use the "doubling'r construction, ConsEructilon 2.4.
The fr:ame of type el+4 is skew (see Lemma 5.1), so we need only
construct a partitioned pair of incomplete OLS, having a partition of
t)?e 6ltr4. lll-ris is clone using a singular direcE product construction
for Latin squarcs. (Nore rhar 22 = 5(6-2)+2).

Ilorton [7] has consrructed ttre following six by six array A

(ceI1s contain order:ed pairs):

255



JJ 44 qr: 66

64 35 46 53

34 65 16

51

52 23 4L

q) 36 13 62 z.+

56 43 25 61 L4 32

63 54 42 26 31 15

Consider A t.o be partitioned:

I

A = ++ where R is two by four, C is four by two, andCIT
T is four by four:. (A can be thought of a pair of incomplete OLS

of order 6 misslng a pair of sub-OLS of order Z). Let N be the
super-posi,tion of a pair of OLS of order 4 on symbol set
{3,4,5,6}. For 1 < i, j ( 5, define arj (respectively *rj, rrj

by replacing a cel.l containing (a,b) by (a.,b.).rJ

)

define T.. by replacing a cell containing (a,b)

a,b f 7,2, by (a,bj) if a = I or Z, and by

Consider the array

+ 0 54
*r*z

P=

C
42

N T N13 42 2L

For

bv (a

(af b)

1 < i, j 5 5,

,,b.) ifr_J
if b = 1 or 2.

R *:s Rz:

32

t4

N
4L

23

+

N

N

T

N
34

0 0 N
45

N
24

N
53

C
35 43

N 0 51
N T

35

s4
C N

25 s4
T 0

N
L2

C
23 52

N N
31

N
15 0

256
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It may be verified that l' is a partirioned pair of incomplete
11

OLS of typcr 6t4". Thus construction 2.4 yields the frame of type

tzLg4

Finally for n = 6, start with the frame of type tZlA4 and

apply Construcrion 2.1, multiplying by a pair of OLS of side 3.

We can now c.onstruct an infinite family of Room squares with large
subsquares. We need something to start with. The following was obEained

by Dinitz t3l.

LEtlI'lA 5.12 There exists an tnconrplete Room square of side 1.1

missing a subsquane of stde 3:

This array is presented in Figure 5.3 below.

48 i7 6x 59

69 5X 38 47

39 4x 57 68

67 8x ol 04 15 29

58 79 ala 03 2x 16

9X 7B 06 o! 24 13

0s 7x B9 oI L4 23

46 3X 25 L9 oJ 08

35 49 1X 26 o$ o7

34 s6 L7 2B 0x ot

2l 18 09 36 45 o[

Figure 5.3

An incomplete Room square of side 11 urlssing a subsquare of
side 3.

l
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COROLLARY 5.13 For n 2 0 there erLsts:

( I ) a Roorn square of side 3ur, * 2 uith a subsquare of sicle
Dlrcte ur., = 12.3n-1 , and.

,n,

(2) a Room square of side 3v

ul'Lt:t,e v = 16. 3n-l .n

,, * 2 wtth a subsqu.ctre of side v..,

l:'r'ctoJ': By induction on n. First we prove (1). The incomplete
Iloom square of l,euna 5 . 

.l.3, togecher with thc f rane of type 48 , yields
a Room Square of side 35 with a subsquare of side 1I (put
t, = t, = B, .2 = 3, and c = 2. in Lenuna 5.10). This establishes the.
truth of the proposition for n = 0. Assume ttre proposition is true
for n =.Q. - 1> 0. A frame of rype (24.3L)4 exists. Apply Lemma

5.I0 vrith tL = t2 = 24.30-1, ,2 = 3, and c = 2. Since
,2-.

2 = ,[_1, and we have a Room square of side 3un_, * 2

subsquare of side rt_l, this yields a Room square of sicle
with a subsquare of side t for

,2-. . zt*. zL-r-z*-z--

with a

3r+2

t= t + = 24'3 .s,-1
1

9"= L2'3 -1=u
L

Thus the result is shown by induction.

(2) is proven similarly, using the frames of type 4.,4 6r,1

We will now prove that all u = 3 modulo g, u > 3, there exists
a Room square of side 3u * 2 with a subsquare of side u. This
generalizes (1) of Coro1lary 5.13. It is first necessary to construct
some uore tr-maximum frames.

LEMMA 5.14 For q = L modulo 4 a prine pouer, thete erists a strong
frame starter in (cF(q) , Z2)\({0} , O2) , hauing a p?e-p?ojecting set
of size +

2

25t
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Pt'oot': We use the f ollowinp; strong f rame starter. If rri e GF(q)
is primitive and Q = {r2f : 0 < i < t-1} wher:e q = 4t + 1, then
S = {{(x,0), (orx,0)}, {(-x,0), (-urx,l)}, {(-urx,0), (-r2*,1)},
{(r,rx,1), (r2*,1)i : x e Q} is a srrong frame starter (see t4]). Then
cief ine p = ({(r^rx,0), (-*,0) }, {(-t^,2x,1), (ox,l) } : x € Q}. The

dif ferences ar.tsing f rorn t(pr-qi) ancl +(Ur+A1p.y - (lr+A,1Oi))), where

{pi,qi} e P, are those in {(x(r,rl-I),0), (xw(w-rl),0), (x(r,r+l),1),

(xrr(tr+l)11): x e Q]. The other verications are trivlal, so

pre-projecting set of size = 2t.

Notice that if 9, = 2n were allowed in Corollary 3,10, we could
obtain a projecting set of size 2t-1 iO-1) for a frame sEarter-adder
in (GF(q) ,22 , cF(2n))\({0} , zz GF(2n)) for q = r moduto 4 a

prime power and n > 2.

This would give rise to a tl-oaxirum frame of type

Zt(q-r) , ,z = 2'*1, and .2 = 9. (Thus 3tI + 12

:'Zn1q-f; + 2t+I = aI * u2t2. Even though we cannot use Corollary 3.10

to construct this framer w€ can obtain it by other methods.

First, a definition. For integer .{, > 3, let CU denofe the graph

which is a cycle of length 9".

For a positive inEeger n, let aU[*n,rr] be the graph constructed
by replacing every vertex x of Cl, by n vertlces *1,. ..,Xn, and

then constructing all edges *iyj, I < i, j s n, whenever )ry i-s an

edge of CL. We define . C&[Kr.,,rrJ-froom Rectcngle be an l,n by 2n

array A in which each cel1 either is empty of contains an edge of
tu [*rr,rr] ' such that:

(f) the filled cells of each row of A form a one-factor of some

K in CtK Ior 0 [' n,n'

(2) the filled cells of each column of A form a one-factor of
CI'K IJL' n,n'

(3) each edge of cr. [*o,r,] occurs in precisely one cell of A

-q:-l
2

P isa

!

where
,2

1trt2

t I
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It has been deEermi.ned precisely when

exist. (see Hartrnan and Stlnson t6l).
C^

v"
lK ]- Room rectangles

IrD

LEI"I}{A 5.15 Let l, > 3 and n > 1 be integers, Then a

7-Room rectangle erists i.f dnd only r)f tn is euen.c
v"

IK" nrn

LEt'll,IA 5.16 Suppose ,S is a fratne statter in G\A is an adder,

aru1 P is a pre-projecting set of stze m. Denote lCl = g and

ldl = lr. Let n be any euen positiue integer other tVnn tuo or sir.
Then a frame of type zr*1 nnT/h er;ists,

Proof: "Project" P to obtain a quadruple (S,CrRrA), which fails
to be a II'SA only in that differences of pairs of elements ln R and

C may have odd order. Construct an array I', from S and A in the
usual way. Let L hnd t"I be a pair of OLS on symbol set
Io = {1,...,n}, and denote F = F,LM .

Now consider a pair {pr,ea} e C, 1 < i < m. Corresponding to

this pair, we need a gn by 2n array Ci, in which each column is
Latinin GxI, rov/ (g,j), where g€G and 1<j<n,isn'
Latin in {pi*g, gi+B} , Irr, and the unordered pairs occurring in C.

are precisely those {(x,j), (y,j')} with x - y = 1 (pi-qi),
1< j, j' < n.

Suppose such an array Ci exists for 1 < i ( m, and a similar
array Ri eixsts for 1 1 m. Then it is a simple matter to check

that the array G, pictured below, is a frame of the desired type.

F C I cz C
m

*t

empty

o2

R
m

2fi



I

Thus we must only show ttrat the array" Ci and Ri exist,
1 < i < m. Let pi - gi = di, and construct the graph Oi on vertex
set G, joining x and y if and only if x - y = adi. Then Di
is a disjoi.nt union of cycles of length 

"i = 3. For each cycle B

of Di, we have aurt*r.,,r.,J-Itoo* rectangle \ . "Stack', Ehese arrays

\ vertically to obtain the desired array C.. (If necessary, permuEe
the rows of Ci so thar Ehe pairs {(n, + g,J), (1, + g,k)},
1 < j rk S n, I € G, occur in rows {S} x Irr.) Thus we can construct
t"he desired frame. I

LEI"IMA 5.I7 For u = 1 modulo 4 a prLme pouer, there ex.tsts a
frame of type gu q(u-l)l

Pt oof:
u-1*=-f-

Apply Lermra 5.14, and Leurua 5.15 with B = 2un h =.2,

and n=4. l

Next, we wish to derive a result similar to that of Lermra 5.14
for u = 3 modulo 4. I,Ie need another construct.ion.

LEI'II"IA 5.18

adder" and P

and lnl : tr.

For xeG, -€0,
two-by-Ewo array

Suppose S is a frane stayter in G\lU, A i.s a skeu
is a pte-projecttng set of size * , uhere lCl = g
Ihen a frane of type (g-H1zhT/h exists.

Proof: "Project" p Eo obcain (S,C,R,A) as in the proof of Lemma

5.I7. NoEe that here S consists enEirely of singletons. Construct
Ft from S and A, on symbol set G u e, where l0l = +
Ft is skew, and t^re may define f', (ttre "skew mate,,) by
FZ(8f ,82) = Fa(Sr,er) for: all Byg2 e G. Now define an array F, on
symbol set (G u A) * {1,2}, as follows.

and i = 1r2, define Di(x,-y to be the

(x, i)
(*, i)

(x, i)
(-,3-i)

26t



I

Superimpose Ft and F2, and then replace the contents of

eve,:y cel1 (er,Sr) by Di(x,*;, where Fi(Cf ,82) = {x,-} . Thus

is tr "doubling" of Ft (this constructlon enables us to circumvent
the requirement n t 2 of Le;nrna 5.17). Now F can be complered
to a frarne exactly as in Lenuna 5.L7, by making use of the necessary
Roonr rectan611es.

F

EXAI{PLE 5.19 A frame of type z*5 g1. We have a sl,-evr-strong starter
s = {{6,2}, {4,3}, {8,1}, {7,9}} in 2Z10\ {0,5}.

P = {{2,4}, {1,7}} is a skew pre-projecring ser.

frame is exhibited in Figure 5.4

LEMI''IA 5.20 If there erists a skea-strong starter G\{0}, then there
erLsts a skeu-strong frame startey. in (G x CF(4)r\({O}" GF(4)), hauing
a pre-projecting set of stze g - 7, uhey,e lCl = g.

Proof: Let tr- = i{s.,t.}} le [he skew-strong starter in G\i0].
Let o be primirive in Gf(4). Define S = {{("r,x), (ti,ox) }:
x e GF(4) ]. Then S is a skew-strong starter in
(G x GF(4))\({0} , GF(4)). Then defi.ne p = {{(sr,0), (tt,r2)}
{G. , f) , (tr,t) } }. We claim thar P is a pre-projecting ser.

The adder A assoclated with S is A((sr,x), (t.,ox)) =

(-(sr+tr), x*o-rx). Ttrus the dif ferences ari-slng from p and

pi + A(pt) - o, - A(ar), {pi,sr} e P, are rhose in {t("i-ri,r2),

t (s.-t.,0), 1 ("t-ri,o), t ("r-ti,1)) = (cxGF(4))\({0}rcr(a)). I

LEi"lMA 5.21 Fot, u = 3 mod 4 a prime pouer exceeding A, a frane of
type gu afu-l)l ertsts.

Proof: Starting with a skew-strong starter in GF(u) (see lIullin
and Nsneth [11]), apply Lennua 5.2O, and Lemra 5.18 with
B=4u,h=4. I

So, to thls point, we have constructed a large nuuber of tl-
maximum frames.: we have frames of type gu 4(u-t)' for all prime
porders u > 3. We now derive a corollary to the GDD constructlon for
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frames which enables us fo construct tr-naximum frames recursi.vely. We

can then prove a "mulLiplication" theorem.

LEI'{I'{A 5.22 Suppose (X,U is a resoluable PBD, uith patallel
classe.s PL,...,Pr such thar lBl : kt. for aLL B e ?., uhere kt
ate integers, 1. < i s tz. Let t be an integer, and supp?se tLnt for
7 < i < n, there et:it;ts a t r-marimtn frame of ty;te ;i t''i (hence

t, = t (ki-l)). Then ct tr-marirrum frune of type !, {u-l)l tu erLsts.

Proof: Define a GDD (Y, G, A) as follows. Let Q = [-1,...,-.],
Y=XuCl, G= t{x}: x€ X} u i0}, and{= {Bu{-.}: Be P. sB}.

DefineaweightLng u/ by vr(x)=t if xe X,w(-i)=|(tr-f),
1 < i < r.

Now apply Construction 2.2. For a block B e P-, wc require a

r - k-
frame of type ! ttr-fl'a ' , which exisrs by assumprion. The frame

constructed has type .t t" where .O = i (ki-l) = |{"-r).
r
I

i=1
This frame is t -maximum, since

1

f t"-r) * ,. 3

Thus the result is proved.

COROLLARY 5.23

M)LS of order n,

for k: n and m,
.1

frane o!- tApe t1

ttr-Z T (v-1) + tt3

2

I

Let t be an integer. Suppose there ertst
and suppose _ t r-ma.rirrun franes of type il

uhere t, : t (k-1). Then there erLsts a t
trun, uher.) i, : I rrr-tl.

m-7
.kt exlst

,-maxirrum

Proof: By hypothesis there exists a resolvable transversal design
RTD(m,n). Hence we can construct a resolvable PBD(X,B) where

lXl =.,*, an<l B consists of one parallel class of blocks of slze n,
and n parallel classes of blocks of size m. Apply Lemma 3.4.17. I

LEMMA 5.24 For aLL odd u >- 3, a tr-fratne of type Bu q(u-l)l ertsts.
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Pnoof: For u = 3, there exists a frame of type g4 (Theorem 1.4),
which is tr-maximum. For u > 3, u a prine power, the resulE fo1l.ows
by Leuunat a 5 .L7 and 5 .2l-.

Let u have prime power factofization u =

r^rithout loss of generality,
o1 o2 0''

Pl - , p2' , , pk If k = 1, the result j-s shown above.

proceed by induction on k. The number of OLS o 
ok

- ok-r *k 
r or u,.s ot order u/Pk

at least pt_f - , pL - I (Lemma 1.5).

Apply Corollary 5.23 wirh n = u/pn k,R = ,non The inpr.rt

frames exist by lnduction, so a frame of type g'+(u-t)l 
"un 

bu
constructed.

k
7i

i=1

0.1,
Pi ' wnere,

We

l_s

The following is our main resul-L.

THEOREI'{ 5.25 FoyaLL s=J moduloB, s>S thereeristsaRoon
squcttle of side 3s + 2 containing a subsquare of sid.e s.

Proof: Let " = + Then u is odd and ar leasr 3, so a

tr-maximum frame of type g" +(u-t)1 exisrs. Apply Lenma 3.4.2 with
tt = 4(u-1), aZ = B, u2 = u, and c = 2. I^/e have an incomplete Room

squ.rre of side 1l missing a subsquare of side 3, so we obtain a Room

square of side 3L + 2 wj.th a subscluare of side t, for
tl -" R-)t=tl+ -r- =4(u-1)+::y = 4u-1=s,asdesired. E

6. Surrunat y

In this authorrs opinion, o4e of the m:lin unresolvecl problems
concerning Room squares is ttre subsquare problem: for what ordered
pairs (s,t) does there exist a I{oom square of side s containing

. (or missing, if t = 3 or 5) a subsquare of side t? CerEainly s

and t must be odd positive integers, and s > 3t + 2. We have
demon.strated that for t = 3 modulo B, there is a Room square of side
3t + 2 conraining (or missing, if t = 3) a subsquare of side t, so
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equality can be atfained. Also, 1f s > 6t + 9 and t is large enough,
(s and t odd), there is a Room square of side s wiEh a subsquare of
side [.

Thus the following seems reasonable.

CONJECTURE: Ler s ancl t be positive odd integers with
s > 3r + 2. Then there is a Room square of side s containing (or
missing, if E = 3 or 5) a subsquare of side t if and only if
(s,t) I (5,1).
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