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Abstract
In this note, we review the Johnson bounds for packings, and derive an
explicit formulation of the second Johnson bound.

A (k, v) —packing is defined to be a pair (X,B), where X is a v—set
and B is a set of k—subsets of X, such that no pair of elements of X occurs
in more than one k—subset in B. Elements of X are called points and
clements of B are called blocks. The packing number D(k, v) is defined
to be the maximum number of blocks in any (k, v) —packing.

Packings and packing numbers have been the object of considerable
study; see Mills and Mullin [4] for a recent survey. The “counting” bound
on D(k,v) is usually known as the first Johnson bound [2, Theorem 2]; it

states that i
v|v—
oenr <[22

This bound tends to be a very good bound whenv > k* — k+ 1. However,
the first Johnson bound is less effective when v < k* — k. For such sub-
geometric packings, the second Johnson bound yields much more accurate
bounds (see, for example, [7,8,5,6]).
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We now give a brief description of the second Johnson bound [2, Eq.
(6)] (cf. [1, Theorem 8], [3, Ch. 17, Thm. 3], [5, pp. 219-220] and [4, Eq.
(10)]). This description follows the approach of Stanton [5].

Suppose D = (X, B) is a (k, v) —packing, and denote b = |B|. Denote
X={z;:1<i<v}andforl << v, define r; to be the number of
blocks in which z; occurs. For any block B € B, define the weight of B
to be

w(B)=b-1- Y, (r-1.
{i:z;€B}
Evidently, the weight of B is the number of blocks in B disjoint from B,
and hence w( B) > 0. Define the weight of D to be

w(D) = Y, w(B).

BeB

Substituting, we obtain

w(D) =b(b—1) =Y ri(ri— 1.

i=1

Since every block has non-negative weight, so too does D have non-
negative weight. Hence, we obtain the following necessary condition for
the existence of a ( k, v) —packing with b blocks:

B(b—1) > D ri(ri—1). (1)

=1

Now, it is clear that
v

E'r; = bk.

i=1
It is easy to see that 3"1_; ri(r; — 1) is minimized if the r;’s are as equal
as possible. More precisely, if we compute bk = Qv + R, where R and Q)
are integers, 0 < R < v — 1, then

v

Yr(ri—1) > RQ+DQ+(v—RQQ-1
1=1
= vQ(Q -1 +2RQ.
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Substituting in Inequality (1), we obtain the following necesssary existence
condition for the existence of a ( k, v) —packing with b blocks:

b(b—1) > vQ(Q—1) +2RQ, (2)

where bk = Qv+ R,0 < R<v-—1.

We can use Inequality (2) to obtain an upper bound on D(k,v) by
taking b = 1,2,..., until a contradiction is obtained. If b is the smallest
value of b that yields a contradiction in Inequality (2), then D(k,v) <
bo — 1. The resulting bound is the second Johnson bound.

The purpose of this note is to obtain an explicit formulation of the sec-
ond Johnson bound. We will prove two bounds based on Inequality (1).
The first form is simpler but slightly weaker than the second. The follow-
ing bound is shown in [2, Theorem 3] (cf. [1, Eq. (18)], [3, Ch. 17, Thm.2]
and [4, Eq. (11)]); the case of equality is discussed in [5, Theorem A].

Theorem 1 D(k,v) < (k—1)v/( k% —v), with equality occurring if and
only if there exists a (%122, 5—:—5, 1)—BIBD.

Proof: Since Y }_, r; = bk, Cauchy’s inequality tells us that
v
Sor? > (bk)? /v
i=1

If we substitute this into Inequality (1), then we get
b(b— 1) > (bk)? /v — bk.

This simplifies to give the stated upper bound on D(k, v).

Let’s look at when the bound will be met. Equality occurs (in Cauchy’s
inequality) if and only if r; = (bk) /v = (k* —k) /(k* —v) for1 < i< v.
Further, it must be the case that w(B) = 0 for every block B € B. This
second condition means that any two blocks intersect in a point.

First, suppose that there exists a ( k, v) —packing with b = (k—1)v/( k% —
v). The dual incidence structure will consist of b points, v blocks of size
(k% —k) /(k* —v), such that every point occurs in k blocks and every pair
of points occurs in one block. Hence it is a BIBD with the stated parame-
ters. Conversely, if a BIBD with these parameters exists, then the dual is a
(k, v) —packing with (k — 1)v/(k* — v) blocks. 0
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Our next objective is to produce an explicit bound using the “bk = Qu+
R” idea. As far as I know, such a bound has not appeared in the literature.
We begin by rewriting Inequality (2). If we replace R by bk — Qv, then we
obtain the following (equivalent) inequality:

B(2kQ — b+ 1) <vQ(Q+1). (3)

Consider the function f(b) = b(2 kQ—b+1) for fixed integers k and Q.
f is a quadratic function, having its maximum at b = kQ + 1/2. However,
for integral values of b, f is maximized when b = kQ or kQ + 1. Note also
(for fixed integers k, v and Q) that we are interested in the integers b such
that
Qu

Qu+v-—1
k <b< k ’
We will call this set of integers the Q—th interval.

Lemma 2 Suppose k and v are positive integers, where2 < k < v < k2.
Further, suppose Q < (v — k) /( k* — v) is a positive integer and b is an
integer. Then Inequality (3) is satisfied:

b(2kQ —b+1) <vQ(Q+ 1).

Proof: We have

b(2kQ —b+1) = f(b)

< f(kQ)
= kQ(kQ+ 1).

However, for2 < k < v < k%, we have:

kQ(kQ+1) < vQ(Q+1)

sQ(* —v) < v—k

—k

<+ Q < I:Z—v'

Lemma 3 Suppose k and v are positive integers, where2 < k < v < k%,
Further, suppose Q > (k* — k) /( k* — v) is a positive integer. Then
f(Qu/k) > vQ(Q + 1), and equality occurs if and only if Q = {R%
k) /(k* —v).
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Proof: We have

k k
Qv(Q(Z—klz)+%>.

However, for2 < k < v < k2, it is easy to see that

@<2kq_@+ 1)

<

=

=|9

N’
[

Q(2—1>+% > Q+1

k2
Q<1 i) > 11
g %) 2 Tk
k% —k
+q 2 k2 —v

Lemma 4 Suppose k and v are positive integers, where2 < k < v < k?,
Q > 1 is an integer, and b is an integer such that Qu/k < b < 1+ Qu/k.
Then f(b) > f(Qu/k).

Proof: Since Qv/k < Qk, the result follows since f is a quadratic function
attaining its maximum at Qk + 1/2. 0

The behaviour of the second Johnson bound depends on whether (v —
k) /(k? — v) is an integer. If it is, then we will see that the bound given by
Theorem 1 is in fact the same as the second Johnson bound. (We assume
throughout that 2 < k < v < k2.)

Case 1: Suppose Qo = (v — k) /(k* — v) is an integer. From Lemma
2, Inequality (3) is satisfied for any integer b in the Qo —th interval. Next,
observe that (Qo + 1)v/k = (k — 1)v/(k® —v) = kQo + 1 is also an
integer. By Lemma 3, for b = (Qo + 1)v/k, Inequality (3) is met with
equality (where @ = Qo + 1). Finally, by Lemma 4, Inequality (3) is
violated for b = 1+ (Qo + 1)v/k. So, the second Johnson bound in this
caseis (k — 1)v/( k% —v), agreeing with Theorem 1.

Case 2: Suppose (v — k) /( k% — v) is not an integer. Let Qo = [E"f_’—‘;]

From Lemma 2, Inequality (3) is satisfied for all b in the (Qo — 1) —st
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interval; and from Lemmas 3 and 4, Inequality (3) is violated for b =
[(Qo + Dv/k] (with Q = Qo + 1). So we have to consider the integers b
in the (o —th interval:

] v [ 2052=1).

Since Q (= Qo) is now fixed, we cén solve Inequality (3) to obtain an upper
bound b < |bo |, where

_2kQo+1-— V(2kQo + D% —4vQo(Qo + 1)

> .
(From the proof of Lemma 2, Inequality (3) is violated for b = Qok, so by
is a real number and by < Qok.)

We need to show that by is in fact the correct value of the second John-
son bound. This will follow if we can show that by is indeed in the Qo —th
interval. By an argument similar to the the proof of Lemma 3, Inequality
(3) is satisfied for b = Qov/k, so bo > Qov/k.

Hence, let us consider the the value of f when b= (Qo + 1)v/k:

f((Qo+1)v> _ (Qo+Duw (Zon—(Q°+1)v+l)

bo

k k k
= (QOk'; Dv (ZICZQO—"(QO"'I)U"' IC)

Now, Inequality (3) will be violated if and only if

Qo2 DY (3129 — (Qo+ Dv+k) > vQo(Qo+1D)

k2
< 2k*Qo —(Qo+ Dv+k > k*Qo
v—k
< Qo < Z_v

Since Qo > (v—k) /( k% —v), it follows that Inequality (3) is violated
for b= (Qo + 1)v/k. This means that by < (Qo + 1)v/k, as desired. So
we have proved the following result, which complements Theorem 1:

Theorem 5 Suppose k and v are integers,2 < k < v < k2, and (v —
k) /(k* — v) is not an integer. Let Qo = h"f_’ﬂ . Then

D(k,v) < {ZkQO + 1 —\/(2on; DZ —4vQo(Qo + 1)J |
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