
\

t
\ A NOTE ON OM.FACTORIZATIONS

A. Hartman and D. R. Stinson

ABSTRACT. The graph C [K ] 1s defined to have vertex set Zn mrm
Z.x

n

and (a,l)(b,J) is an edge whenever a - b = t 1 (mod n). parker has

shoun that these graphs have a one-factorizatlon if and only if un ls
even. We construct speciaL one-factorlzatlons of arr[*r,r] (when mn is
even) which are useful ln the construction of Room "q,r..." wlth large
subsquares.

L. Intto&tction.

In this note a g?aph is a graph without nul-tiple edges or loops. The

number of edges inci.dent wi-th a vertex v is caIled the d.egree of. v; a

graph ls k-regular i-f every vertex has degree k. The nunber of vertices
is referred to as the orde" of a graph.

Let G be a graph of even order 2n. A one-factor of G is a set
of n independent edges, that is, a l-regular subgraph of order 2n. (a
one-factor is somerimes called a perfect matching.) A one-factortzation
of a k-regular graph G i.s a set {FIrF2r...,Fk} of one-factors which
partitions the edges of G. A one-factorization may be thought of as a
k-colouring of the edges of G so that each vertex is incident utth
precisely one edge of each colour.

For any graph G and any positi.ve integer m we define a[*r,r] to
be the graph formed by replacing each vertex v of G by m vertices
uL,uZ,...rvm. Each edge vw of G is then replaced by aL1 the *2 edges

vrw,r where 1s i, j < m.1J-
Let G be a k-regular graph of order n (so kn is even) and let m

be a positive integer. lle define , a[*r,r]-Room rectangle to be a krrml2
by km array A, each cell of which is elther empty or contains an edge

of GIK ]0r0

(1)

(2)

, which satisfies

(3)

each edge of ala*,rl occurs in precisely one cel1 of A;

the fi1led cells of any column of A form a one-factor of
GIK I;

0 til

the filled cel1s of any row of A form a one-factor of one of
the K 's which make up G[K _1 .stil ^ Dr[-
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Note that condition (2) requires that a[**,r] have a one_
factoriz;rtion, so necerssar:i1y nm (the order of Cl.K ]) must be even.hr0

The study of a[*rn,*]-*oom rectangles was moti-vated by a con_
strucfion mefhod for Room squares due to the second aufhor [5].
Although the existence question has been solved for Room squares (see
Mullin and Wallis [2]), the existence questj-ons for (Roorn) subsquares of
Room squares remain open. It is easily seen fhat if a Room square of
side u contains a subsquare of side v, then u 2 3v*2. By uslng
the Room rectangles we construct here, it can be shown that for
infinitely many values of v, there exists a Room square of side
3v+2 with a subsquare of sicle v.

The cycle Cr, of length r, = .3 is deflned ro be the 2-regular
graph with vertex set Zn ar.d. edges ,ry for each pair satLsfying
x-y = t I(mod n).

Parker [3] has shown that the graph arr["rrr] has a one-factorization
if and onJ-y if nm is even. Under the saue conditions we show that there
exists a C-[K_ _]-Room rectangle. I{e also show the existence of GtK l-n IIlrrIl -'-hru-
Room rectangles for sohe more general graphs G.

2. The Eristenee of ar,[*r,*]-Room Reetangles.

In this section we show that a a.r[*rrr1_Room rectangLe exists if
and only if mn is even. We begin with some examples and direct
constructions.

Econple 2.1. A C3[K2, 2]-Room rectangle.

or.tzl ozlr-

,,1t Lz't
2tQ

2
,,Q,

01
2-2 0trt

Lt2t
'z2z

'ror'rori
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LEMMA 2.2. A arr[*r, ,\-Room reetutgle esists for aLL odd. n ) 3.

fuoof. I'Ie glve a constructive proof based on the idea of inserting four
rows at a time into Example 2.1 and increaslng the length of the cycle by 2.

Let n=2j*1 forsome J>L.

The first tt,ro rords of the array are identical to the first two rows
of Exauple 2.L. The nexr 2(j-l) = n-3 rows will have rhe fo:m

The next row is

replacing the third row of Example 2.1.

The next two rows of the array are ldenttcal to rovs 4 and 5 of Exauple Z.L.

The next 2(j-1) rons have the form

kt (k+1)
2

k2 (k+t) I

2k)
2

(2k) 
r 

(2k+1) 
1

( 2k+1) 
1(2k+2) 1

(2k+1) 
2(2k+2) 2

kI(k+1) 
2

k2(k+1) 
1

k = 2r3r...rn-2

k = 1r2, .. .,j-1.

k = 0 rlr?r... rn-1 .

The final row i.s

replaeing the final row of Example 2.1. The array thus constructed is
aZi*t[K2,2l-Roo* rectangle. f]

a

LEMMA 2.3. A Cr,[*Z 
,2)-Roorn 

rectangle erists for aLL eoen n > 4.

Proof. The proof is by dircct construction. Let n = 2j for some i > 2.

The f irst n : 2j rov.,s are

)1( 2i oz (2j) z ot

(2i) z oz 2jr or
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The final 2i rows are

( 2k)
2

( 2k+1)z

( 2k+1) 2Qk+2) 2
(2k+1)r (2k+2)1

Thc ;rrray thus constructed is a ,ril*r,rJ-Room rectangle. D

We now give an example of a C3[K4,4J-Roo* rectangle. It is
constructed using Example 2.I embedded in the top leff hand subsquare.

Exonple 2.4. A C: Ix 4r4l-Room rectangle.

LEMMA 2.5. A C [K, ,)-Room reetqlgle erists for aLL odd.n 414
n > 3.

Proof. The proof is by a direct eonstruction similar to those of Lemmas

2.2 ard, 2.3.

Let n = 2j*1 for some j > 1. The first trdo ror^ra of the array are
identical to those of Example 2.4. The next 2(j-1) rows have the form

( 2k) ( 2k+1)
1 I k = 0 rLr?r... rj-1 .

otlz

Ll2l

',ro ,r

o:'r*

,,,,

,ro,

'4t,r
,12,

'zo l
o zLz

Lz'q

'r-ot

o:1:

'rr2,,
Zraz

otlt
Lz2

'lo,r

ozlt

Lz2t

2z

0

Lrr2s

',no I

0,

1
4 3

2

orl:
o 4lz
1t2:

Lrr2z

2ro:

240 
z

o zLr,

oglt

L22,,

1g2t

2zo 
4

2:or

o:12

ot14

1g

1t

23'

2Lt

,,
'2

2

0

0

4

2

4

0

0

1

Lz2z

240,

2zo 
s

1

zLl

tr2t

4 rl
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( 2k)
4

(2k+1)
4

(2k) 
1(2k+1) 2

( 2k) 
3 

( 2k+1) 
3

(2k) 
2(2k+1)1

(2k+1)
3

(2k+2)
3

(2k+1) 
L{2k+2) z

(2k+1) 
4(.zk+2) 4

(2k+1) 
2Qk+2) 1

(*)

k = 112r..., j-l.

The next row is

(f)

k] (k+1) 
3

k2 (k+1) 
4

k3 (k+1) 
2

k
4

(k+1)r
k

4
(k+l)

2
k (t+r;

J 1
k (k+l)

1 4
k2 (k+1) 

3

The array const-ructed is a aZi*f[KO,OJ-Room rectangle. n

We now give a rec,ursive tonstr:uction for G[Km,m]-Room rectangles.
We assume that the reader is familiar with the definitions of Latin squares
and orthogonal Latln squares (see for example l-61).

LI1MMA 2.6. -If a C[f*,^l-Roo* rectangle erLsts atld a pair of orthogonal Latin
squares of order 9. ertst then a a[ou*, U*)-Room rectangle erists.

Ptoof. Notice that Kgm,Lm = Kr,r[K.C
,L)

k = 0 rLr?r... rn-l .

G[K^_ ^_] as the vertices ol' CL
)cm r Jcm

{r,2,. . . ,g}.

r so we may think of the vertices of
subscripted by elements of the set

Let A be a G[K*,rJ-Roo, rectangle and let L and M be a pair of
orthogonal Latin squares of side 9,. I,Ie form a new array from A by the
following process. Each empty ce1l of A is repl_aced by an g,xl empty
array. Each cell of A containing an edge )ry of the graph G[KrrrJ , is
replaced by an Lxg, array whose (i,j)th 

"rrtry i" t(i,j) yU(i,j), where

L(i,j) and M(i,j) are rhe (i,j)th entries from L and M respecrively.

Kl
0r0

( 2i )4 o,r (2j ): 0: (2i) L o2 (2j z) or
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The next two rows of the array are identical to rows 4 and 5 of Exanple 2.h.
The next 2(j-1) rows have a form obtained frorn (:t) by interchanging the
subscripts (1 and 3) and (2 and 4). The nexr row ls obtained frorn (f) by
the same interchange. The final 2a rorirs are constructed, as in
Example 2.4, from the n subarrays of the form



The new array i.s clearly a G[K.(,r,gr]_Room rectangle by the ortho_
gonality of L and M and the srrueture inherited from the array A. n

We are now in a position to prove the major result of this sectlon.

THEOREM 2.7.
only if rtrn

arr[Kr,*1-Room zeetotgle uith n ] 3, n.> 1 ea;lets if utd
'LS even.

fuoof. As noted ln the introduction the condlton that rnn is even is
clearly necessary for the existence of a Co[KrrrJ_Room rectangle. We

shall establish sufflciency in two cases, aceording to the parity of n.

If n is odd, then m is even. When m = 2, the result is
Lerma 2.2. When m = 2!. and L * Z or 6 we may apply Lemma 2.7 since
Bose, Shrikhande, and Parker [l_] have estabLished the existence of a pair of
orthogonal Latin squares of order t provided t, * 2 or 6. When m = 4
the result is Lemna 2.4, and when m = 12 the result is obtained by
applying Lerrrma 2.7, si.nce L2 = 4.3.

If D is even then a Ctr[K1rl]-Room rectangl_e is just a one_
factorization of the even cycle Cr., which exists. Lema 2.7 then yields
theresultforevery m>1 except u=2or6. When m=2 theresult
is just Lenrrra 2.3, and this, together with Lenma 2.7, yiel.:ds the result for
u=6=2.3. I

F
3. The Eristence of c[Kr,*1-r?oom Reetwtgles.

In this section we shall give necessary and sufficient conditions for
the existence of G[K_ _]-Room rectangles when G is any 2_regular graph.0rD
We also give methods for construction of these rectangles for many cases
where C is k-regular ancl k > 3.

We begin with two simple decomposition lemmas.

I.El,tMA 3.1. Let c be a k-regular &isconnected gwph. A GtK l-Room
ll,0rectangle erists if md anly if ar[*.,r]-Room rectuqles ertst for each

cornponent ai of C-

Ptoof. A G[Kn,ml-Roou. rectangle rnay be constructed by ,'stacking', the
component rectangles one above another. The component rectangles mai
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always be recovered since each row of the G[Kmrm]-Room rectangLe comes

from some edge of G which belongs to a unique component. 0

LU"tiA 3.2 .

Gl ,G2,...,G

(1)

/qlt a/

(3)

Then a Ct

Let c be a k-regular gtvph ttth edge-disjoint subgz,aphs

such that
n

a = at u G, u...u Gr.,,

ccch G- is a spanning regular subgraph, and
1

a C"[K_ _f-Room rectwtgle erists for each i.]. mrm

)-lloom rectangle erists.K
III r lll

Proof. Let bea G.I
1

K_ _l-Room rectangle for each i; then the aruayIrE

is a GIK _'l-Roorl rectangle. n
III r III

Note that this lemma was used implicitly in Example 2.4 and Lenrna 2.5.

The following is imrnediate.

LEMMA 3.3. If c is a 2-yegula? gruph then a ctK_ _l-Roorn reetqtgle ecists
if attd only if m is eDen or aLL the corponents of i* ane et)en eycles.

By analogy with l-factorizatlon r{e say that a graph G has a

k-factorLzation for some positive integer k if G can be partitioned into
spanning k-regul_ar subgraphs.

TIIEOREM 3.4. If c is a reguT,at gzaph of eoen ttegz.ee and m is euen, then
a G[K_ _]-.Poom vectcngle erists.It[

Proof. Petersen [4] has shown that a regular graph of even degree has a
2-factorization. Apply Lemas 3.2 and 3.3. I

A.
].

1

2

A3

A
n
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