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FURTHER RESULTS ON FRAMES

J.H. Dinitz and D.R. Stinson

In [4], the authors defined the term frames, and gave
several constructions for frames. We extend our results
to show that if (1) t is odd and u is even

or (2) (t,u) = (2,4)

or (3) u= 2 or 3
then there does not exist a (t,u)-frame.
Also if (1) u 2 7 is odd

or (2) u = 6 is even and t is:even

or (3) u 5 and (t,210) # 1

or (4) u=4 and 4 divides t

1]

then there exists a (t,u)-frame.

1. Introduction
In [4], the authors defined frames, and gave several constructions

for frames. We wish to extend these results.

Let T and U be sets with |T| =t, IUI = u. A tu by tu array

S will be called a t-frame of order u if it enjoys the following

properties:

(1) Each cell is either empty or contains an unordered pair of
elements of UXT,

(2) There exist U empty t by t subsquares of S, no two of them
containing any cell in the same row or column. These subsquares
will be denoted Sui. (It will usually be convenient to-place
the Sui's on the diagonal of §S),

(3) A row or column of S which meets Sui contains each element of
(U\{ui})XT exactly once, and contains no element of {ui}XT,

(4) Each unordered pair of elements {(ul,tl),(uz,tz)} with ul#uz,
occurs in a unique cell of S. By counting it follows that no
pair of type {(u,tl),(u,tz)} occurs in the array.

We will refer to a t-frame of order u as a (t,u)-frame.

We are interesting in the following question: For what ordered
pairs (t,u) does a (t,u) - frame exist?

In [4], a partial answer was given to the above question for u
odd. The following was shown.

THEOREM 1.1. If u > § <8 odd and there does not exist a t-frame of

order wu, then either
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(1) u==56 and (t,6) = 1.
(2) t=2 or 6 and u = 3 mod 4.

We will eliminate most of the above possible exceptions, and also

obtain some results on frames of even order.
First, we must recall several definitions and results from [4].
Let G be an additive abelian group of order g, and let H be
a subgroup of G of order t, with g-t even. A t-frame starter of
order g/t in G\H (or a (¢,9/t)-frame starter) is a set of pairs
A= {{si,ti},lsisggsJ satisfying the properties:
(1) {s;} u {t;} =c\n
(2) {£(s;-t;)} = G\H.
Let A = {{si,ti}} and B = {{ui,vi}} be two frame starters.
We may assume that ti—si = vi—ui, for 1 <1i=< gézu We say that A and
B are orthogonal frame starters if ui—si = uj—sj implies i = j, and
u,-s, £ H for all 1i.
A frame starter A = {{si,ti}} is strong if st = sj+tj
implies i = j, and si+ti £ H for all i.
LEMMA 1.2. If A= {{Si’ti}} i8 a strong frame starter then A and
- A= {{_si’—ti}} are orthogonal frame starters.
LEMMA 1.3. If there exist a pair of orthogonal t-frame starters in G\H
with |G| =g and |H| = t, then there exists a (t,u)-frame, where
u = g/t.
LEMMA 1.4. Suppose u = 2 or 3 mod 4 and t 1is odd. Then there does
not exist a 2t-frame starter of order u.
LEMMA 1.5. Suppose t 1s odd. Then there does not exist a strong
t-frame starter of order 5.
Let Vv be a positive integer and let K be a set of positive
integers. A pair (X,B), where B is a set of subsets of X, is said
to be a (v,K)-PBD (or pairwise balanced design) provided IXI =v, Be B

implies ]B| e K, and for any distinct x in X, there is a unique

1'%2
B € B with {xl,xz} © B. A set A of positive integers is said to be
PBD-closed if v € A whenever there exists a (v,A)-PBD.
‘ For t a positive integer, define F, {u[<a (t,u) -frame existsl}.
LEMMA 1.6. F, is PBD-closed.
LEMMA 1.7. Suppose a (t,u)-frame exists, and s # 2 or 6. Then a
(ts,u)-frame exists.

We close this section by showing that certain frames do not exist.

LEMMA 1.8. If any of the following holds, then a (t,u)-frame does not
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exitst:

(1) t is odd and u 1is even

(2) u==2ors3

(3) (t,u) = (1,5) or (2,4). )
Proof. 1In any row of such a frame there must be t(u-l1) symbols, an odd
number. Since a cell contains 0 or 2 symbols, we have a contradiction.
This proves (1).

(2) is trivial.

The case (1,5) is a Room square of order 5, which is known not to
exist [9]. Finally, it can be shown by exhaustive search [11] that no
(2,4) -frame exists. [

The authors conjecture that, other than the exceptions listed
above, all frames exist. In the remainder of the paper we investigate
the existence of frames. In Section 2 we determine F2, and in Section
3 we determine F4. This is sufficient to determine the existence of
all frames of all orders exceeding 5. Frames of orders 4 and 5 are
briefly discussed in Section 4.

For applications of frames, the reader is referred to [2], [41,

and [10].
iR 2-frames
In this section we show that F2 = {u=5}. We will accomplish
this by PBD-closure. Let K_ = {5,6,...,20,22,23,24,27,28,29,32,33,34,39}.

2
LEMMA 2.1. Suppose K, < F,. Then F, = {u=5}.

Proof. Hanani has shown [5] that there exists a (v,K2)—PBD if v 2 5.
Since F2 is PBD-closed, we have F2 > {u25} (provided K2 < Fz).
But we have already noted that 2,3,4 ¢ F2. ]

Thus we wish to show that K2 c F2. It would be nice if we
could construct strong (2,u)-frame starters of these orders, but Lemma
2.4 indicates that this is impossible for u = 2 or 3 mod 4. We construct
2-frames of orders u = 2 or 3 mod 4 by means of intransitive starters
and those of orders u = 3 mod 4 by a direct construction using skew
Room squares. 2-frames of orders u = 1 mod 4 are already known to
exist (Theorem 1.1) and 2-frames of orders u = 0 mod 4 can be
constructed by means of strong 2-frame starters.

We first describe the method of constructing frames from
intransitive starters. This technique has been used in the construction

of Howell designs by Schellenberg and Vanstone [8], and Zhu [12].



Let G be an abelian group of order g, having a subgroup H of
order t, with t even (hence g and g-t are also even). We define
a pair of orthogonal intransitive (t,g/t)-frame starters (or a pair of
(t,g/t)-0IFS), in G\H, to be a quadruple (Al’AZ'Bl’BZ) satisfying

the following properties:

(L A = {{s,t,},121s30 250 ({x, ), 15ist),
. -3t . _g-2t
A, = {{si,ti},g—z—rlsls = 1,
B, = {{v,,w,},1<isZ25ul{u, },1sise),
1 i i
B, = {{v, w,},325<18725y,
(2) {ri} U {si} U {ti} = G\H,
{ui} V] {vi} u {wi} = G\H;
(3)  {x(s;-t)} v {xtv =) T =3t L yg072 28 = o\,

{+(s ~-t, ) %kigs%} U {i(vi—wi)}'= G\H;

. -3t
(4) Si-ti=vi—wi, for lSlS-g;-z'—;
-3t . .
(5) if. v, - s. = vJ - s:| for 1 <i<3j< g??—v then i = j,
if u, - r, =u, -r, for 1< i<3j<t, then i = j,
i i j j
. -3t .
v, -8, # uj - rj for 1 <1i< g2 y 1 £ 3 <t
6 v, -5, £H 12123 and u, -r, ¢H, 155 < t;
i i 2 3 J
g-3t . g-2t
- - +1<ig ==
(7) any element S5 ti' or vi wi, where > 1 i 5

has even order.
OIFS are related to frames as follows.
LEMMA 2.2. If there exists a pair of (t,g/t)-O0IFS in G\H, then there
exists a (t,g/t +1)-frame.
Proof. Suppose (Al'Az'Bl'B ) is a pair of OIFS. We describe the
construction informally.

First, construct a square array of side g, with first row A

1
and first column Bl, by cycling diagonally, as usual. There are t
transversals made up of singletons. Adjoin a new infinite element to
each of these.

Now, add t new rows and t new columns to the array. These
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side t. The first row of this larger array will be Al (with the t
infinite elements) and A2; the first column will be Bl and B2. We
will cycle the pairs of A  down the last t columns. The pairs of

B, will be cycled across ihe last t rows in a similar way.

This is done as follows. The translates of a given pair of A2

will use each group element twice. By property 7, we may divide this
.set of translates into two sets, so that in each set every group element
is used exactly once. Since we have t/2 pairs in B2, the translates
yield the contents of the last t columns of the array as desired.

It may be checked that the array described above is a (t,g/t+l)-
frame. The properties (1) - (7) are precisely those that ensure that
the array is indeed the desired frame. [J
EXAMPLE 2.3. A (2,6)-frame constructed by intransitive starters. Here
G=7Z_%%,_, H={0}xz2, and

5 2
4, = {{(1,0),(2,0)},{(2,1),(4,1)},{(3,0)},{(1,1)}}
AZ = {{(4,0),(3,1)}},
B, = ({(3,0),(4,0)},{(1,1),(3,1)},{(1,0)},{(2,1)}},
B, = {{(2,0),(4,1)}}.
21 30 10 11 40
0 41 @y 20 oy 31
20 31 11 10 41
40 @ 21 @) 30
21 31 40 20 00
©) 1 01 @y 30 41
20 30 41 21 0l
@) 00 0y 31 40
30 31 41 00 10
40 w1 5 11 @y o1
31 30 40 0l 11
41 oy 10 @y 00
10 40 41 01l 20
®y 00 ®y 3 21 111
11 41 40 00 21
@y 01 @) 20 10
11 20 00 ol 30
31 @y 10 @y 21
10 21 0l 00 q 31
30 wy 11 @ . 20
20 30 40 00 10
41 0l 11 21 31 co
2L 31 41 01 11
40 11 00 20 30
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We now describe a method of producing intransitive 2-~frame starters
from ordinary (strong) 2-frame starters.
LEMMA 2.4. Suppose 4 = {{Si’ ti}} 18 a strong (2,u)-frame starter in
G\H. Suppose there exist two pairs {a,b} and {e,d} in A such that
(1) a-b and e-d both have even order,
(2) atec # si+t1: # b+d, for any <,
(3) ate, b+d £ H.
Then there exists a pair of OIFS in G\H, so ut+l € FZ'
a\{{a,b},{c,d}} v {{c},{a}},

Proof. Let A

1
B, = {{a,b}},
B == a\{{-a,-b},{-c,-d}} v {{-a},{-b}},
and B, = {{-c,-d}}.
It may be easily verified that (Al'Az'Bl'BZ) satisfies all the required

properties. [

We now show that we can satisfy the hypotheses of the above lemma
for g = 1 mod 4 a prime power.
LEMMA 2.5. Suppose q = 1 mod 4 is a prime-power. Then q+l € FZ'
Proof. Let w be primitive in GF(q), and let gq = 4t+l. Define
Q= {l,l.uz,...,u.nm"_2
GF(q) sz\{O} xZ,. Let A= {{(y,l),(ym,l)},{(yw,O),(ywz,O)}
{(—y,l),(—ym,o)},{(—yw,l),(-sz,O)}yeQ}. A is a strong frame starter

}. We define A, a strong 2-frame starter in

by [4, Theorem 3.4].
Consider (a,b) = ((-w,1),(-w,0)),
and (c,d) = ((-1,1),(-w,0)).
Then a-b = (mz—m,l) and c-d = (w-1,1) both have second coordinate
equal to 1, and so both have even order.
We must check the condition on the sums. We have a+c = (-1-w,0)
and b+d = (—m-wz,o), so neither is in {0} XZ2.
The sums of pairs in A are
{ (y(1+w) ,0) , (yw(1l+w) ,0), (-y (1+w) ,1) , (~yw (1+w) ,1) ,yeQ}.
Now ~l-w = mzt(l+m), and —w—w2 = m2t-m(l+m), so neither a+c nor b+d
has appeared as a sum. Lemma 2.4 establishes the result. [J
We now describe a construction for 2-frames of orders u = 3 mod 4.
Bn fact, this construction will work for orders u = 1 mod 4 as well.
In [7], Schellenberg and Vanstone use essentially the same construction
to show the existence of some Howell designs. This construction uses

skew Room squares (defined in [6]) and pairwise orthogonal Latin

squares (POLS) containing a common transversal (defined in [3]).



i meve  mmppeue vreem e wme— = w —eem —im e —qeeeem — o e .
and suppose there exist two POLS of order wu containing a common
transversal. Then u € FZ'
Proof. Let R be a skew Room square of order u, on symbol set
oy {1,2,...,u}. Let S be its skew mate, on the same ‘symbol set. We
may suppose that R and S are both standardized with respect to <,
and the diagonal cells contain {=,1},{=,2},...,{®,u} in each case. Let
Ri be the array obtained from R by deleting the contents of the
diagonal cells, and replacing all symbols x by ordered pairs - (x,1i).
Let Si be defined similarly.
Now let L and M be two POLS of order u containing a common

transversal. Let L and M be described on symbol set {1,2,...,u}.

We may suppose that the common transversal T is formed by the cells
containing (1,1),(2,2),...,(u,u), when L and M are superimposed

(the first coordinate is the entry in L; the second is the entry in M).
Let Li be formed by deleting T from L, and replacing any symbols x
by (x,i), and let Mj be defined similarly. Consider the following

array F.
RlOS P
L
1%
Rlos2 is the array formed by superimposing Rl and SZ; LloM2 is the
array formed by superimposing Ll and M2. It may be verified that F

is a (2,u) frame on {1,2,...,u} x {1,2}. Notice that the symbols
(i,1) and (i,2) are missing from rows and columns i and u+i, for
1l € i <u. The intersections of these rows and columns form the empty

two-by-two subsquares. [
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EXAMPLE 2.7. A (2,7)-frame. An empty two by two subsquare is indicated.

61 | 51 | 62 (31 | 32 | 52 i j i f
21 | 41 | 42 | 11 | 22 | 12 i
L

62 01 | 61 | 02 | 41 | 42
22 31 | 51 {52 | 21 | 32
52 | 02 11 f o1 | 12 | 51
42 | 32 41 | 6l | 62 | 31
61| 62 | 12 21 | 11 | 22
41 | 52 | 42 51 | 01 | 02
32 oL | 02 | 22 31 | 21
12 | 51 | 62 | 52 61 | 11
31| 42 | 11 | 12 | 32 41
21| 22 | 61 { 02 | 62 01

51 41 52 21 22 42
11 31 | 32 01 | 12 02

61 51 41 31 21 11
22 42 62 12 32 52

21 0l 61 51 41 31
62 32 52 02 22 42
41 31 11 0ol 61 51
52 02 42 62 12 32
61 51 41 21 11 ol
42 62 12 52 02 22
11 o1 61 51 31 21
32 52 02 22 62 12
31 21 11 01 61 41
22 42 62 12 32 02

51 41 31 21 11 0ol
12 32 52 02 22 42
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LEMMA 2.8. There exists a skew Room square if 7 <n < 39 and u <s odd.

POLS containing a common transversal also exist whenever we need them.

The following was established in [3].

LEMMA 2.9. There exist two POLS of order u containing a common trans-

versal

COROLLARY 2.10. If 7 <u <39 and u is odd, then u e F

if u # 2,3, or 6.

Summarizing the above we have

9°

"LEMMA 2.11. For u = 8,12,16,20,24,28, and 32, there exists a strong 2-

frame starter in JZZM\{O,u}, and hence u € Fz.

Proof.

These starters are listed in the appendix. [

We have constructed all the 2-frames we shall need, except for

those of orders 22 and 34.

LEMMA 2.12. {22,34} ¢ F

Proof.

9°
By computer, we have constructed strong 2-frame starters of order

u in Ezzu\{o,u} for u = 21 and 33. These are listed in the appendix.

In both cases, we can find two pairs {a,b} and {c,d} which satisfy

the hypotheses of lemma 2.4. These pairs are:

for u=121, (a,b) = (6,7) and (c,d) = (37,40);
for u = 33, (a,b) = (50,51) and (c,d) = (38,39). [

Thus we have determined F2'

THEOREM 2.13. FZ = {u=5}.

Proof.

Lemma 2.1, Theorem 1.1 and Lemmata 2.5, 2.10, 2.11 and 2.12 prove

the result. [

3.

result.

LEMMA 3.1. Suppbse K

Proof.

4-frames
We first show that F4 = {u24}. Again, we use a PBD-closure
Let K4 = {4,5,...,12,14,15,18,19,23,27}.
F . = {u24}.
4 F, Then F4 {u=4}
Hanani has shown [5] that there exists a (v,K4)—PBD if v=24.0

Now, by Theorem 1.1, we have u € F4 if u 225 is odd, so we

need only consider the even orders.

LEMMA 3.2. 4 € F .

Proof.

4
In [10], a strong 4-frame starter in Z4XZh\{(O,O),(O,2),(2,O),(2,2)}

is given. [

LEMMA 3.3. {8,10,12,14,18} < F4.

Proof.

For u = 8,10,12,14, and 18, strong 4-frame starters in

Z4u\{0'u,2u,3u} are given in the appendix. [



TNUS WEe NAaVE OIly LU CUIDLLULL A =TTLLANS Ui Uiuci Ve
LEMMA 3.4. There does not exist a strong 4-frame starter of order 6 in
224 \{0,6,12,18}.
Proof. see [1]. 0O

Thus we construct a (4,6)-frame by means of intransitive starters.
LEMMA 3.5. There exists a pair of (4,5)-0IFS in
Z5><Z2><Z2 \{O}XZZZXZZ i hence 6 € F4.
Proof. Let A, = {{(,0,0),(4,0,00},{(2,0,1),(4,1,0) },{(4,0,1),(3,1,0) },
{(4,1,1),(3,1,1)},{(3,0,00},{(1,0,1)},{(1,1,00},{(2,1,1)}},
{{(,0,1),(1,1,1)},{(1,0,0),(2,1,0)}}

1]

A

Bi = {{(1,0,0),(3,0,0)},{(1,1,0),(3,0,1)}},
{(2,1,0),(1,0,1)},{(2,1,1),(1,1,1) },{(4,1,1) },
{(2,0,1)},{(3,1,0)},{(4,0,0)}}

B, = {{(2,0,0),(4,0,1)},{(4,1,0),(3,1,1)}}

It may be verified in a finite amount of time that (Al’AZ'Bl'B2) is a
pair of (4,5)-0IFs. [

Thus we may describe F4.
THEOREM 3.6. F, = {u=4}.
Proof. Lemmata 3.1, 3.2, 3.3, and 3.5. 0

We are now able to say exactly when (t,u)-frames exist for u 2 6.
THEOREM 3.7. Let u 2 6. Then a (t,u)-frame does not exist if and only
if t 18 odd and u 1is even.
Proof. Suppose first that u is odd, u 2 7.

If t # 2 or 6, then a (t,u)-frame exists by Theorem 1.l. By
Theorem 2.13, u € F_.. Then applying Lemma 1.7 with t =2 and s = 3,

2

we have u € F6.

Thus, suppose u is even, u 2 6. By Theorem 2.13, u € F

9"
Applying Lemma 1.7 with t = 2 yields a (t,u)-frame for even t unless
t = 4 or 12. But Theorem 3.6 gives a (4,u)-frame, and applying Lemma
1.7 with t = 4, s = 3, we obtain a (12,u)-frame. Finally, no (t,u)-

frame exists if t is odd and u is even, by Lemma 1.8. [

4. Frames of order 4 and 5.

The problem of determining the existence of (t,u)-frames with
u =4 or 5 is made more difficult by the non-existence of (1,5)- and
(2,4)-frames. Lemma 1.7 is the only recursive construction we have
which preserves the u-value. However, Lemma 1.7 cannot be used to
construct any (p,5)- or (2p,4)-frame, for p an odd prime.

Although we cannot completely solve the problem, we obtain some
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Theorem 1.1 states that a (t,5)-frame exists if t is divisible
by 2 or 3. We will construct (5,5)- and (7,5)-frames; in conjunction
with Lemma 1.7, many frames of order 5 will result. Lemma 1.5 indicates
that the above frames cannot be constructed by strong frame starters.
However, pairs of orthogonal starters do exist.

LEMMA 4.1. There exist (5,5)- and (7,5)-frames.

) Proof. A pair of orthogonal 5-frame starters (in 255\{0,5,10,15,20})

is given in the appendix. A (7,5)-frame was constructed in [2]. 0O
LEMMA 4.2. If (£,210) # 1, then there exists a (t,5)-frame.
Proof. 1If (t,6) # 1, then Theorem 1.1 implies the result. Thus we may
assume that t =5s or 7s, with s odd. Then Lemma 1.7 yields the
(t,5)-frame. 0O

Finally we consider frames of order 4.
LEMMA 4.3. There exists an (8,4)-frame.
Proof. Two orthogonal 8-frame starters (in 232\{0,4,8,12,16,20,24,28})
are given in the appendix.
LEMMA 4.4. If 4|t then there exists a (t,4)-frame.
Proof. Lemmata 3.2 and 1.7 yield all the desired frames except for
(8,4)- and (24,4)-frames. The (8,4)-frame exists by Lemma 4.3, and the
(24,4)-frame exists by setting t =8, s =3, and u = 4, in Lemma 1.7. 0

5. Summary

Thus we have determined the existence (or non-existence) of all
(t,u) ~frames with u # 4,5. Partial results for u=4 and 5 are
given. To complete these partial results appears to be difficult.

In closing we would like to mention two related problems. First,
when can skew frames be constructed? (A frame is skew precisely one, of
any two cells, symmetric with respect to the diagonal and not in any
Sui, is empty.) Skew frames are of use in constructing skew Room
squares. ([1l] and [10]).

Another problem is to find examples of "frame-like" objects,
which would have all the properties of frames, except the empty sub-
squares Sui need not all be the same size. Such objects could prove
useful in the construction of Howell Designs (see [4; Theorem 7.1]) and

(if skew), skew Room squares.
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11,12

22,21
5,20

30,31
1,24

10,9
24,33
25,2

8,7
28,19
1,32

53,52
47,38
- 50,11
2,33

57,56
3,58
44,61
39,14

6,7
23,14
5,22

50,51
29,38
47,64
24,65

4,6

18,16
9,19

3,5
28,18

14,16
21,11
15,37

20,18
44,34
5,35

14,16
41,51

8,26
18,48

51,53
28,18

8,26
34,60

24,26
29,19
32,8

55,57

4,14
36,54
23,17

2,15 1,13

(2,12) -strong
17,14 6,10
2;13

(2,16) -strong
19,23
13,25

17,20
6,27

(2,20) -strong

29,32 7,3
27,38 8,36
22,1

(2,24) -strong

36,39 6,2
15,4 38,26
40,21 41,13

(2,28) -strong

9,12 25,21
6,17 43,55
3,22 24,44
30,1

(2,32) -strong

49,52 37,41
35,46 59,47
31,12 36,16

5,42 4,40

(2,21) -strong

37,40 35,31
20,9 13,25
10,33 38,16

(2,33) -strong

41,44 63,59
26,15 16,28
42,61 40,60
7,46 34,62

5,10

frame starter

4,23

frame starter
7,12
9,22

frame starter
23,18
26,13

frame starter
42,47
45,10
43,22

frame starter
49,54
40,27
31,10

7.1

21,15
26,8

34,28
31,17

27,33
25,11
29,3

29,35
37,23
20,42

frame starter

2,7
23,10
54,11
19,48

frame starter
39,34
15,2

frame starter
10,5
19,32
58,37
20,49
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15,9
20,6
21,63
43,13

18,12
41,27

8,15

11,4
14,29

6,39
30,5

23,16
31,46
12,37

32,39
34,19
46,13

22,29
45,30
27,50
24,55

4,11
3,30

25,18
21,6

30,53
48,13

11,3

10,2

12,4
19,35

9,17
30,14

7,15
45,5
4,36

25,33
17,1
38,62

28,36
17,1

31,39
11,27
3,45
1,35



21,18

26,27 29,31 23,19 7,12 9,3
4,14 6,17 1,13 30,11 10,28 20,5
(4,12) -strong frame starter
33,34 20,22 44,41 45,1 6,11 47,5
4,43 40,30 8,19 10,23 39,25 32,17
7,37 27,46 9,29 15,42 16,38 26,3
(4,10) -strong frame starter
33,32 35 26,23 21,25 39,34 17,11
26,7 9,38 1,13 22,35 18,4 27,2
28,6 15,36
(4,14) -strong frame starter
7,8 51,49 23,26 20,16 32,27 18,12
41,50 39,29 4,15 46,34 45,2 25,40
10,48 3,22 1,37 52,31 21,55 5,38
24,54 6,33
(4,18) -strong frame starter
30,31 8,6 9,12 32,28 51,46 41,47
67,4 69,59 38,49 44,56 48,61 10,24
22,5 33,14 45,65 50,71 35,57 17,66
11,37 29,2 26,70 68,39 25,55 21,52
20,58 64,27
(4,22) -strong frame starter
56,57 79,81 25,28 47,51 23,18 59,53
7,86 83,73 16,27 46,34 76,1 31,45
19,36 29,11 60,41 68,48 87,20 52,75
30,4 39,12 5,33 15,74 14,72 71,40
10,64 55,2 13,65 43,80 35,85 77,38
24,70 37,82
Two orthogonal (5,5)-frame starters
8,9 17,19 24,2 12,16 L,7 21,3
6,7 1,3 16,19 18,22 2,8 14,21
6,14 13,22 18,4 11,23
9417 4,13 12,23 24,11

15,22

28,35
18,2

12,19
24,8

36,43
53,13
35,11

16,23
3,60

43,19
53,13

42,49
17,32
67,3
26,58
54,6

13,21
31,14

37,29
14,31

17,9
30,47
19,44

34,42
63,7
62,15
40,1

61,69
78,62
84,21
63,8
50,9



e = =

21,22 25,27 14,17 1,6 5,11 23,30

14,15 19,21 27,30 247 3,9 26,1
10,19 31,9 2,13 26,7 15,29 3,18
29,6 13,23 11,22 5,18 17,31 10,25
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