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Abstract. In this paper, we give some recursive constructions for large sets of dis-
joint group-divisible designs with block size 3. In particular, we construct new infinite
classes of large sets for designs having group-size two. These large sets have applica-
tions in cryptography to the construction of perfect threshold schemes

1. Introduction
A group-divisible design is a triple (X, G, A) which satisfies the following prop-
erties:

i) Xis a finite set of points

ii) G is a partition of X into subsets called groups

iii) A is a set of subsets of X (called blocks), such that a group and a block
contain at most one common point, and every pair of points from distinct
groups occur in exactly one block.

We abbreviate the term group-divisible design to GDD. The type of a GDD
is the multiset {|G|: G € G}. We denote the type by 1*12%2 ..., where there are
precisely u; occurrences of 1,1 > 1.

In this paper we shall be studying G'D Ds in which every block has size 3. Such
aGDD is called a 3-GDD. Suppose we have two 3-G D Ds with the same group
set, say (X,G,A) and (X,G,B). These 3-GDDs are said to be disjoint if
ANB = §. A set of more than two 3-G D Ds (having the same group set) is called
disjoint if each pair is disjoint.

It is not difficult to see that the maximum number of disjoint 3-GDDs of type
t* is t(u — 2). If s > t, then the maximum number of disjoint 3-G D Ds of type
t¥s! is t(u — 1). We will call such a collection of disjoint 3-GDDs a large set,
and denote it by LS(¢*) and LS(t"s'), respectively.

A 3-GDD of type 1* is called a Steiner triple system of order u and denoted
STS(u). We can write an STS as an ordered pair (X, A), omitting the groups.
LS(1%) have been extensively studied, and the following result has been proven
by Lu [4,5] with some final cases completed by Teirlinck [9].
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Theorem 1.1 [4, 5,9]. Suppose v =1 or3 modulo6,v > 7. Then there exists
an LS(1Y) ifandonlyif v # 7.

In this paper, we are primarily interested in the existence of LS(t*), which
is an interesting and natural generalization of LS(1Y). Some constructions for
LS(2%) and LS(2%4') have been presented in [6] and [2], where the terminology
"disjoint packings" is used. These particular types of large sets can be used for the
construction of threshold schemes, which are used in cryptographic applications.

In the remainder of this section, we give some preliminary results which will
be used in later sections.

Lemma 1.2. Forany integert > 1, there exists an LS(t*).

Proof: Let G be an additive Abelian group of order ¢, let X = {a,b,c} x G
and let G = {{a} x G, {b} x G, {c} x G}. Forany z € G, define Ax =
{(a,9),(b,7),(c,k):i+ j+ k =z} Thenthet GDDs (X, G,Ax), z € G, are
disjoint.

|
Lemma 1.3. If t(u + 1) is even, then there exists an LS(t** (tu)?).

Proof: If u = 1, we apply Lemma 1.2, so assume u > 2. By [3], there exists a 3-
GDD of type t**! (tu)! if t(u+ 1) is even. Let (X, G, A) be sucha3-GDD, and
let Gy be the (unique) group of size tu. It is easy to see that every block intersects
Go. Let w be a permutation acting on the points of G that consists of a single
cycle of length tu. For any i, 0 < i < tu, define (X, G, A’) to be the 3-GDD
obtained from (X, G, A) by applying the permutation #*. The resulting 3-G D Ds
are seen to be disjoint since every block of A intersects Go .

2. A recursive construction
In this section, we prove a recursive construction for LS(t*). First, we present a
preliminary lemma.

Lemma 2.1. Suppose t, u and v are positive integers, v = 1 or3 mod 6, and
t(u+ 1) is even. If there exists an LS(t**?) then there exist t* disjoint 3-GDDs

of type t¥(v-2+2,

Proof: Let (X,A)bean STS(v) on pointset X = {00, 00 }UZ,_3. Let{oo, 00’, 2}
€ A. Forany z € X, define E(A, z) ={{a,b}: {a,b,z} € A}. Then E(A, c0)U
E(A, 0o') forms a 2-regular graph on the points Z,,_; \ {z}. Direct these edges so
that every point has indegree one and outdegree one, and call the resulting collec-
tion of ordered pairs D(A, oo, 00').

We now proceed to construct the disjoint 3-GDDs of type t“(*~2*2, As the
point set, take Y = ({00, 00'} x Z;) U(Z,_2 X Z, X Z;). As the group set G,
take {oo} X Z¢, {00’} x Zy,and {i} x {j} x Z: (1 € Zy_2,] € Z,).
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The block sets are obtained as follows. For each block A € A do the following.

1) If A = {a,b,c},a,b,c € Z,_2, then take an LS((tu)?) on point set A x
Z. X Z¢, with groups {a} x Zy x Zt, {b} x Zy x Zt, {c} x Zy x Z;. (This
exists by Lemma 1.2.) Name the tu block sets B(4, 7, k), j € Zu, k € Z;.

2) If A = {oo,a,b} and (a,b) ED(A,00,00"), take an LS(t**!(tu)!) on
point set ({oo} x Z;) U ({a,b} x Zy x Z;), with groups {00} x Zi,
{(a,j,k):k € Zi} (j € Zy,), and {b} X Zy X Zi. (This large set ex-
ists by Lemma 1.3.) As in 1), name the tu block sets B(A,, k), € Ly
k € Z;.

3) If A = {o0',a,b} and (a,b) ED(A,o0,00'), then proceed as in 2), but
replace oo by oo’ and take the groups to be {00’} x Zt, {Ca,j,k): k € Z:}
(j € Z.),and {b} x Zy x Z;. As before, name the block sets B(A,j k),
j € Zun k € Zt.

4) If A = {o0,00, 2}, then take an LS(¢**?) on point set ({00,00'} X Z¢) U
({z} x 2, x Z;), with groups {oo} x Zi, {00’} x 24, {(2,7,k): k € Z}
(j € Z,). As before, name the block sets B(A,j,k),] € Zy, k € Z;.

For any j € Zy, k € Z;, define B(j,k) = UaeaB(A4,, k). We claim that
each (Y, G, B(j, k)) is a 3-GDD of type t**~2*2 and that these 3-GDDs are
disjoint. The verifications are straightforward and we leave them to the reader. [

In order to construct an LS(¢%(*=2*2), we start with an LS(1") and apply the
construction of Lemma 2.1 to each STS(v) in the large set. We obtain a total of
tu(v — 2) 3-GD Ds, which we can guaraniee are disjoint if the LS(1?) satisfies a
special property we now define.

Suppose we have an LS(1Y) on point set X = {o00,00'} U Z,_,. We can
name the block sets A; (i € Z,_»). For each A, construct a set of ordered pairs
D(Aj, 00, 00") as in the proof of Lemma 2.1. We say that the LS( 1Y) is amicable
if D( Ay, 00,00 )N D(Aj,00,00') = @ wheneveri # j. We have the following
result.

Lemma 2.2. Suppose t, u, and v are positive integers, v = 1 or3 modulo6,
and t(u + 1) is even. If there exists an LS(¢***) and an amicable LS(1°) then
there exists an LS(t“v=2+2).

Proof: The only possible difficulty is that we could have a block {Ca,7,k),(a,j' k"),
(b,j", k" } occurring in two of the GD Ds, say in the G DDs arising from A; and
Ay (i # 1'). But this would mean that (a,b) €D(Aj, 00, 00')ND(Ayr, 00, 00),
which does not occur since the LS( 1Y) is amicable. [ |

In view of Lemma 2.2, amicable LS( 1Y) are of interest. We give an infinite
class of these now.

Lemma 2.3. If p =7 modulo8 is a prime number, then there exists an amicable
LS(1P*2),
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Proof: We use the construction due to Wilson [10] and Schreiber [7]. Take as
points X = {o00,00"} U Z,. For each i € Z,,, define a set of blocks A, consisting
of the following:

1) {a,b,c},ifa+b+c=31i mod panda #b#c#a

2) {oo,a+1,—2a+ i}, if a is a quadratic residue mod p

3) {od,a+1,—2a+ i}, if a is a quadratic non-residue mod p

4) {o0,0d,1}.

Then each (X, A;) is an STS(p + 2), and these p designs are disjoint. Now,
for each 1 € Z,, define D(Aj, 00,00") = {(a+ i,—2a + 1):a # 0}. Then the
resulting LS(17*2) is amicable, as can easily be verified. |

We can now prove the following theorem.

Theorem 2.4. Suppose v — 2 = pi1p, ...pn, Where each p; is a prime number
=7 mod 8. Suppose also that t and u are positive integers, and t(u + 1) is
even. If there exists an LS(t**2) then there exists an LS(1*(v-2+2)

Proof: We prove the assertion by induction on n. If n = 1, the result follows from
Lemmas 2.2 and 2.3. Assume now that the assertion is true forn = m — 1, and
consider v — 2 = p1pz ...pm, Where each p; is a prime number congruent to 7
mod 8. Definev' = pp, + 2, u’' = up1pa...pm_1 and t’ = t. Thent/(u’ + 1) is
even, and LS(¢'**2) exists by induction. Hence, we have that LS(¢/¥'(V-2+2) =
LS(t¥v=-2+2) exists. ]

The spectrum of amicable LS( 1Y) remains largely undetermined. Therefore, in
the next section, we give a modified construction that does not require amicable
LS(1Y).

3. A modified construction

First, we give a construction for LS(2%). We need some special classes of
LS(2%*!(2u)!), which we describe now. Suppose oo, o', a, and b are distinct
symbols, and k € Z;,. Denote w = [3]. Define C (oo, 00, a, b; k) to consist of
the following set of blocks, developed modulo 2 u:

{o0,(a,0),(b,k)}
{oo',(a,Zu,—w),(b, k)}
{(a,9),(a,2u—1),(b,k)}, 1<i<w—1
{(a,9),(a,2u—1—1),(bk)}, w<i<u-1
Suppose we take a set of points X = {o0,00'} U ({a,b} x Z2,) and let G
consist of the following groups: {00, o'}, {(a,1),(a,i+ u)} (0 < i< u—1)
and {b} x Za,. Then (X, G, C(00, o0, a, b; k)) isa3-GDD of type 2**1(2u)".
If we let k vary over Z,,, we get an LS(2%*1(24u)!).
The following properties will be important for our construction.
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Lemma 3.1. Suppose {a,8,7,8} N{a,b,c,d} =0, andlet j, k € Zu. Then
C(q, B, a,b;j) NC(,8,¢,d; k) = @ if any one of the following is satisfied:

i) {a,b} #{c,d}
ii) (a,b) =(c,d)andj #k
iii) (a,b) = (d,c) and {a, B} N {7,8}=0.
iv) (a.b) = (d,0), (a,B) = (8,7) and j + k # —w mod 2u, where w =

(%1
Next, we prove a simple numerical lemma.

Lemma 3.2. Let u be a positive integer and let w = [7].

1) Ifwisodd(ie.u=1o0r2 mod 4 ), then there exist subsets No and N\
of Z,, such that |[No| = [N1| = u, No UNy = Z34, and such that there do
notexist T,y € N;G=0or)withz+y=—w mod 2u.

2) If wiseven, (ie. u =0 or 3 mod 4), then there exist subsets No and
Ny of Zy, such that |[No| = |Ni| = u, No U N1 = Z3, and there do not
exist z € No,y € N1 with z+ y=—w mod 2u.

Proof: First assume w is odd. Then there are u pairs {z,y} in Zp, Withz + y =
—_w mod 2u. For each such pair, place one element in No and the other element
in N 1.

Next, assume w is even. There are u—1 pairs {z,y} withz # yandz+y = —w
mod 2u. Also, there are two elements satisfying 2z = —w mod 2 u, namely
z=2u—w/2 andz = u—w/2. If uisodd, then let Ny consist of (u— 1) /2 of
the pairs and one of the two special elements, and let N1 = Z2,\No. If u is even,
then let No consist of (u — 2) /2 of the pairs and both special elements, and let
N1 = Z24\No. |

We now proceed as in Section 2. First, we show how to construct 2 u disjoint
3-GDDs of type 2%v=2*2 from an STS(v). Then, we construct a large set of
3-GDDs of this type from an LS(1*). The LS( 1Y) need not be amicable. The
constructions are different in the cases w even and w odd (where w = [$13-

First, we consider the case w odd. Letv = 1or3 mod 6, and let (X,A)
be an STS(v) on point set {c0,00'} U Z,_2. Define E(A, 00), E(A, 00') and
D(A, 0o, 00') as in the proof of Lemma 2.1.

The point set for our 3-GDDs will be Y = ({00, o'} X Z2) U(Zy—2 X Z24).
As the group set G, take {oo} x Z2, {00’} x Z2, and {i} x {5,/ +u} (G €
Zy—2,0 < j < u—1). Construct N and N; as in Lemma 3.2. Then, for each
block A € A, do the following.

1) If A = {a,b,c}, a,b,c € Zy_2, then take an LS((2u)?) on point set
A X Zs,, with groups {a} X Za4, {b} X Z24, {c} X Z2,. Name the 2u
block sets B(A,7),J € Z24.
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2) If A= {o0,a,b}and (a,b) € D(A,oco,00’) then take the 2 u sets of blocks
C((00,0),(00,1),8,b;5),/ € No; and C((00,1),(00,0),b,a;5),j €
No. Rename them B(A,),;j € Z3,, in such a way that {B(A4,j):j €
No} = {C((00,0),(00,1),a,b;/):j € No}.

3) If A= {o0,a,b}and(a,b) € D(A, oo, o0’) then take the 2 u sets of blocks
C((od',0),(00',1),0,b;7),7 € Ni;and C((o0',1),(o0,0),b,0;7),/ €
Ni. Rename them B(A,j),; € Z,,, such that {B(A,j):j € No} =
{C((c0,0),(00,1),0,b;/): ] € N1}

4) If A= {00,002}, then take an LS(2**2) on point set ({c0, 00’} x Z) U
({2} x Z24), with groups {00} x Z2, {00'} X Z2, and {(2,), (2,7 +u)},
0 < j < u— 1. Rename the block sets B( A, ),/ € Z;,.

Then define B(j) = UxeaB(A,)), j € Zz,. It is easy to see that each
(Y, G,B(j)) isa3-GDD of type 2“v=2+2 These 2 u 3-GD Ds are in fact dis-
joint, as can be verified using Lemmas 3.1 and 3.2. The only "tricky" part is the
following. If there existed j, j' € N;suchthat j + ;' = —w mod 2u (i = 0
or 1), then C((«,0),(a, 1),a,b; /) N C((a, 1),(,0),b,a;j") # 8(a = ocoor
o0'). However, this is ruled out by the method of construction of Ny and N; in
Lemma 3.2. If we start with an LS(1") and carry out the above construction for
each STS(v) in the large set, we will obtain a large set of 3-G DDs.

Theorem 3.3. Suppose there is an LS(1Y) and w =1 or2 mod 4. If there is
an LS(2%*?), then there is an LS(2*(v-2+2),

Proof: The verifications are straightforward, using Lemmas 3.1 and 3.2. |

We now tumn to the case when w = [3] is even, where we use a slightly different
recipe. We start with an STS(v), (X, A), and define Y and G as in the case w
odd. D(A, 00,00"), E(A, 00) and E(A, 0o’) are as before. Construct Ny and N;
according to Lemma 3.2 (this part is different from the case w odd).
Nextlet ¥: E(A, co)U E(A, 00') — {Ny, N; } be any function. Construct the
following sets of blocks.
1) If A= {a,b,c},a,b,c € Z,_2,then B(A, ) is constructed as in the case
w odd.

2) If A = {o0,a,b},(a,b) € D(A, oo, 00'), then take the 2u sets of blocks
C((00,0),(00,1),0a,b;7),j € ¥(a,b); and C((o0,1),(00,0),b,a; ),
J & Y¥(a,b). Rename them B(A,j),j € 2Z,,, in such a way that
{B(4,7):7 € No} ={C((c0,0),(00,1),0,b;7):j € ¥(a,b)}.

3) If A = {od,a,b},(a,b) € D(A,o00,00), then take the 2 u sets of blocks
C((00',0),(00",1),0a,b;7),j € ¥(a,b);and C((o0', 1), (00',0), b, a; ),
J ¢ W¥(a,b). Rename them B(A,j), j € Z,,, in such a way that
{B(A,/):j € No}={C((c0,0),(00',1),a,b;7):j € ¥(a,b)}.

4) If A= {0o0,00', 2} then B(A, j, k) is constructed as in the case w odd.

Then define B (j) = Ugea B(A, ), J € Z;3,.
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Again, we obtain 2u disjoint 3-GDDs of type 2(*~2*2. The difference be-
tween the case w even and w odd is in the blocks of types 2) and 3). As before, we
need to ensure that we have not included two sets C((«,0),(«,1),a,b; ) and
C((e,1),(a,0),b,a;;"),where j + j' = —w mod 2u,(a= o0 or oo'). Since
w is even, this cannot happen, since one of j, j' is in No and the other is in N;.

When we start with an LS(1Y), we can obtain a large set of 3-GDDs if we
are careful about how we define the mappings ¥ . For each of the v — 2 de-
signs STS(v), say (X,A)) (1 < i < v— 2), we define a different mapping
W,;: E(A, 00)U E(Aj,00') — {No, N1}. We want a certain property t0 be sat-
isfied for every unordered pair {a, b} € Z,_2, which we describe now. Suppose
{a,b} € E(Aj,00)N E(Ays, 00") (this determines i and i’ uniquely). We require
the following property:

(*) ¥Yi(a,b) = ¥y(a,b) if and only if the pair {a, b} is directed differently in
D( A;, 00, 00') and D( Ay, 00, 00').

It is easy to construct the mappings ¥; (1 <1< v — 2) so that (*) is satisfied.
They can be defined by the following algorithm.

FORi=1TOv -2 DO

FOR each pair {a,b} € E(Aj,00)U E(Aj, o0') DO

IF there exists #' < i so that {a, b} € E(Aj,00)U E(Ay,00") THEN
define ¥;(a,b) so (*) is satisfied
ELSE
define ¥;(a,b) = Ny or N, arbitrarily.
We have the following result.

Theorem 3.4. Suppose there is an LS(1") and u =0 or 3 mod 4. If there is
an LS(2%*2), then there is an LS(2%(*=2*2),

Proof: Define the mappings ¥; (1 < i < v—2) as described above, and construct
24 3-GDDs from each STS(v). The resulting set of 3-G D Ds can be seen (0 be
disjoint. The mappings ‘¥; are required for the following reason. Suppose {a, b} €
E(Aj,00)NE(Aj/,00"). If (a,b) € D(Aj, 00, 00')ND( Ay, 00, 00') , then we have
the following four sets of blocks:

1) C((00,0),(00,1),0,b;7),j € ¥i(a,b)

2) C((00,1),(00,0),b,a;7),7 ¢ Y¥i(a,b)

3) C((od,0),(00',1),0,b;7),7 € ¥i(a,b)

4) C((od,1),(c<,0),b,0;5),j ¢ Yi(a,b)
In order that sets 1) and 3) be disjoint, we need that ¥;(a, b) # Wy(a,b). Then,
2) and 4) are disjoint as well. A similar argument applies if {a, b} is directed
differently in D( A}, 00, 00") and D(Ay, oo, 00'). |

We combine Theorems 1.1, 3.3 and 3.4 as follows.
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Theorem 3.5. If v = 1 or 3 modulo 6,v > 7, and there exists an LS(2"*?),
then there exists an LS(2%(v=2+2)

We can generalize the previous constructions to even values of ¢ other than 2.
It doesn’t seem possible to modify the construction to odd values of ¢, for the fol-
lowing reason. The approach taken here involves starting with an LS(¢**!(tu)!)
and dividing the tu G DDs into two sets of size tu/2. Hence, tu must be even.
But t(u+ 1) must be even fora 3-GDD of type t**! (tu)! to exist. Hence, t must
be even.

We generalize from ¢t = 2 to an arbitrary even value of ¢ as follows. Suppose
t = 2s and let u be an integer, and w = [%], as before. Then given distinct
symbols oo, oo, a, and b, and k € Z,,, define C (oo, o0, a,b; k) as before. Re-
call that (X, G, C (o0, 00, a, b; k)) is a 3-GDD of type 2**! (2 u) !, on point set
X = {o00,00'}, U({a,b} x Z;,), having group set G consisting of {c0,c0’},
{(a,%),(a,i+u)} (0 < i< u—1),and {b} x Z2y.

Define some arbitrary ordering on the points in X. Now, for any y € Z,, we
construct a set of blocks D (oo, 00, a, b; k, y) on point set X x Z,, as follows.
For every block A = {z1,z2,73} € C(00,00',a,b; k) withz; < 1 < T3, take
the s? blocks {(z1,41),(z2,42),(z3,13)} where i + i + i3 = y mod s. For
each group G € G, take a new group G x Z,. Then we obtain a 3-GD D of type
t¥*1(tu)!. Further, if we let k vary over Z,, and y vary over Z,, we get a set of
2us = tu disjoint 3-G D Ds, i.e. a large set.

The constructions in Theorems 3.3 and 3.4 can now be adapted in an obvious
way to handle any even t: whenever a set of blocks C(oo, 00’ a, b; k) was used,
we now take the s sets of blocks D(oo,00’,a,b; k,y), y € Z,. We obtain the
following result.

Theorem 3.6. Suppose v = 1 or3 modulo 6, v > 7, and there exists an
LS(t%*?), where t is even. Then there is an LS(t*v=2+2),

4. An exceptional case

The constructions in Sections 2 and 3 cannot be applied with v = 7, since an
LS(17) does not exist. However a modified construction will work.

First, we consider group size 2. We will construct an LS(23%*2) from an
LS(2%*2). Take the point set to be Y = ({o0,00'} x Z2) U(Zs x Z3,), and
the group set G to consist of {oco} x Z3, {00’} X Z2, and {(1,), (1,7 + u)},
1€25,0<j<u—1.

Define w = []. The cases w even and w odd are handled differently. First,
suppose w is odd. Construct the following sets of blocks.

1) Foreach i € Zs, take an LS(2**2) on points ({o0,00'} x Z2) U ({i} x
Z34), with groups {oo} x Z;, {00’} x Z3, and {(1,7),(4,7 + u)} (0 <
J < u — 1). Denote the block sets by B;(%,7).,] € Zay.
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2) Foreachi € Zs, construct an LS((2u)*) on points {1, i+ 1,i+4} X Z24,
with groups {1} X Za,, {i+ 1} X Z24,and {i+4} x Z5,. Denote the block
sets by B2(1,7),) € Z24.

3) Foreachi € Zs constructan LS((2u)?) onpoints {i,i+2,i+3} X Z24,
with groups {i} X Z24, {i + 2} X Zau, {i + 3} x Z2,. Denote the block
sets by B3(’)])’J € Z2u-

4) Construct the following sets of blocks:

Ci1(4,7) = C((00,0),(00,1),i+ 1,i+3;5)i € Zs,j € No
C2(4,7) = C((00,1),(00,0),5+4,i+2;j)i € Zs,j € No
Cs(i,7) = C((00,0),(00,1),i+ 3,i+4;7)i € Zs,] € No
Ca(i,7) = C((00,1),(00,0),5+ 2,i+ 1;5)i € Zs,j € No
Cs(i,7) = C((o0,0),(00,1),i+3,i+4;j)i € Zs5,j € N1
Ce(4,7) = C((00',1),(00,0),i+2,i+ 1;/)i€2Z5,] € N
C7(3,7) = C((od',0),(00',1),i+4,i+2;7)i € Zs,] €N
Cs(i,j) = C((o',1),(00,0),i+ 1,i+3; /)i € Zs,j € M1

where Np and N; are obtained as in Lemma 3.2. Observe that all the blocks
in 1)-4) are distinct by Lemma 3.1.

We now show how to construct an LS(2°%*? from these blocks. First, define
any 1-1 mapping n: Z24 — Za, such that {n(;):0 < j < u— 1} = No (hence
{n(j):u < j < 2u— 1} = Ni). Then define the following sets of blocks:

1) Fori € Zsand0 < j < u— 1,let B(4,7) = Bi(i,7) UB2(4,/) U
B3 (4,7) UC:1 (4, 1(7)) UC2(4,1(5)) UCs (4, 1n(j + u)) UCs (4, n(j + 1))
2) Fori € Zsandu < j < 2u— 1,let B(i,7) = Bi(i,7) UBy(i,/) U
B3 (4, /) UCs (i, n(j — u) UCs(i,n(j — w)) UC7(§,1(7)) UCs(4,n(7))

It is easy to verify that each B(4, 7) is the block set of a 3-GDD of type 2°*2.
Hence, we have the following.

Theorem 4.1, If v =1 or 2 mod 4, and there is an LS(2%*?), then there is
an LS(25%*?).

In the case where w is even, we proceed slightly differently. Define Y and G
as before, and take the same blocks in 1), 2) and 3). In 4) construct the following
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sets of blocks:

Ci(4,7) = C((00,0),(00,1),i+ 1,i+3;j) j € No
C2(4,7) = C((00,1),(00,0),i+4,i+2;j) jeEM
C3(i,7) = C((00,0),(00,1),i+3,i+4;j) jENM
Ca(4,7) = C((00,1),(00,0),i+2,i+ 1;/) j€No
Cs(i,7) = C((0d',0),(0d', 1),i+3,i+4;j) j€No
Cs(4,j) = C((0d',1),(00,0),i+2,i+ 1;j) jEM
C7(i,j) = C((od,0), (00, 1),i+4,i+2;j) j € No
Cs(i,)) = C((0d',1),(00',0),i+ 1,i+3;j) jEN,

Again, all blocks in 1)-4) are disjoint, by Lemma 3.1. Define n as was done
previously, and then define B (1, ) as follows:
1) Fori € Zs and0 < j < u — 1, define B(1,7) = Bi(4,7) UB,(4,;) U
B3 (1,7) UC1(4,1(;)) UC2(3,n(j + u)) UCs(4,n(;)) UCs (4,n(j + u))
2) Fori€ Zsandu < j < 2u—1,define B(4,) = B1(4,7) UBy(1,/) U
B3 (4,7) UC3(4,n(5)) UC4(4,n(j — u)) UC7(4,n(j —w)) UCs (4, n(/))
We have the following

Theorem 4.2. If u = 0 or 3 mod 4 and there is an LS(2%*?), then there is
an LS(25%*2),

Combining Theorems 4.1 and 4.2, we get
Theorem 4.3. If there is an LS(2%*2) then there is an LS(25%2).

As was done in Section 3, we can generalize Theorem 4.3 to handle any even
group size. The following result can be shown.

Theorem 4.4. IfthereisanLS(t**%), wheret iseven, then there is an LS(t°%*?).

5. Some applications of the constructions

The necessary numerical conditions for the existence of a 3-G DD of type t* are
as follows:

t=1lor5S mod 6 =>u=1o0r3 mod 6

t=2o0r4 mod 6 =>u=0o0rl1 mod 3

t=3 mod 6 =>u=1 mod 2

t=0 mod 6 = no condition on u.
Of course, u > 3 in all of the above cases.

We shall investigate the existence of LS(t*) for each case in turn, but first we

mention one more recursive construction, which appeared in [6] in a slightly dif-
ferent form.
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Theorem 5.1 [6]. If there is an LS(t*) and s > 2 is an integer, then there is an
LS((st)").

First, the case t = 1 was completed by Lu and Teirlinck, as indicated in Theorem
1.1. We next considert = 2. LS(2%) existforallu =10or3 mod 6,u > 7,by
Theorems 1.1 and 5.1. Examples of LS(24),LS(2%) and LS(27) were presented
in [6], [2] and [2], respectively. Applying our recursive constructions, we obtain
the following.

Lemma 5.2. Suppose u =0 or4 mod 12. Thenan LS(2*") exists.

Proof: Apply Theorems 1.1, 3.5, and 4.3 with u = 2, noting that an LS(24)
exists. 1

Lemma 5.3. Suppose u =6 or 22 mod 24. Thenan LS(2") exists.

Proof: Apply Theorem 1.1, 3.5 and 4.3, noting that an LS(26) exists. i
Combining the above results, we get

Theorem 5.4. Suppose u =0 or1 mod 3,u # 10 or 18 mod 24. Then an
LS(2%Y) exists.

Next, let us investigate t = 3. Whenu = 1 or 3 mod 6, most cases are
covered by Theorems 1.1 and 5.1,soletu =5 mod 6. The firstcaseisu = 5.
We present an example of an LS(3%) in Example 5.1 (other examples of LS(3°)
were obtained, independently, by D.Hoffman and by D.Kreher).

Example 5.1. AnLS(3%).

Points: {00, 001, 002,003, 004, 005 } U Zg
Groups: {000,002,004},{001,003,005}, {0!3:6}’{11417}’ {2,5,8}
Blocks: We display the blocks of one of the 3-G D Ds. The other 3-GDDs
are obtained by developing these blocks modulo 9, keeping the infinite
points fixed.
{0,1,8} {2,4,6} {3,4,8}
{o000,001,6} {o00,003,3} {000, 005,8}
{002)001y8} {0021003)1} {0021005)4}
{004,001,4} {004,003,0} {004100512}
{000’112} {000’517} {000:0:4}
{001’213} {001)0;7} {001,1,5}
{°°2s5x6} {0021()’2} {007-’3!7}
{003»4:5} {00316:8} {003:2:7}
{00417:8} {004!315} {°°4|1;6}
{005,6,7} {o0s,1,3} {005,0,5}
Starting with this example, we cannot apply the constructions in Sections 3 or
4, since t is odd. However, we can apply Theorem 2.4 witht = 3, u = 3, to obtain
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an infinite class of LS(3%),u =5 mod 6. An LS(32) is the first example thus
constructed.

The next case we consider is LS(6%). Whenu = 1 or 3 mod 6, most cases
are covered by Theorems 1.1 and 5.1; and when u = 0, 4, 6, 12, 16, or 22
mod 24, most cases are covered by Theorems 1.1 and 5.4. In the class u = 2
mod 3, we can proceed as follows. The LS(3°) and Theorem 5.1 provides us
with an LS(6°). Now we can apply Theorem 3.6 and 4.4, since 6 is even. We
obtain the following result.

Theorem 5.5. Suppose u =5 or 17 mod 18. Then there is an LS(6").

Proof: Apply Theorems 3.6 and 4.4 witht = 6, u = 3, using the LS(1") from
Theorem 1.1.
For values of t other than 1, 2, 3 or 6, we reduce the problem to these four cases.
Identify the congruence class of ¢ modulo 6, and define s as follows:
s=t,ift=10r5 mod 6
s=1t/2,ift=2o0r4 mod 6
s=t/3,ift=3 mod 6
s=1/6,ift=0 mod 6
Then, apply Theorem 5.1 to construct an LS(t*) , provided the required LS(1%),
LS(2%),LS(3%),or LS(6") exists.
Fort = 2,3, and 6, existence of the following classes of LS(t*) remains largely
unresolved:
t=2:4u=10 or 18 mod 24
t=3:u=5 mod 6
t=6:u=11 mod 18;u =2 mod 6;and u =10 or 18 mod 24.
In the paper [1], we shall give some new constructions that will show the exis-
tence of some further infinite classes of LS(2"¥).
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