SOME CONSTRUCTIONS FOR FRAMES,
Lo & ROOM SQUARES, AND SUBSQUARES

D.R. Stinson

Abstract
Several constructions are given for frames, Room squares,
and subsquares. Among the results obtained are the following:
(1) There is a skew Room square of side 69,
(2) There are skew frames of type 4421 and 4461,

(3) For all s = 3 modulo 8, s > 3, there is a Room
square of side 3s + 2 with a subsquare of side s.

A Room square of side s 1is a square array R of side s, which

satisfies the following:

(1) each cell of R either is empty or contains an unordered pair

of elements (called symbols) chosen from a set S of size s + 1,
(2) each symbol occurs precisely once in each row and each column,

(3) every unordered pair of symbols occurs in a unique cell of R.

Suppose R is a Room square of side S, on symbol set S. A
square t by t subarray of R 1is said to be a Foom subsquare of
side t provided it is itself a Room square (of side T). We shall

refer to a Room subsquare simply as a subsquare.

A Room square R, on symbol set S, is said to be standardized
with respect to the symbol ¢ 3, provided the rows and columns of
R have been permuted (if necessary) so that « occurs in the cells
of R on the main diagonal. Given a standardized Room square, it is
natural to index the rows and columns of R so that {e,x} occurs

in cell (x,x) of R, for every x € S, x # =,
A standardized Room square R (of side s) is said to be a skew
Room square (of side s) provided that, for any pair of cells (4,j)

and (j,i), where i # > precisely one is empty.

A subsquare of a skew Room square R 1is said to be a skew subsquare
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provided it is located symmetrically with respect to the main diagonal

of R.

Let S be a set, and let {Sl,...,Sn} be a partition of S. An
{Sl,...,Sn}—frame is an |S| by |S| array, F, indexed by S,

which satisfies the properties:

(1) every cell either is empty or contains an unordered pair of

symbols of S,

(2) the subarrays Si are empty, for 1 £ i < n (these subarrays

are refereed to as holes),

(3) each symbol of S\Si occurs precisely once in row (or column)
s, where s € Si’
(4) the pairs occurring in F are precisely those {s,t} where
(s,t) € Sz\ 3 S?.
=1 *
F is skew if, for any pair of cells (s,t) and (t,s), where

n
(s,t) € Sz\ U Si, precisely one is empty.
i=1

The type of an {S,,...,S }-frame F will be the multiset
1 n

{Isyl,--., 1S |}. We will say that F has type t,'1 ... t 'k provided

there are uy Sj’s of cardinality ti’ for 1 Sli < k.

If a Room square of side s 1is standardized, with respect to =,
say, and then the contents of the cells containing « are deleted, a
frame of type 1° is constructed. Conversely, one can produce a
Room square of side s from a frame of type 1%, Also, a skew Room
square of side s is equivalent to a skew frame of type 1%,

More generally, a Room square of side s containing a subsquare
of side t gives rise to a frame of type ls-t tl. If t is odd,
t #3 or 5, then these two arrays are equivalent. However, there do
exist frames of type 1S—ttl with t =3 or 5, whereas no Room
square has a subsquare of side 3 or 5. (See Theorem 1.1). We will
refer to a frame of type 1S_ttl as an incomplete Room square (of side

s) missing a subsquare of side t.

We have the following existence results.



THEOREM 1.1 (Mullin and Wallis [12]). There exists a Room square of side

s if and only if s is an odd positve integer other than 3 or 6.

THEOREM 1.2 (Stinson [15]). There exists a skew Room square of side
s if and only if s s an odd positive integer other than 3 or 6.

THEOREM 1.3 (Stinson [14]). If s 2 max{t+644,6t+9}, s,t odd positive
intgers, then there is a frame of type gB=Fyd

THEOREM 1.4 (Dinitz and Stinson [5]). Let ¢ and u be positive
integers. If any of the following conditions hold, then there exists a
frame of type t:

(1) u and t(u-1) is even.

%
Lo

(2) u=35 and ged(t,210) # 1

(3) u=4 and t = 0 modulo 4.

Notice that Theorem 1.3 says nothing if s < 6t. One of the
purposes of this paper is to establish the existence of Room squares
(of side s) with subsquares (of side t) where t is "large'" compared
to s. In this situation one must have s 2 3t + 2 (see section 5);

we establish that equality can be attained infinitely often.

We require several definitions concerning designs. A group-divisible
design (GDD) is a triple (X,G,A), where X 1is a finite set (of points),
G 1is a partition of X into subsets called groups, and A is a set
of subsets of X (called blocks), such that (1) every unordered pair

of points not contained in a group, is contained in a unique

XXy,
block, (2) a group and a block contain at most one common point.

A pairwise balanced design (PBD) 1is a pair (X,A), where X 1is
a finite set of points, and A 1is a set of blocks, such that every

pair of points is contained in a unique block.

Let K be a set of positive integers. (X,A) 1is said to be a
(v,K)-PBD if v = |X|, and A ¢ A implies |A| ¢ K. X 1is said to

be PBD-closed provided v € K where ever there exists a (v,K)-PBD.

A subset of blocks P ¢ A is a parallel class if P partitions

X. A PBD is resolvable if A can be partitioned into parallel classes.

231



A Latin square (of order s) based on symbol set S, where
IS[ =X, is an s by s array L of the symbols of S, such that
each symbol occurs precisely once in each row and each column. Two
Latin squares, L and M of order s, based on symbol sets S and
T respectively, are said to be orthogonal provided their super-position
yields every ordered pair in S x T exactly once. Several Latin squares
are mutually orthogonal if each pair is. We refer to a set of mutually
orthogonal Latin squares as (a set of) MOLS. A pair of orthogonal Latin

squares will be called a pair of OLS.

The following is a well-known result concerning MOLS.

LEMMA 1.5 Suppose n 2 2 has prime power factorization n = ﬂpiai.
Then there exist k MOLS of order n if n 2 min{piaiJ}.

Let L be a Latin square of order s, on symbol set S. A
t-by-t subarray L' of L 1is said to be a subsquare (of L) provided
it is a Latin square of order t in its own right (on some symbol set
S' ¢ S). Similarly, if L and M are a pair of OLS of order s, we
say that t-by-t subarrays L' of L and M' of M are sub-0LS
(of order t) if L' and M' are respectively subsquares of order t,
and their superposition (within the superposition of L and M) yields

a pair of OLS of order t.

Suppose one removes a pair of sub-OLS (of order t) from a pair of
OLS (of order s). The resulting arrays are called a pair of incomplete
OLS (of order s) missing a pair of sub-OLS (of order t). If t + 2
or 6, then the incomplete OLS may be "completed" by inserting any
pair of OLS of order t on the relevant symbol sets. (It is well-known
that a pair of OLS exist for all positive integral orders except 2 and
6). However if t =2 or 6, the incomplete OLS may still exist(and,

of course, they cannot be completed.)
We need to define one more array related to a pair of OLS, which
resemhles a frame in some ways. Let {Sl,...,Sn} be a partition of S.

l,...,Sn}
consists of two S by S arrays, L and M, indexed by 5, whose

Apartitioned pair of incomplete OLS, having partition {S

cells either are empty or contain a symbol from S, such that
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2
(1) The subarrays of L,M indexed by Si are empty, 1 < i < n,

(2) rowor column s of L or M contains the symbols S\Si
where s € S,
i

(3) the ordered pairs which occur in {(L(s,t), M(s,t))} are

. . 2 R .2
precisely those in S™\ u Si'

i=1
The type of the partition {Sl,...,Sn}, as for frames, will denote

‘the multiset {|S ,...,[Sn|}.

1|
Finally, we need to define a special type of GDD associated with
.sets of MOLS. A transversal design TD (m,n) is a GDD(X,G,A) in
which IXI =mn, G consists of m groups, each of cardinaltiy n,
and A consists of n2 blocks each of size m. It is well-known that
the existence of a TD(m,n) is equivalent to the existence of m - 2

MOLS of order n.

A TD(m,n) is said to be resolvable if its block set can be
partitioned into parallel classes, and is denoted RTD(m,n). The

existence of an RTD(m-1,n) is equivalent to the existence of a TD(m,n).

In this paper we establish several new results concerning frames
and Room squares. The necessary theory is developed in sections 2,3

and 4, and applications are given in section 5.

Section 2 describes three recursive constructions for frames.
These constructions are quite general, and supersede other constructions
which appear in the literature, some of which are indicated as corol-

laries.

In Section 3 we discuss some starter-adder methods for constructing
frames. We describe a method where by intransitive starter-adders can
be produced by algebraic techniques: we make use of projecting sets
in starter-adders in conjunction with strong orthomorphisms in Galpis

fields of even order.

Section 4 describes a method for producing Room squares from frames
by filling in the holes. This construction is of sufficient generality
that several of the most important product theorems for Room squares
(e.g. singular direct and indirect products) can be obtained as

straightforward corollaries.
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In Section 5 we prove several new results, based on the methods
described in Sections 2-4. We construct skew frames of types 4421
and 4461, and a skew Room square of side 69. Also, we show that
for all s = 3 modulo 8, s > 3, there exists a Room square of side
3s + 2 with a subsquare of side s. Such a subsquare is as large as

possible.

Three recursive constructions.

In this section, we describe three recursive constructions for
frames. The first construction inflates frames by means of Latin

squares; the second utilizes GDDs; the third is a doubling construction.

Suppose F 1is an {Sl,...,Sn}—frame, and let L and M be a

pair of OLS on symbol set X, both indexed by S.

M
Define the array Fl by first choosing an ordering, say (a,b),

of the contents {a,b} of every cell of F, then defining

LM empty, if F(s,s') is empty
F7((s,x),(s',x")) =
{(a’L(X;X'))’(b’M(X’X'))} if F(S,S') = {a,b}-

CONSTRUCTION 2.1 If F s an {Sz,...,Sn}—fTame, and L,M are a pair
of OLS on symbol set X, then o 18 an {SJXX,...,SnXX}—frame.
Further, M is skew 1f and only 1f F 1is.

Proof. First, the subsquares (SiXX)2 of FLM are empty. Also, it

is clear that this construction preserves skewness.

Next, choose a row (s,x) and a symbol (s',x'), where
{s,s'} Si’ for any i =1,2,...,n. There is a unique t such that
s' € F(s,t), and let F(s,t) = {s',t'} for some t'. Suppose first
that {s',t'} was ordered (s',t'). Now L(x,y) = x' has a unique
solution for y, whence FLM((s,x),(t,y)) = {(s",x"), (t,y")} for

some vy'.
If {s',t'} was ordered (t',s'), the argument proceeds similarly.

Now let us check the pairs in F Pick two symbols (s,x) and

LM
(s',x"), with {s,s'} i Si’ for any i. There is a unique cell
(t,t') such that F(t,t') = {s,s'}. If the ordering was (s,s'),

solve L(y,y') = x, M(y,y') = x' for y and y'; then FLM((t,y),



t'sy")) = {(s,x),(s",x")}. The second case proceeds similarly.

Finally, it is clear that no pairs {(s,x),(s',x')} occur with

{s,s'} ¢ S;» for some i. Thus FLM is the desired frame. O

Let (X,G,A) be a GDD. A weighting is a map w: X - z¥ v {0}.
For any subset Y ¢ X, and w a weighting, let w(Y) denote the
multiset {w(y): y € Y}. The following construction closely resembles

Wilson's fundamental construction for GDDs [16].

CONSTRUCTION 2.2 Suppose (X,G,A) is a GDD and w is a weighting.

Suppose that, for every block A e A, there exists a (skew) frame of

type w(A). Then there is a (skew) frame of type { ) w(x): G e Gl.
) xeC

Proof. For each x € X, let Sx be a set of size w(x). For G € G,

let SG = U Sx' By hypothesis, for every A ¢ A, we have an
xeG
{Sx: X € Al-frame FA.
We construct F, an {SG: G ¢ G}-frame, by defining

empty, if {s,t} g%y for some G ¢ G.
F(s,t) = 7

F (s,t), otherwise., where A(x,y) is the block containing {x,yl,
K_A(x,y) 2

and s ¢ Sx’ t e S )
Let us check the necessary properties. First the subsquares SG

are empty. Next pick a row r € Sx and a symbol s € S_, where
{x,y} i G for any G € G. Then s occurs in a unique cell of row r

in F and in no other cell of row r.

Alx,y)’

Now, pick two symbols s € Sx’ t € Sy’ again with {x,y} i G for

any G € G. Then {s,t} occurs in a unique cell of F , and in
A(x,y)

no other cell of F.

Lastly, let us check that F 1is skew provided that all the FAfs
are. Pick two cells (r,s) and (s,r) with r € Sx’ s € Sy, and
x - G for an G € G. Since F is ske recisely one of
( »Y) 1: y A(x,y) W, P sely

cells (r,s) and (s,r) dis filled. Thus skewness is preserved. [
Define F _ = {u: there exists a frame of type t'} and

SFt = {u: there exists a skew frame of type t"}.
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COROLLARY 2.3 ([4]) For any positive integer t, the sets F, and

SFt are FPBD-closed.

Proof. Let (X,A) be a (v,Ft)—PBD. Then (X,{{x}: x ¢ X},A) is a
i +

GDD. Define w: X > Z v {0} by setting w(x) = t, for all x € X.

Apply construction 2.2.2., to obtain a frame of type tv, where

v = IX].

Similarly, SFt is PBD-clesed. O

One drawback to construction 2.1 is that one cannot "double"
frames using it: there does not exist a pair of OLS of order 2. This

is partially remedied by the following construction.

CONSTRUCTION 2.4 Suppose the following exist:
(1) A skew {Sﬁ,...,Sn}—fTame F,

(2) A partitioned pair of incomplete Latin squares IL,M, having

w58}

partition {SJ"'

Then an {SZ x I2""’Sn X Ih} frame exists, where I2 = {1,2}.

n
Proof. Define G, on symbol set ( u Sk) x 12
k=1
'empty, if i #j or {s,t} ¢ Sk for some k,
1<ks<n
by G((s,1),(t,j)) = {(x,1),(y,1)} if F(s,t) = {x,y} and i=j=1

I 1(x,2),(y,2)} if F(t,s) = {x,y} and i=j=1
’U(L(s,t),l),(M(s,t),z)} if  i=j=2.

Note that G 1is well-defined since F is skew.

The other verifications are almost immediate. TFirst pick a

symbol (sk,i), Sy € Sk’ l<k<n,1<4ic<2, and a row (sﬂ,j),

s, € SQ, 1<2<n, 1<j3<2. If k=2, then symbol (sk,i) does

2

not occur in row (sﬁ,j), so assume k # 2. If i =3j =1, then
14 .

(sk,l) 6(3(32,1),(sm,l)), where S € F(sg,sm). If 1

then (sk,Z) € G((sg,l),(sm,l)), where Sy € F(sm,s

=2 and j =1,
Q). If 1i=1
and j = 2, then (sk,l) € G((s£,2),(sm,2)), where S, € M(SZ’Sm)'
A similar argument shows that the correct symbols occur in the columns

of G.
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Let us now check pairs of symbols, say (sk,i), and (sl,j),
with k # 2.

There is a unique cell (tl,tz) such that F(tl’tz) = {Sk’sl}'
If i =3 =1, then G((tl,l),(tz,l)) = {(Sk’l)’(sl’l)}' If i=3 =2,
then G((tz,l),(tl,l)) = {(sk,Z),(SR,Z)}. There is a unique cell
(t3,t4) such that L(t3,t4) =5 and M(tB,t4) =5, Thus, if i =1
and j = 2, G((t3,2),(t4,2)) = {(sk,l),(sZ,Z)}. A similar argument
applies if i =2 and j = 1.

Thus G is the desired frame. g

3. Starters and Adders.

Let G be an additive abelian group, and H a subgroup. Denote
lc| = g, |[H| = h, and suppose g - h is even. An (h,%)-f%ume starter

in G\H 1is a set of unordered pairs
S = {{si,ti}, 1 <ic< 552} satisfying

(1) {s;}u {e;} = c\n
+ -
(2) {—(si—ti)} = G\H.
Let S be a frame starter in G\H, with § = {{si,ti}}. An

adder for S is an injective mapping A: S + G\H such that
{s.+a.} v {t +a_} = G\H, where A(s.,t.)
i i i i i°71

a.- An adder A is skew

provided a, F - a, for any 1i,j.

Suppose S is a frame starter in G\H, and A is an adder.

We construct the array F a square array indexed by G, by

SA?
.. _ . g-h
- = < <
defining FSA(x,x ai) {x+si,x+ti} for 1< i< 5 » and for x ¢ G.
Note that at most one unordered pair occurs in each cell of FSA’
since A is injective. Also, the subsquares (H+x)2 of FSA are

empty since the range of A is G\H.

LEMMA 3.1 Suppose S <is a frame starter in G\H, and A is an adder.
Then FSA e an {H+x: = € Gl-frame of type hg/h. Further, 1f A

s skew, then Fo, is a skew frame.

Proof. The cells of row 0 of FSA contain precisely the pairs in 8.
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Thus the elements occurring in row O are those in G\H. In row

x, for any x € G, the elements of {x} + G\H = G\(H+{x}) occur.

A similar argument applies to the columns. The pairs in column
0 are precisely those {si+ai,ti+ai}, so the elements occurring are
those in G\H. All other columns are translates of column 0, as was

the case for rows.

Next we show the pairs in F are precisely those {g,,g,}
1°°2

with (gl,gz) € G2\ u (H+x)2. Fiﬁ any X, (x+si) - (x+ti) = s, t.,
so no pair {gl,gz}XEGoccurs if g, and g, are in the same coset
of H. Thus, suppose 81 and g, are in different cosets of H,
so g -8 =s; - t,, for some i. Then {gl,gz} = FSA(x,x—ai)

for x = - s Thus F is a frame, as claimed.

81 7 %y SA
Let us consider the skewness of FSA' For any 8158, € G, cell

(gl,gz) of FSA is filled if and only if 8 ~ 8

If A 1is skew, we cannot have both of cells (gl,gz) and (gz,gl)

= a, for some a,.
i i

filled, for then 81 ~ 8y = a; and 8y ~ 8 aj, whence2 a; = —aj,

contradicting the skew condition. Since FSA contains g~ cells,

exactly g(géh) of which are filled, F must be skew if and only

SA
if A is a skew adder. 0
A frame starter S = {{si,ti}} in G\H is said to be strong
provided s; tty f H for all i, and o + t; =s; + tj implies
i=3j. A 1is called skew-strong if (further) s; + ti # —(sj+tj) for

any 1i,j.

LEMMA 3.2 A strong frame starter S = {{Si’ti}} has 4 = {ai} for

an adder, where a, = -(Si+ti)' If S <is skew-strong, then A 1is

skew.

Proof. {s.,+a,,t.+a.} = {-s_ ,-t }. 0
1 1 1 1 1 L

The frame FSA’

is constructed by determining a first row {{si,ti}}, a first column

arising from a frame starter in G\H and an adder,

{{si+ai,ti+ai}}, and then constructing all other rows and columns by

taking translates. Thus FSA has G acting on it as an automorphism

group, and G is transitive on the rows, and also the columns of FSA'



In the next construction, we produce frames which will have an
automorphism group G, say, but the action of G on the rows (and
columns) of the frame will not be transitive: thus the name intransitive

frame starters.

Let G be an abelian group of order g, having a subgroup H of
order h, with g - h even. A 2k-intransitive Sframe starter-adder

in G\H (abbreviated IFSA) is a quadruple (S,C,R,A) where

w

= {{si,ti}: 1 <i4ic< Eéh -2k; u {ui: 1 <1 < 2k} (the starter),

(@]
Il

. < 94 < = ' . < i <
{{pi,qi}. 1 <i4ic<k}, R {{pi,qi}. 1 <4<k},

and A: S » G\H (the adder) is an injection, satisfying
(1) {si} U {ti} U {ui} U {pi} U {qi} = G\H,

{s.+a_} u {t.+a. } u {u+b.} U {p!tu {q'} = G\H
i %1 i i i i i i

(where a, = A(Si’ti)’ bi = A(ui)),
@ Hsmet v Foma)) v Hpl-a)) = oW

(3) any element P;=q;» OT pi—qi, with 1 < i < k, has even order.

Given a 2k-IFSA (S,C,R,A) in G\H, we construct an array
F = FSCRA as follows. Let « ¢ G, and define @ = {w} x {1,2,...,2k}.
For any x € G and y € Q@ define x + y =y. F will be a square

array of side g + k, where |C|= g, 1indexed by G v Q.

Now define F(x,x - ai) = {x + s;ex + ti} for all 1 < i < 2k,

and x € G. Leave all other cells F(x,y), with (x,y) € Gz, empty.

Now suppose d is an element of even order e in G. Define a
graph Gd’ having vertex set G, joining two vertices x and vy

by an edge if and only if (x-y) = td. The graph G thus defined is

d
a disjoint union of cycles of even length e, and thus we may partition
2
E = El UE, where E is the edge set of Gd’ and El,E2 are per-
fect matchings (i.e. Gd has a 1-factorization). Thus, for 1 < i < k,

we obtain matchings E% and E? with E, = E% u E?, where E, is
i i i i i i

the edge set of G( g, J Now define, for 1 <1 <k and x ¢ G,

iti

{x+pi,x+qi} if {x+pi,x+qi} € Ei
F(x, («»,2i-1)) =
empty, otherwise
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g 2
{xt+p,,xtq.} if {x+p,,xtq.} € E
F(x, (»,21)) = oo ool *
empty, otherwise

Similarly, for 1 < i £ k, obtain matchings Di and Di from

G, +__ 1> and define
(pi-q;)

- 1
{x+p!,x+q'} if {xtp'!,x+q'} € D
F((,21),x) = 2T S -

empty, otherwise

{x+p£,x+q{} if {x+pi,x+q£} € Di
F((=,2i=1),x) =
empty, otherwise

2
Lastly leave cells (x,y) of F empty, where (x,y) € Q.

Note that, since A 1is injective, at most one ordered pair occurs

in each cell of F.

LEMMA 3.3 Suppose (S,C,R,A) 1is a 2k-IFSA in G\H. Then F 18
FH e 1 SCRA
an {# +z: = € G} u {Q)-Fframe of type I "2k’.

Proof. Denote F =F For any x € G, row x of F contains

SCRA®
precisely the symbols (G\(H+x)) u Q@ by property (1), and the way F
was constructed. In row (w,i) the symbols which occur are those in
G, since the Di's are all perfect matchings. Similarly the correct

symbols occur in the columns of F.

Which pairs occur in F? First, no pair {mi,mj} occurs, and no
pair {x,y} occurs if x and y are in the same coset of H. Secondly,
an «. occurs with each x € G, since the equation u, + y = x has

a unique solution y, and then {wi,x] = F(y,y—bi).

Now consider a pair {x,y} with x,y in distinct cosets of H.
Exactly one of the following holds, by property (2): x-y = f(si-ti),
X~y = 1-(pi—qi), or x-y = t(pi-qi), for some i. in the first case,
suppose Xx-y = s .-t (without loss of generality). Then

F(z,z—ai) = {x,y', where z = x - s



If x-y = Pi=4ys then {x,y} = F(z,(»,2i-8§)) where z = x=p, s and

1 if {x,y} e Ei

N

0 if {x,y} € Ei .

A similar argument applies to the third case.

Finally the subsquares (H+x)2, for x € G, and QZ, are empty.
This is seen easily by the definition of F, since the range of A

is G\H. This completes the proof. O

It is natural to ask when the array FSCRA will be skew. We have

the following.

LEMMA 3.4 Suppose (S,C,R,A) <s a 2k - IFSA in G\H. Then the

frame F = FSCRA can be made skew provided the following extra condi-

tions are satisfied:

(4) ($a.} v 5.} = o\a.
T 1 s

(5) If py-q; has order 2'm with m odd, then p} - q! has
order 2'm' with m' odd, for 1 <1 <k (we refer to such an IFSA
as a skew IFSA).

Proof. The condition (4) is the same as the one which ensures skewness

of a frame FSA constructed from a starter and skew adder. Thus we

check only whether the last 2k rows of F are skew with respect to

the last 2k columns of F. This is where we use condition (8).
2
We want to know if for 1 < i < k, Ei,Ei,Di and Di can be constructed

so that {x+pi,x+qi} € Ei if and only if {x+p£,x+qi} € Di. Denote

= - = | 1
dj =Py ~ 9 ey =Py -y

For a given i, construct a graph S, on vertex set G x {1,2},

having the edges: xly1 iff x-y = tdi
< _ +

X5, iff x-y = e,

xlx2 for all x € G.

Thus the edges x,y, yield a subgraph isomorphic to the edge graph of

Gd (vertex xy corresponds to edge 19 + x, 9y + x), and the edges
i
XY, yield the edge graph Gei.
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We show that S is bipartite, Suppose S has a cycle C of
length m,m odd. This yields an equation kdi + Qei = 0, with
k + £ odd. Suppose without loss of generality that k is odd and 2
is even. Multipi¥d§y f/2 where f is the (even) order of di and

ei, to obtain = 0, a contradition.

Thus we may properly 2-colour the vertices V of S, obtaining

vVv,.

a bipartition V = Vl 2

Let VE =V, n (6x{k}), for &,k = 1,2. Then Vi yields Ei,
2 X 1 1 i 2 2 . 2 . .
V2 yields Di’ V2 yields Ei’ and Vl yields Di’ as desired. This
completes the proof. a

Next, we describe a construction for IFSAs. First, some definitions

are required.

Let 8, = {{si,ti}} be a frame starter in G\H, and let A, be
an adder. A projecting set of size m is a set P = {{pi,qi}: 1<i<m}

of unordered pairs of elements of G\H, which satisfies:
| 1] . + 7 . <
1) p; #p; # 9 # qy for all 1,i', j,j
(2)' I{pi,qi} n {sj,tj}] <1 for all i,j,
+ +
(3) {-(p;mq)} v {—(pi+Al(pi)-qi—Al(qi))}—
{t(sj—tj): ]{sj,tj} n {pi,qi}] =1 for some i}

(4) the differences P; 9y and Py + Al(pi) -q; - Al(qi) all

have even order.

If the adder Al is skew, a projecting set P is said to be skew

provided
(5) there exists a bijection na: P +‘{{pi+Al(pi), qi+Al(qi)}} such
& - : ' 1y _ L1
that if Py = 4y hai order 2 m with m odd, then p; + Al(pi) qa;
' ' 5 ' = ' '

Al(qi) has order 2m', with m' odd, where a(pi,qi) {pi+Al(pi),

’+ 1 .
q;+A, (@)}

Given a projecting set P of size n we will define a 2n-IFSA.
First, let J, = {j: s € {pi,qi} for some i, 1 < i < n},
J, = {j: tj € {pi,qi} for some i, 1 < i <n}. Define (S,C,R,A) by
S = 3 I ]

{{sj,tj} ié Jou J2} u {{sj} j € JZ} u {{tj} j e Jl},
C

]

P, R = {a(pi,qi): {pi,qi} € P}, and define A = A
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LEMMA 3.5 If SZ is a frame starter in G\H, A, <1s an adder, and P

1
18 a projecting set of size n, then (S,C,R,A), defined above, is a
on-IFSA. If P <s skew, then by labelling R = {{pé,qé}} where

{pé,qé} = a(pi,qi), (S,C,R,A) s skew.

Proof. The verifications are routine. 0

Suppose P and Q are projecting sets for a frame starter S
and adder A. We say that P and Q are disjoint provided P n Q = ¢

and P U Q 1is a projecting set.

The above construction for IFSAs is very flexible when used in
conjunction with a multiplication construction for frame starters and
adders, which we now describe. This construction has been used by

Anderson and Gross [1].

Let G be an additive abelian group. A strong orthomorphism is a
permutation ¢ of G such that o + 1 and o - I are both permuta-
tions of G, where I is the identity permutation. Thus
{o(x) + x: x e G} = {o(x) - x: x € G} = G. Strong orthomorphisms are
known to exist in many groups (see [l], for example). We have the
following construction. Suppose S 1is a frame starter in G\H, and
A is an adder with S = {{si,ti}}. Let o be a strong orthomorphism
in an abelian group K. Define s? = {{(si,x),(ti,a(x))}: {si,ti} € A,
x € K}. Ao((si,x),(ti,a(x))) = (A(Si’ti)’ -(xto(x))), for all {si’ti}

€ S and x € K.

LEMMA 3.6 s° and 4°, as described above, are a frame starter and
adder in (G x K)\(H x K). Further, if A 1<1s skew, then so is A°.

Proof. {(si,x),(ti,c(x))} = (G\H) x K since S 1is a frame starter in
G\H and o0 is a permutation. Since A is an adder {(si+ai—0(x)),
(ti+ai,—x)} = (G\H) x K. A° is an adder since o + I is a permutation
and A is an adder. {t(si—ti, x- 0(x))} = (G\H) x K since S is a

frame starter and o - I is a permutation.

+
Now suppose A is skew. Thus {—ai} = G\H. Then we have
+
{—(ai,—(o(x)+x))} = (G\H) x K, so A° is also skew. This completes
the proof. 0
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By itself, the above construction does not yield any new frames.,
Construction 2.1 enabled us to "multiply" frames by any integer other
than 2 or 6, and there is no strong orthomorphism in a group of
order 2 or 6. Our interest lies in constructing IFSAs by altering
starters and adders by means of projecting sets. Strong orthomorphisms
in the additive groups of GF(ZH), n 2 2, are very useful in this

context.

In GF(2n), n =22, let a be primitive. The map g,r GF(2™) -
GF(2™) defined by oa(x) = ox 1is easily seen to be a strong ortho-

morphism, since o # 1.

LEMMA 3.7 Suppose S = {{sj,tj}} is a frame starter, and A an adder.
in G\H, having a projecting set P = {{pi,qi}: 1 <1 <m}. Assume
{pi} < {sj} and {qi} - {tj}. Let x be any element of GF(2"),
where n 2 2, and let o be a strong orthomorphism. Define

oy = {{(pi,x),(qi,o(x))}: 1 <17 <m}. Then Q, ts a projecting set
for the starter S° and adder A°. If P is skew, then so is Qx'

Proof. The construction works since the additive group of GF(2") has
characteristic 2. Define Jl and J2 as before. Then
{(p;—q;>x~0(x))} v {(pi+A(pi)—qi—A(qi),O(x)—x)} = {(sj—tj,x—c(X)):

jedu JZ} .

Also, the order of (y,x-0(x)) € G x GF(2™) equals the order of

y € G provided y has even order. Thus skewness is preserved. 0

COROLLARY 3.8 Suppose there exists a (skew) projecting set of size m
for a frame starter S and a (skew) adder A in G\H. Then, for
1<e<2 n> 2, there exists a (skew) projecting set of size fm

for the frame starter S° and Adder A° in (GxGF (2" ))\(HxGF(2")).

Proof. The projecting sets Qx constructed above are disjoint, for

distinct values of x. O

We may prove a result under weaker hypotheses than Lemma 3.1.3.
Define a pre-projecting set of size m to be a set P = {{pi,qi}: 1<i<m}
satisfying all the conditions to be a projecting set except possibly
(4). That is, we do not require that all the differences Py ~ 4
and p; + A(pi) -q - A(qi) have even order. A pre-projecting set P.
is skew provided it satisfies conditions (5), allowing, of course, that

n = 0.



LEMMA 3.9 Suppose S is frame starter, A <is an adder, and P

a pre-projecting set in G\H. Let x be any non-zero element of
GF(Z”), where n > 2. Then Qx, defined as in Lemma 3.1.3, is a
projecting set for the starter S° and A° in (GxGF (2" )\ (HxGF(2")).

If P is skew, then so is Qx'

Proof. (pi—qi,x—o(x)), for {pi,qi} € P and x # 0, x e GF(2"),

has even order, so QX is a projecting set. Also, skewness is preserved.[]

COROLLARY 3.10 Suppose there exists a (skew) pre-projecting set of size
m for a frame starter S and adder A in G\H. Then for 1 < % < Zn-l,

n z 2, there extsts a (skew) projecting set of size im for the frame
starter S° ond adder A° in  (GxGF(2")I\(HxGF(2")).

Proof. The proof is that of Corollary 3.8,mutatis mutandis. g

4. Room squares from frames.

Suppose G is an {S

«+»S_}-frame, and let T, ¢ S, for 1<i<n.
n n 1 - 1

1

n
Denote S-= u Si and T = v Ti' The subarray H of G determined
by the ce1131§% T xT is s%?% to be a {Tl,...,Tn}—subframe if H is
a {Tl,...,Tn}~frame in its own right. If G is skew, it is said to

be a skew subframe »rovided it is itself a skew frame.

The following result describes a general method for constructing

Room squares from frames.

CONSTRUCTION 4.1 Suppose G 1is an {Sl,...,Sn}—fraxne, and H is a
{T;,...,T_}-subframe, where S =uS, and T=uT.. Let a > 0.
1 n i i
Suppose the following Room squares exist:
(1) for 1< 1i<mn, aRoom square R, of side ISiI + a with a sub-

square of side |Ti| + a,
n

(2) A Room square R of side Z ITi] + a.
i=1

n
Then a Room square of side Z ,Si| + a exists. Further, if G,
and Ri for 1 <4i<n and 1i =l:} are skew, then the resulting

Room square F is skew.

Proof. Let Q@n S =¢; [2] =a, and let = ¢ S u Q. We may suppose

that, for 1

IN
.—I
IA
=]
=~

has symbol set Si U Q uf{e}, and is
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standardized with respect to w,

Define F as follows:

2 n 2
G(x,y) 1if (x,y) € S"\ u_S.
i=1 1
F(x,y) = Ri(X.y) if (x,y) € (SitJQ)z\(TiuQ)2

n
R,GLY) if Goy) e (0 1w’
i=1
The above three cases are mutually exclusive and cover all possibilities.
It is immediate that the array F is a Room square, and that skewness

is preserved. a

v

Remarks:

(1) It is clear, from the definition of F, that the subframe H of
G need not exist. Also, the subsquares of sides |Ti| + a need not
exist. (That is, if |Ti| +a=3 or 5, Ri can be taken to be the

relevant incomplete Room square (should it exist)).

(2) The Room square F will have various subsquares, depending on how
the construction is executed. We will consider the existence of sub-

squares in several of the corollaries which follow.

We now describe two methods for producing frames with subframes.

COROLLARY 4.2 In Construction 2.2, there exists a subframe Fh cf F,

for every block A ¢ A.

COROLLARY 4.3 In Construction 2.1, if L and M contain a pair of
sub-0LS on symbol set Y, then FLM containsg an {SJXY;...,SnXY}—

subframe.

Remark:

If L and ‘M are "missing" the sub-OLS, then FLM is missing

the subframe. This can be useful when |Y| =2 or 6.

We are now able to derive several well-known constructions for

Room squares as corollaries to Construction 4.1.

COROLLARY 4.4 (The Singular direct product) ([10]). Suppose there

exist:



(1) a (skew) Room square of side u

(2) a (skew) Room square of side v, containing a (skew) subsquare of

sitde w, with v - w # 6.

Then there exists a (skew) Room square of side u(v-w)+w, containing

(skew) subsquares of sides wu,v and w.

Proof. Start with G, a frame of type 1" on symbol set

oy {1,...,u}. Multiply by a pair of OLS, L and M, of side v - w
having symbol set {1,...,v-w} (Construction 2.1), Finally, apply
Construction 3.2.1, with T = ¢, a = w, to obtain F, a Room square

of side u(v-w)+tw.

R 1s a subsquare of side w, and for any i, Ri is a subsquare
of side V. We may ensure the existence of s subsquare of side u by
stipulating that L(1,1) = M(1,1) = 1. Then the subarray indexed by
{1,...,u} x {1} 1is a subsquare of side u. O

COROLLARY 4.5 (The Singular indirect product) ([8]). Suppose there
exist:

(1) a (skew) Room square of side u

(2) al(skew) Room square of side v, containing (or missing) a (skew)
subsquare of side w

(3) a pair of OLS of side v-a containing (or missing) a pair of sub-
OLS of side w-a (where 0 < a < w)

(4) a (skew) Room square of side u(w-a)+a.

Then there exists a (skew) Room square of side u(v-a)+a, containing

(skew) subsquares of sides u and u(w-al)+a.

Proof. Start with G, a frame of type 1 and then multiply
by a pair of OLS of order v-a containing (or missing) a pair of sub-
OLS of order w-a (2.1). The resulting frame of type (v—a)u has a
subframe (possibly missing) of type (w-a)". Now apply Construction
4.1. The resulting Room square of side u(v-a)+a has a subsquare of

side u(w-a)+a (Rm), and a subsquare of side u, as in Corollary 4.4.
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A useful modification of the aboye two corollaries is to start
; u .
with a frame of type t , with t > 1, instead of a Room square of

side u. The following is obtained.

COROLLARY 4.6 (The frame singular direct product). Suppose there exist:

(1) a(skew) frame of type tH

(2) a (skew) Room square v containing a (skew) subsquare of side w
w

(3) a pair of OLS of order 2%—

Then a (skew) Room square of side u(v-w)+w exists, containing (skew)

subsquares of sides v and w.

Proof. The proof is that of Corollary 4.4, mutatis mutandis. Notice

that here we do not have a subsquare of side u. 0

COROLLARY 4.7 (The frame singular indirect product) ([2]). Suppose
there exist:

(1) a (skew) frame of type t%

(2) a (skew) Room square of side v containing (or missing) a (skew)

subsquare of side w

(3) a patr of OLS of order 2%2- containing or missing a pair of sub-

OLS of order E%Q- (where 0 < a < w)

(4) a (skew) Room square of side u(w-a)+a.

Then a (skew) Room square of side wu(v-a)+a exists, containing a

(skew) subsquare of side wu(w-a)+a.
Proof. The proof is that of Corollary 4.5, mutatis mutandis. O

We derive two further corollaries to Construction 4.1.

u u
COROLLARY 4.8 Suppose there exists a(skew) frame of type ts 1...tk k,

and suppose there exists a (skew) Room square of side t *a, containing
a (skew) subsquare of side a,, for 1 < i < k. Then there exists a

(skew) Room square of side t;u, + a, containing (skew) subsquares
1=
<

d
of stde ti +a, for 1< <k, and side a.

u u
Proof. Let G be an {Sl,...,Sn}—frame of type t ooty k,
(where n = E ui). Define Ti = ¢, 1 <i<n and apply Construction -
1

£ n, and R, are subsquares of the resulting square. [J



COROLLARY 4.9 Let a > 0. Suppose there exists a (skew) frame of
u Uy,
type t§t2 2...tk A, and, for 2 <1 <k, a (skew) Room square of

side t, ta containing (or missing) a (skew) subsquare of side a.

Then there exists a (skew) frame of type (t]+a)11w where
Kk

we= ) touze  Further, if a (skew) Room square of side t,+a exists,
1= k '

then a (skew) Room square of side t, ) tus ta exists, containing

- 1=8
a (skew) subsquare of side t, + a.
Proof. This is a slight extension of Construction 4.1. Let G be
i 1. w2 Uy B

an {Sl,...,Sn} frame of type tyty “---t, , where |Sl[ =t and
It

1+ > u, = n. Define T, =¢, 1 < i < n.
i=2 * *

Then, proceed as in Construction 3.2.1, but define
2, = 2

G(x,y) if (x,y) € S\ v S;

F(x,y) = i=1 *

R,(5,y) if (oy) € (sumAe?, 251 <.

It may be checked that F 1is the desired frame. Now suppose further
that a (skew) Room square of side tl+a exists. Apply Corollary 4.8
with a = 0, noting that a (skew) Room square of side one exists. [

5. Applications

In [15], a short proof is given that a skew Room square exists for
all odd sides exceeding five. The proof depends heavily on the following

frames.

) 4 4.1 5 4,1
LEMMA 5.1 There exist skew frames of type 4 , 427, 47, and 4 6.

Proof: It may be checked that S and A, given below, are a
starter and skew adder in (ZZ x ZQ\{(0,0),(O,Z), (2,0), (2,2)}.

starter 32,11 30,31 21,33 02,13 10,23 12,01

adder 01 23 30 32 11 31

S and A give rise to a skew frame of type 44, drawn in Figure 5.1
below (note: this frame was presented in [13], but the picture given

there is incorrect). We have three disjoint projecting sets
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Pl’PZ’ and P 7, = {31,32}, p, = {13,21}, Py = {01,10} . They are

3° 2
each skew, since all differences involved have order 4. By Lemmata

3.5, 3,3, and 3.4, the desired skew frames result.

The skew frame of type 4421 is given in Figure 5.2 below. g

As well, a skew Room square of side 69 1is required. We give a

more general result.
; ; 5 1
LEMMA 5.3 For 1 < & < 3, there is a skew frame of type 12~ 44 .

Proof: The following is a starter and skew adder in le\{O,S,lO}:

starter 1,2 9,11 3,6 8,12 13,4 7,14

adder 1 2 6 11 3 7

Then P = {{2,3},{4,7}} 1is a skew pre-projecting set. Apply Corollary
2.10 with m=2, n=2. 0

COROLLARY 5.4 There exists a skew Room square of side 69.
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4

Figure 5.1 A skew frame of type 4.
00 02 20 22 01 03 21 23 10 12 30 32 11 13 31 33
00 111 30 21| 03 01 10
32| 31 33| 13 12 23
02 13 32| 01] 23 03 12
00 30 33| 11| 31 10 21
20 10 31 01| 23 30 21
11 12 131 33 02 32
29 12| 33 21| 03| 32 23
13| 10 3111101 30
o |12 3] 02 11 22 | 00
33 32 13 20 30 |10
03 10| 33 00 13102 |20
31| 30 1 22 |12 |32
- 1| 12 01 31 22 02 | 20
12| 13 00 33 10 |30
23 |13 30 33 20 22 100
10 11 02 31 32 |12
10 31| 13 20 11 21 |00
03| 23 33 22 02 {01
12 11| 33| 22 13 23 02
211 01§ 3 20 10 00 03
30 (1133 31 00 20 01
23 {03 02 13| 21 27
3 31113 33 02 22 |03
01 |21 00 11 23 |20
no |2 12 32{10]| 22 01
30 23 00| 20|03 02
13 23 10 12 | 30 20 |03
32 21 22 | 02 91 |00 1
51 |32 01 12 130 21 |02
03 10 20 | 00 22 | 23
33 30 03{32110 23 00
01 1202 |22 20 21
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00

02

20

22

01

03

21

23

10

12

30

32

N

13

11

33

Figure 5.2 A skew frame of type 442
00 02 20 22 01 03 21 23 10 12 30 32 11 13 31 33 o
1 |30 211 03] 01 10| 31
o, | o 33113 12 231 32
2 1
13 32101 23 03 12 33
=5 o 17 31 10 21 30
00
10 31 011 23 30 21111
© oo 13| 33 03 32112
1 2
12 |33 211 03§ 32 23 13
1l =2 311110 30 10
]
12 31 02 M 22 {00 32
“, = 13 20 30 |10 33
10 {33 ‘ 00 131902 120 30
@) @ 11 22 112 |32 31
! 01
11 |32 31 22 02|20 12
@ | e, 00 33 10 | 30 13
13 30 33 20 22 |00 10
= 5 02 31 32112 11
31113 20 11 21 100 01
03 )23 33 22 Ssh W 02
11133 |22 13 23 02 {03
21101 |31 20 @ = 00
10
11 |33 31 00 20 01 (21
23 103 0?2 13 © w, 122
1 2
31 {13 33 02 22 {03 23
01 |21 00 11 2| = 20
21 12 32 110 |22 01 02
30 23 00 |20 ) s 03
23 10 12 130 20 {103 00
< 1
32 01 12 {30 21 102 22
03 10 20 |00 1| = 23
30 03 |32 |10 23 00 20
01 12 |02 |22 =4 ) 21
0 |32 110 {12 00 |02 2 22
11 113 |31 |33 21 123 {01 |03
331311131 i 03] 01| 23] 21
10 112 |30 ] 32 20{ 22| 00| 02

1
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Proof': Start with the skew frame of type 12581, constructed above.
Now apply Corollary 4.8 with a = 1. Skew Room squares of sides

9 and 13 exist, so one of side 69 may be constructed. 0

The remainder of this sectior is concerned with subsquares in Room
squares. We give a numerical example to illustrate how the methods of
this paper can be applied to produce Room squares with subsquares: we
construct skew Room squares of side 123 with various skew subsquares.
It is worth noting that a skew Room square of side 123 was one of the
" last to be constructed (see [14]), and until quite recently, there was
no known example of any Room square of side 123 containing a subsquare

of side exceeding 1.

LEMMA 5.5 0 <& <21, there exists a skew frame of type 813 T

Proof: Consider the following starter and skew adder over 213:

starter 2,8 12,3 6,11 10,9 5,7 1,4

adder 7 9 8 1 11 13

It is easy to verify that we have the following three disjoint skew
3 = 17,1},
3 (independently), we may apply Corollary

pre-projecting sets: P1 = {8,12}, P2 = {11,10}, and P
For each of Pl’P2’ and P
3.10 with m =1, n= 3. The result is obtained.

COROLLARY 5.6 There is a skew Room square of side 123 having skew

subsquares of sides 9 and 19

Proof: With £ =7 in Lemma 5.5, we obtain a skew frame of type
1 i
8 3181. Apply Corollary 4.8 with a = 1, filling in the skew

subsquares of side 9 and 19. 0

LEMMA 5.7 There exists a skew Room square of side 123 having

subsquares of sides 11 and 29.

Proof': Let (X,G,A) be a TD(5,7). Let G = {Ci: 1 <i <5}, and

let X)Xy, X, be three points in G Define w: X » {0,2,4} by

5



4 if x € Gl U G2 U G3 U G4 U{xl,xz},

w(x) = 2 if x = X4

o
e
{1}
»
m

Co\Mxysxy,%q)

1
Apply Construction 2.2 , making use of skew Frames of type 44, 442 s

and 45 (Lemma 5.1). A skew Frame of type 284 lOl is constructed.

Now apply Corollary 4.8 with a = 1, filling in the skew subsquares of
sides 11 and 29 . 0

In the remainder of this section we consider Roonm squares with

"large" subsquares.

LEMMA 5.8 Suppose F is an | ..,Sn}—f?ame with

1

.1 2 I8yl ..2]s_|. et s = U S; - Then 3ls, |+ Is,l < [s],

and, if |S| is odd, then 3ls | + |Sz| +1 < |s].

S
n
U

Proof: Let s be any element of 82' The symbol s occurs [S

and |S

N

times in the columns indexed by § times in the rows

1’ 1|
indexed by Sl. Also, s occurs |Sll times further, once with each

element of Sl. Since s occurs a total of |S]| - ]Szl times in F,
we obtain 3|Sl| + ISZI < |Sl. Now suppose |S| is odd. Then ]Sil is
odd, 1< i <mn, since |[S| - lSi| must be even., Thus 3|Sl[ + lSzl
must be even, and the result follows. 0

COROLLARY 5.9 (Mullin and Collens [9])

If a Room square of side s has a subsquare of side t, then
s =2 3t + 2.

Proof: A Room square of side s with a subsquare of side t gives
rise to a frame F of type tlls—t . Since s 1is odd, Lemma 5.8
yields 3t + 2 < s. O

u

We shall construct infinite classes of frames of type tlt 2

172
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where 3t1 + t2 = tl+u2t2. We refer to such frames as tl—maxtmum

frames. Using tl—maximum frames, we can show that for all positive
t > 3 congruent to 3 modulo 8, there exists a Room square of side

3t + 2 having a subsquare of side t.

LEMMA 5.10 Suppose that there exists a tl—maximum frame of type
u _
tt, 2. Let ¢ 2 0, and suppose that there exists a Room square of
t,~Cy t,-c
side 3 ( 3 )+c containing (or missing) a subsquare of side 2-
Then there exists a Room square of side 3t + ¢ containing a subsquare
t,-c
of side t, for ¢t = By +._M§_ .
t,-c
Proof': Apply Corollary 4.9 with a = 5 and k = 2. 0

Thus it is desirable to construct tl—maximum frames. We have such
frames already: a frame of type 6144 was produced in Lemma 3.3.1,
and 3-6 + 4 = 22 = 6 + 4-4. Also, a frame of type 4n4 exists for
all n 21 by Theorem 2.4.4, and 4-4n = 3.4n + 4n

LEMMA 5.11 If n2>1, a frame of type 6nl lm4 exists,

Proof: For n = 1, the frame is that one described above. Thus if
n>1, n#%# 2 or 6, we may obtain the desired frame by multiplication

by Latin squares (Construction 2.1).

For n = 2, we use the '"doubling" construction, Construction 2.4.
The frame of type 6144 is skew (see Lemma 5.1), so we need only
construct a partitioned pair of incomplete OLS, having a partition of
type 6144. This is done using a singular direct product construction

for Latin squares. (Note that 22 = 5(6-2)+2).

Horton [7] has constructed the following six by six array A

(cells contain ordered pairs):
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33 | 44 55 66

64 | 35 | 46 53

34 65 16 52 23 41

45 36 51 13 62 24

56 43 25 61 14 32
63 54 42 26 31 15

Consider A to be partitioned:

A = C ? where R 1is two by four, C is four by two, and

T is four by four. (A can be thought of a pair of incomplete OLS

of order 6 missing a pair of sub-OLS of order 2). Let N be the
super-position of a pair of OLS of order 4 on symbol set

{3,4,5,6}. For 1 <1i, j <5, define Cij (respectively Rij’ Nij)
by replacing a cell containing (a,b) by (ai’bj)' For 1 <1i, j 55,
define Tij by replacing a cell containing (a,b) by (ai’bj) if

a,b # 1,2, by (a,bj) if a=1o0r 2, and by (ai,b) if b =1 or 2.

Consider the array

Spee -
¢ ¢ Ros | Ruz | Ras | Ros
¢ ¢ Nus | Moy | Ng3 | Ny
C35| Ny3 | ¢ Noi | T35 | Mg
P = !
Cs4 | Mos | Tsy Hig | My3
Coz| Nso | Ngp | Nyg | @ Ty
C N N T N ¢
42 VN34 | N3 | Tuo | Noyp




It may be verified that P 1is a partitioned pair of incomplete
4
OLS of type 614'. Thus construction 2.4 yields the frame of type
121"
Finally for n = 6, start with the frame of type 12184 and

apply Construction 2.1, multiplying by a pair of OLS of side 3. O

We can now construct an infinite family of Room squares with large
subsquares. We need something to start with. The following was obtained

by Dinitz [3].

LEMMA 5.12 There exists an incomplete Room square of side 11

rmissing a subsquare of side 3.

This array is presented in Figure 5.3 below.

48 37| 6X| =« 59
69 5| 38 47

39| 4X 57 68

67| 8X 3 04 15| 29

58| 79 o4 [ 03 2X | 16

9X 78 06| =5 24 13
05 7X] 89 ©f 14 23
46 3X 25 19 7 08

351 49| 1X 26 o8 07

34 56 17| 28 0x «9
27 18 09| 36 45 | =X

Figure 5.3

An incomplete Room square of side 11 missing a subsquare of
side 3.
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COROLLARY 5.13 For n 20 there exists:

(1) a Room square of side 3un + 2 with a subsquare of side u s

where u = 12-3n—l, and

(2) a Room square of side 3vn + 2 with a subsquare of side L

where v, o= 16-3"-1.

Proof: By induction on n. First we prove (1). The incomplete

8 ;
Room square of Lemma 5.13, together with the frame of type 4, yields
a Room Square of side 35 with a subsquare of side 11 (put

t, = t2 = 8, u, = 3, and ¢ = 2 in Lemma 5.10). This establishes the.

truth of the proposition for n = 0. Assume the proposition is true
for m =142 -12>0. A frame of type (24-32)4 exists. Apply Lemma

5.10 with t. = . = 24-3%"1

1 2 s B

5. = 3, and ¢ = 2. Since
tz‘C .
2 -1’

and we have a Room square of side 3u2_1 + 2 with a

subsquare of side this yields a Room square of side 3t + 2

Ye-1
with a subsquare of side t for

t,-c L%l

I
f—-l
(3]
o
=
I
H
i
e

Thus the result is shown by induction.
; e . 4 1
(2) 1is proven similarly, using the frames of type 4n 6n . 0

We will now prove that all u = 3 modulo 8, u > 3, there exists
a Room square of side 3u + 2 with a subsquare of side u. This
generalizes (1) of Corollary 5.13. It is first necessary to construct

some more tl—maximum frames.

LEMMA 5.14 For q = 1 modulo 4 a prime power, there exists a strong
frame starter in (GF(q) X Z )\({0} x Zz), having a pre-projecting set

of size ﬂil .



Proof': We use the following strong frame starter. If w € GF(q)
is primitive and Q = {mZi : 0 £1i<t-1} where q = 4t + 1, then

§ = {{(x,0), (wx,0)}, {(-x,0), (~wx,1)}, {(-wx,0), (—wzx,l)},

{(wx,1), (m2x,l)} : x € Q} is a strong frame starter (see [4]). Then
define P = {{(wx,0), (-x,0)}, {(—wzx,l), (wx,1)} : x € Q}. The

diff ising fr * - * -
ifferences arising from (pi qi) and +(pi+A(pi) (qi+A(qi))), where
{pi,qi} € P, are those in {(x(wt1),0), (xw(w+l),0), (x(wt+l),1),
(gm(w+l),1): x € Q}. The other verications are trivial, so P is a
pre-projecting set of size L= S 2t. 0

2

Notice that if £ = 2" were allowed in Corollary 3.10, we could
obtain a projecting set of size 2n—l (q-1) for a frame starter—adder
in (GF(q) xZ, GF(2™M)X({0} xZ, x GF(2")) for q =1 modulo 4 a

prime power and n 2 2.

2

u

This would give rise to a tl—maximum frame of type tit2 2 where
_ oD _ ,ntl - -
t, = 27(q-1), t, = 2 , and u, = q. (Thus 3tl + t,
3'2n(q—l) + 2n+l =t + ust,. Even though we cannot use Corollary 3.10

to construct this frame, we can obtain it by other methods.

First, a definition. For integer £ 2 3, let C2 denote the graph

which is a cycle of length &.

For a positive integer n, let Cz[Kn n] be the graph constructed

by replacing every vertex x of CR by n’ vertices XpseoesX s and
then constructing all edges xiyj, 1 <1i, j £n, whenever xy 1is an
edge of CQ. We define a CQ[Kn’n]—Room Rectangle be an fn by 2n
array A in which each cell either is empty of contains an edge of

Cl[Kn,n]’ such that:

(1) the filled cells of each row of A form a one-factor of some
Kn,n in CR[Kn,n]
(2) the filled cells of each column of A form a one-factor of

CK[Kn,n]

(3) each edge of CQ[Kn n] occurs in precisely one cell of A.
b
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It has been determined precisely when CQIKn n]— Room rectangles

exist. (see Hartman and Stinson [6]).

LEMMA 5.15 Let & 23 and n 21 be integers. Then a
CR[Kn n]—Room rectangle exists if and only if &n 1is even.

3
LEMMA 5.16 Suppose S 1is a frame starter in G\H is an adder,
and P 1s a pre-projecting set of size m. Denote |G| =g and
|H| = h. Let n be any even positive integer other than two or sizx.
g/h

Then a frame of type Zmnj ng exists.

Proof: "Project" P to obtain a quadruple (S,C,R,A), which fails
to be a IFSA only in that differences of pairs of elements in R and

C may have odd order. Construct an array F. from S and A in the

1
usual way. Let L and M be a pair of OLS on symbol set
I ={1,...,n}, and denote F = F Ly s
n 1
Now consider a pair {pi,qi} e C, 1<1i<m. Corresponding to

this pair, we need a gn by 2n array Ci’ in which each column is
Latin in G x In’ row (g,j), where g e G and 1 < j < n, is
Latin in {pi+g, qi+g} x In’ and the unordered pairs occurring in C
are precisely those {(x,j), (y,j")} with x -y = # (pi—qi),

1 <3, 3" <n.

Suppose such an array Ci exists for 1 < i < m, and a similar
array Ri eixsts for 1 i m. Then it is a simple matter to check

that the array G, pictured below, is a frame of the desired type.

g = F & 10, |- c_
%
Ry
empty
R
m




Thus we must only show that the arrays Ci and R exist,
1

IA

i < m, Let P; -4 < di’ and construct the graph D on vertex

set G, Jjoining x and y if and only if x = y = idi. Then Di
is a disjoint union of cycles of length e, 2 3. For each cycle B

of Di’ we have Ce.[Kn’n]—Room rectangle AB . "Stack" these arrays
AB vertically to obtain the desired array Ci' (If necessary, permute
the rows of C, so that the pairs {(pi + g,3), (qi + g,k) 1,

1 <j,k<n, geG, occur in rows {g} x In') Thus we can construct

the desired frame. 0

LEMMA 5.17 For w = 1 modulo 4 a prime power, there exists a
frame of type &% 4(u-1)7

Proof: Apply Lemma 5.14, and Lemma 5.16 with g = 2u, h = 2,

m = E%l and n = 4, 0

Next, we wish to derive a result similar to that of Lemma 5.14

for u = 3 modulo 4. We need another construction.

LEMMA 5.18 Suppose S 1is a frame starter in G\N, A is a skew
adder, and P 1is a pre-projecting set of size g___, where |G| =
and |H| = h. Then a frame of type (g-h) 1w~ peiats,

Proof: "Project"” P to obtain (S,C,R,A) as in the proof of Lemma

5.17. Note that here S consists entirely of singletons. Construct

F, from S and A, on symbol set G u Q, where Q| = E%E ]

Fl is skew, and we may define F2 (the "skew mate") by
Fz(gl,gz) = Fl(gz,gl) for all 81>8y € G. Now define an array F, on
symbol set (G u Q) x {1,2}, as follows.

For xe€ G, ¢ Q, and i = 1,2, define Dl(x,w) to be the

two-by-two array

(x,1)
(w,1)

(x,1)
(00’3—1)
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Superimpose Fl and F2’ and then replace the contents of

every cell (gl,gz) by Dl(x,W), where Fi(gl’gZ) = {x,o} . Thus F
is a "doubling" of F1 (this construction enables us to circumvent
the requirement n # 2 of Lerma 5.17). Now F can be completed

to a frame exactly as in Lemma 5.17, by making use of the necessary

Room rectangles. a
EXAMPLE 5.19 A frame of type 45 81. We have a slew-strong starter
s = {{6,2}, {4,3}, {8,1}, {7,9}} in Zlo\ {0,5}.

P = {{2,4}, {1,7}} is a skew pre-projecting set.

frame is exhibited in Figure 5.4
LEMMA 5.20 If there exists a skew-strong starter G\{0}, then there
exists a skew-strong frame starter in (G x GF(4))\({0}x GF(4)), having
a pre-projecting set of size g - 1, where |C| = g.
Proof': Let S, = {{Si’ti}} be the skew-strong starter in G\{0}.

Let w be primitive in GF(4). Define S = {{(si,x), (ti,mx)}:
x € GF(4)}. Then S 1is a skew-strong starter in

(G x GF(4))\({0} x GF(4)). Then define P = {{(sl,O), (tl,wz)}
{@i,l), (ti,l)}}. We claim that P 1is a pre-projecting set.

The adder A associated with S is A((si,x), (ti,mx)) =
(_(Sf+ti)’ xtwx). Thus the differences arising from P and

B 2
Py + A(pi) -q; - A(qi), {pi,qi} € P, are those in {i(si—ti,w ),

& (si'tiao)’ * (Si—ti’w)’ + (si-ti,l)} = (GXGF(lb))\({O}XGF([G)). D

LEMMA 5.21 For u = 3 mod 4 a prime power exceeding 3, a frame of
type g 4(u-1)1 exists.

Proof: Starting with a skew-strong starter in GF(u) (see Mullin
and Nemeth [11]), apply Lemma 5.20, and Lemma 5.18 with
g = 4u, h = 4, 0

So, to this point, we have constructed a large number of tl—
maximum frames: we have frames of type g4 4(u-—l)l for all prime

powers u > 3. We now derive a corollary to the GDD construction for
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18sp 8dAyjosweyy  p'geinbig
1.0 0.6 6.8 8.L L9 9.5 Sy 2 €2 2
.10 .08 .68 8L L9 .95 i-14 Y€ €2 2t
10 0.6 68 8.4 L9 9.5 Sy 9.€ €2 2.4
1.0 06 6.8 8L L9 9 Sy ve £2 2k
G 9.€ s.2 [ €.0 2.6 1.8 0.L 6.9 8.5 Ly
.9€ .§2 pi €0 .26 18 0L 69 .85 Ly
9 8.2 vl £.0 26 1.8 oL 6.9 8s Ly
9.8 s2 Rt €0 2.6 ¥] .0.L 69 8.5 Ly
.90 9.0 ' £ | €L i 0L Bl Az .98 Q.2 Ag 9.4 0,8
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AS 1. .89 8.9 Q.L Ao | 9.2 o.¢ &% .02 0 AL Q€
1 A4S 89 8.9 Q.2 A0 8.2 0.€ 0z 10 AL Q€
o7 0.p LS LS 2z | 2.9 A6 n.L 0z , 04 96 Ag
ov 0.p LS LS Qz 2.9 A8 AL 0.2 ¥ oL 16 Ag
.6€ 6.€ i-14 9.v As QL Q.5 A8 9.0 o, " b0 98
6€ 6.€ 9. 9v Ag QL 2.5 A8 9.0 0.4 og 08
82 | 82 S.€ | SE 9L Ap .Q0 Q. AL 9.6 0,0 - .08
8.2 .82 S.€ .G€ L Ay Q0 Qv AL 9.8 0,0 0§
Lot L1 p.2 vz .08 .99 Ae Q6 Q.€ A9 9.8 0.6
T vz | b2 og 79 Ag 26 2.€ A9 9.8 0.6 §0




frames which enables us to construct tl%maximum frames recursively. We

can then prove a "multiplication'" theorem.

LEMMA 5.22 Suppose (X,B) 1is a resolvable PBD, with parallel

classes P, ,...,P_ such that |B| = k. for all B e P., where k.
1 r 7 1 7

are integers, 1 < 1 <wx. Let t be an integer, and supppse that for

1 <1<mn, there exists a t]-maximum frame of type ti t " (hence

t, = g—(ki-l)). Then a tl—maximum frame of type g—(v—l)l £’ exists.
Proof: Define a GDD (Y, G, A) as follows. Let Q = {wl’

Y=XvuvgQ, G={{x}:xe X} u (Q}, and A = {Bu{mi} : B e Pi c B}.

eese

Define a weighting w by w(x) =t if x € X, w(wi) =-§(ki—l),

1 <ic<r.

Now apply Construction 2.2. For a block B ¢ Pi’ we require a
k,
frame of type %—(ki—l)lt ‘ » which exists by assumption. The frame

T
constructed has type tl t' where t £ X (k.-1) = E-(v—l).
0 0" 2 &M 2
This frame is t_ -maximum, since

1

t oD g B I8 po

5 (v-1) + vt = > tv 5 > (v=1) + ¢
Thus the result is proved. 0
COROLLARY 5.23 Let t be an integer. Suppose there exist m - 1
MOLS of order n, and suppose tl—maximum frames of type t; tk exist
for k =n and m, where t1 = %—(k—l). Then there exists a tl—maximum
frame of type t; tnm) where t] = g—(nm—l).
Proof: By hypothesis there exists a resolvable transversal design

RTD(m,n). Hence we can construct a resolvable PBD(X,B) where
|X| = nm, and B consists of one parallel class of blocks of size n,

and n parallel classes of blocks of size m. Apply Lemma 3.4.17. [

LEMMA 5.24 For all odd u 2 3, a tl—frame of type &4 4(u—1)1 exists.



Proof: For u = 3, there exists a frame of type 84 (Theorem 1.4),
which is tl—maximum. For u > 3, u a prime power, the result follows

by Lemmata 5.17 and 5.21.

o,
Let wu have prime power factorization u = % P; l, where,
i=1
without loss of generality,
ay a, ay
Py > Py SRR S If k =1, the result is shown above. We
o
proceed by induction on k. The number of OLS of order u/pk is
5 a a
at least p Roee]. > p k_ 1 (Lemma 1.5).
k-1 k & N

Apply Corollary 5.23 with n = u/pk k,m =Py k . The input

frames exist by induction, so a frame of type g" 4(u-—l)l can be

constructed. O

The following is our main result.

THEOREM 5.25 For all s = 3 modulo 8, s > 3 there exists a Room
square of side 3s + 2 containing a subsquare of side s.
Proof: Let u = E%l . Then u is odd and at least 3, so a

tl—maximum frame of type 8" A(u—l)l exists. Apply Lemma 3.4.2 with

tl = 4(u-1), t2

square of side 11 missing a subsquare of side 3, so we obtain a Room

= 8, u, = u, and ¢ = 2. We have an incomplete Room

square of side 3t + 2 with a subsquare of side t, for
£ =C

t = tl + _25“_ = 4(u-1) + §%Z = 4u -1 =g, as desired. O

6. Summary

In this author's opinion, one of the main unresolved problems
concerning Room squares is the subsquare problem: for what ordered
pairs (s,t) does there exist a Room square of side s containing
_(or missing, if t = 3 or 5) a subsquare of side t? Certainly s
and t must be odd pesitive integers, and s = 3t + 2. We have
demonstrated that for t = 3 modulo 8, there is a Room square of side

3t + 2 containing (or missing, if t = 3) a subsquare of side t, so
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equality can be attained. Also, if s 2 6t +9 and t is large enough,
(s and t odd), there is a Room square of side s with a subsquare of

side t.

Thus the following seems reasonable.

CONJECTURE: Let s and t be positive odd integers with
s§ 2 3t + 2. Then there is a Room square of side s containing (or
missing, if t = 3 or 5) a subsquare of side t if and only if

(s,t) # (5,1).
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