A NOTE ON ONE-FACTORIZATIONS

A. Hartman and D. R. Stinson

ABSTRACT. The graph C [K ] 1is defined to have vertex set Z x Z
n m,m n m

t]
and (a,i)(b,j) is an edge whenever a - b = * 1 (mod n). Parker has
shown that these graphs have a one-factorization if and only if mn is

even. We construct special one-factorizations of Cn[Km m] (when mn is
’

even) which are useful in the construction of Room squares with large

subsquares.

1. Introduction.

In this note a graph is a graph without multiple edges or loops. The
number of edges incident with a vertex v is called the degree of v; a
graph is k-regular if every vertex has degree k. The number of vertices

is referred to as the order of a graph.

Let G be a graph of even order 2n. A one-factor of G 1is a set
of n independent edges, that is, a l-regular subgraph of order 2n. (A
one-factor is sometimes called a perfect matching.) A one-factorization
of a k-regular graph G 1is a set {FI’FZ""’Fk} of one-factors which
partitions the edges of G. A one-factorization may be thought of as a
k-colouring of the edges of G so that each vertex is incident with

precisely one edge of each colour.

For any graph G and any positive integer m we define G[Km m] to
’

be the graph formed by replacing each vertex v of G by m vertices
vl,vz,...,vm. Each edge vw of G 1is then replaced by all the m2 edges

viwj, where 1 < i, j < m.

Let G be a k-regular graph of order n (so kn is even) and let m
be a positive integer. We define a GIK ’m]—Room rectangle to be a knm/2
by km array A, each cell of which is either empty or contains an edge
of G[Km m]’ which satisfies

b

(1) each edge of G[Km m] occurs in precisely one cell of A;

(2) the filled cells of any column of A form a one-factor of

G[K 1;
m,m

(3) the filled cells of any row of A form a one-factor of one of

the K 's which make up G[K_ _]J.
m m,m

3 3
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Note that condition (2) requires that G[K ] have a one-
m

b
factorization, so necessarily nm (the order of G[K m]) must be even.
m,

The study of G[Km m]—Room rectangles was motivated by a con-
struction method for Room,squares due to the second author [5].

Although the existence question has been solved for Room squares (see
Mullin and Wallis [2]), the existence questions for (Room) subsquares of
Room squares remain open. It is easily seen that if a Room square of
side u contains a subsquare of side v, then u 2 3v+2. By using

the Room rectangles we construct here, it can be shown that for

infinitely many values of v, there exists a Room square of side

3v+2 with a subsquare of side v.

The cycle Cn of length n 2 3 1is defined to be the 2-regular
graph with vertex set :Zn and edges xy for each pair satisfying
x-y = % 1(mod n).

Parker [3] has shown that the graph Cn[Km m] has a one-factorization

if and only if nm 1is even. Under the same conditions we show that there

exists a C [K_J-Room rectangle. We also show the existence of G[K I-
n m,m m,m

Room rectangles for some more general graphs G.

2. The Existence of Cn[Km qi~foom Rectangles.

b
In this section we show that a Cn[Km m]—Room rectangle exists if
b
and only if mn is even. We begin with some examples and direct

constructions.

Example 2.1. A C3[K2 2]—Room rectangle.

%1, %h
1,2, 1,2,
2,0,/ 2,0,
0,1,(0,1,
1,2, 1,2,
2,05, 210 |

~ 156 -



LEMMA 2.2. 4 Cn[K2 2]-Ebom rectangle exists for all odd n = 3.

b ]

Proof. We give a constructive proof based on the idea of inserting four
rows at a time into Example 2.1 and increasing the length of the cycle by 2.

Let n = 2j+1 for some j = 1.

The first two rows of the array are identical to the first two rows

of Example 2.1. The next 2(j-1) = n-3 rows will have the form

kl(k+l)2 kz(k+l)1 k=2,3,...,n-2 .

The next row is

29, 0, [(23), 0

2 1

replacing the third row of Example 2.1.
The next two rows of the array are identical to rows 4 and 5 of Example 2.1.

The next 2(j-1) rows have the form

(2k)2(2k+l)2 (2k)1(2k+1)l
(2k+1)1(2k+2)l (2k+1)2(2k+2)2

k=1,2,...,5-1.

The final row is

(233, 0,123, 0y [ |

replacing the final row of Example 2.1. The array thus constructed is a
K =
C2j+l[ 2,2] Room rectangle. [J

LEMMA 2.3. 4 Cn[K2 2]—Bbom rectangle exists for all even n = 4.

3

Proof. The proof is by direct construction. Let n = 2j for some j = 2.

The first n = 2j rows are

kl(k+l)2 kz(k+l)1 k =0,1,2,...,n-1.
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The final 2j rows are

(2k) . (2k+1) (2k) . (2k+1)
1 1 2 2 A -
(21, (2k+2) , [ (21) | (2hh2) | 258 e e ]

The array thus constructed is a C2j[K ]-Room rectangle. a

We now give an example of a C3[K4 4]—Room rectangle. It is
b ]

constructed using Example 2.1 embedded in the top left hand subsquare.

Example 2.4. A C3[K4 4]—Room rectangle.

bl

1323 1122 1424 1221

2404 2303 2102 2201

|
g4t Oote| Prtal Oals

112l 1324 1222 1423

2202 2101 2304 2403

0113 0214 0312 0411

0412 0311 0114 0213

1123 1224 1322 1421

1422 132l 1124 1223

2103 2204 2302 2401

2402 2301 2104 2203

LEMMA 2.5. 4 Cn[K4 4]—Room rectangle exists for all odd n 2 3.

5

Proof. The proof is by a direct construction similar to those of Lemmas

2.2 and 2.3.

Let n = 2j+1 for some j 2 1. The first two rows of the array are

identical to those of Example 2.4. The next 2(j-1) rows have the form
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o5 (2k)4(2k+1)4 (2k)l(2k+1)2 (2k)3(2k+1)3 (2k)2(2k+l)l |

(2k+l)3(2k+2)3 (2k+l)1(2k+2)2 (2k+l)4(2k+2)4 (2k+l)2(2k+2)1

k=1,2,...,5-1.

The next row is

(1) (Zj)4 0

(23), 0

(23); 0,[ (23,) 0]

4 3

The next two rows of the array are identical to rows 4 and 5 of Example 2.4.
The next 2(j-1) rows have a form obtained from (*) by interchanging the
subscripts (1 and 3) and (2 and 4). The next row is obtained from (1) by
the same interchange. The final 2n rows are constructed, as in

Example 2.4, from the n subarrays of the form

kl(k+1)3 kz(k+l)4 k3(k+l)2 k4(k+l)l
k4(k+l)2 k3(k+l)l kl(k+l)4 kz(k+l)3

k =0,1,2,...,n-1.

The array constructed is a [K4 4]—R00m rectangle. 0

Cog41

We now give a recursive tonstruction for G[K J-Room rectangles.
m)
We assume that the reader is familiar with the definitions of Latin squares

and orthogonal Latin squares (see for example [6]).

LEMMA 2.6. If a G[Km m]—Room rectangle exists and a pair of orthogonal Latin

b

squares of order & exist then a G[Kgm 2m]—}?oom rectangle exists.
3
Proof. Notice that Kﬁm,zm = Km,m[KQ,QJ’ so we may think of the vertices of
GLK 1 as the vertices of G[K ] subscripted by elements of the set
fm,Lm m,m
{1,2,...,2}.

Let A be a G[Km’m]—Room rectangle and let L and M be a pair of
orthogonal Latin squares of side 2. We form a new array from A by the
following process. Each empty cell of A is replaced by an x% empty
array. Each cell of A containing an edge xy of the graph G[Km m] . is

’

.« th ;
replaced by an &x% array whose (i,j) entry is xL(i,j) yM(i,j)’ where

. s i 3 PN . .
L(i,j) and M(i,j) are the (i,j) b entries from L and M respectively.
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The new array is clearly a G[Klm JLm]—Room rectangle by the ortho-
’

gonality of L and M and the structure inherited from the array A. 0

We are now in a position to prove the major result of this section.

THEOREM 2.7. A Cn[Km m]-Bbom rectangle with n 2 3, m 2 1 exists if and

b4

only if mn <s even.

Proof. As noted in the introduction the conditon that mn is even is
clearly necessary for the existence of a C [K ]-Room rectangle. We

»
shall establish sufficiency in two cases, according to the parity of n.

If n is odd, then m is even. When m = 2, the result is
Lemma 2.2, When m =22 and 2 # 2 or 6 we may apply Lemma 2.7 since
Bose, Shrikhande, and Parker [1] have established the existence of a pair of
orthogonal Latin squares of order & provided £ # 2 or 6. When m = 4
the result is Lemma 2.4, and when m = 12 the result is obtained by
applying Lemma 2.7, since 12 = 4-3.

If n is even then a Cn[Kl’l]-Room rectangle is just a one-
factorization of the even cycle Cn’ which exists. Lemma 2.7 then yields
the result for every m 2 1 except m = 2 or 6. When m = 2 the result
is just Lemma 2.3, and this, together with Lemma 2.7, yields the result for
m=6-=2-3. [

3.  The Existence of GLK _ 1-Room Rectangles.

>
In this section we shall give necessary and sufficient conditions for
the existence of G[Km m]—Room rectangles when G is any 2-regular graph.

We also give methods for construction of these rectangles for many cases

where G is k-regular and k > 3.

We begin with two simple decomposition lemmas.

LEMMA 3.1. Let G be a k-regular disconnected graph. A G[Km m]~Rbom

rectangle exists if and only if Gi[Km m]-Room rectangles exist for each

component Gi of G.

Proof. A G[K_ 1-Room rectangle may be constructed by "stacking" the
m,m

]

component rectangles onme above another. The component rectangles may
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always be recovered since each row of the G[Km m]—Room rectangle comes
?

from some edge of G which belongs to a unique component. [J

LEMMA 3.2. Let G be a k-regular graph with edge-disjoint subgraphs

G, ,G ,...,Gn such that

1°°2

(1) G = G, U G2 U...U Gn,

(2) each Gy is a spanning regular subgraph, and

(3) a Ci[K m]—Room rectangle exists for each 1i.

b

Then a G[Km m]—Room rectangle exists.

b

Proof. Let A. be a C.[Km m]—Room rectangle for each 1i; then the array
i i ’

is a G[K__1-Room rectangle. [

Note that this lemma was used implicitly in Example 2.4 and Lemma 2.5.

The following is immediate.

LEMMA 3.3. If G +is a 2-regular graph then a G[Km J-Room rectangle exists

3
if and only if m is even or all the components of G are even cycles.

By analogy with l-factorization we say that a graph G has a
k-factorization for some positive integer k if G can be partitioned into

spanning k-regular subgraphs.

THEOREM 3.4. If G is a regular graph of even degree and m <is even, then

a G[Km m]—Room rectangle exists.

bl

Proof. Petersen [4] has shown that a regular graph of even degree has a

2-factorization. Apply Lemmas 3.2 and 3.3. 0
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