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MORE SKEW ROOM SQUARES

B. A. Anderson, R. C. Mullin, and E. R St i-nson

AIISTRACT. The authors construct skew Room squares for four new sides.
reducing the number of unscrttl,ed cascs to seven.

1. f rLtroductiorL

The purpose of this notcr is to point out that the theory of frames

(in the generalized sense of [1.] and t2-l) can be combined with the

generalized direct singular (indirect) product of [41 to produce skew

Iloom squares of previously undecicled orders.

A skea [loorn square of sicle s is an sxs array A of cel1s and

an (s+1)-set S of objects called symbols which satisfy the following
properties:

(i) every cell of A is either empty or contains an unordered pair
of elements;
(ii) every symbol occurs precisely once in each row and coh:mn of A;

(iii) every unordered pair of distinct symbols occurs in precisely one

ce1l of A;

(iv) there is a distinguished element - , which occurs in each ce11

of the main diagonal of A and hence every other element occurs
precisely once on the main diagonal of A ;

(v) for each pair of non-diagonal cells (i,j) and (j,i) of A,

precisely one of these is empty.

A subsquay,e of side t of a skew Room square of side s is a

txt subarray B of A, situated symmetrically with respect to the
nain diagonal of A, which is a skew Room square in its own right
(based on the symbols occurring on the diagonal of B). Every skew
Room square contains a skew subsquare of side 1, and by convention, of
side 0 as well. Clearly the side " of, a skew Room square must be odd,
and it is known that no skew Room square of side 3 or 5 exlsts..However,
combining results from a series of papers by various authors, it ls shown

in [4] that skew Room squares exist for a1l positi-ve odd integral sides
s > 7 wirh the posslble exception of s 6 {69,75,87,93,95,115,123,L29,
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159, 213,215,237j. Moreover, Stinson [7J, using frames, has shown that
there is a skew Room square of side 129. It j-s our purpose here to
employ frame techniques to show that there are also skew Room squares of
side s for s € {75,L15,2L3,2I5). For the definition of a skeu t-frame
of order u (often liereafrer referred to simply as a skew (c,u)-frame),
see [2]. For the definition of an incomplete array IA(n,s) see [4].

The following theorem is a straightforward generalizatlon of
Theorem 3.2 of [4 ].

THEOREM 1.1. Suppose that there e{Lists a skea (t,vr) -ftame, arul a

skqt Room square of order u2 aith a skeu suhsquar.e of stde ,3. Let
a be an integer such that 0 S a < v, such that there extsts an
incomplete azlzlaA IA((vr-a) /t,(vr-a) /t) ard. that there is a skan Room

square of si,de vr(vr-a) + a. Then there erists a skan Room square of
side va(vr-a) + a uhich contains a skea subsquare of side vr-(vr-a) * a.

Proof. The proof is that of Theorem 3.2 of l4l, mutatis mutandis.

Closely associated with this is the following.

THEOREX,I 1.2. If there eri,sts a sked (r,vr) -frane and if there erists a
skeu Room square of side u2 aith a skeu subsquare of side ,3, and. if
there eri.sba pait of orthogorn'|. l.atirL squares of side (vr-vr)/t, then
Lhet,e eri-r;ts tt skeu ltoorn sclttare o1'sicle vr(vr-vr) * v, uhich contairrc
skeut subsquares of side u 2 ctnd. ,3.

Proof. Ttre proof is rhat of Theorern 3.1 of [5J, mutatis mutandis. I

Since a skew Room squar:e of side s can itself be viewecl as a

skew 1-trame of order s, the above consrructions can be applied where
fhe frames in question are in fact skew Room squares.

2. The Consttuction of Skeu Room Squar,es.

For convenience we let SS = {s: il a skew Room square of side s}.

To show the existence of the skew Room squares dlscussed herein,
we give the source of the frame used and then 1ist Ehe assoclated
equations, justifying the existence of the required intermediate objects
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whr,,rr their existence j.s not jrnrnedi;rte1y apparent.

./l . In II i, lr skcw 3-lrrrnrr, oI- orclcr 5 is Prescnted.
Since 7't = !>(15-0) + 0, J1 , SS by'f'lrcorem I.2.

tJ. In I 7 1, a sl<cw 4-f rarnc of t.rrdcr 4 i s given.

(i) Since 1l5 = 4(31-3) + 3 (and since an IA(7,1) is a pair of
orthoflonal latin squares of sicle 7), if we set u3 = 7, all that is
requi.red is the €rxistencc of :t sl<ew Room square of order 31. with a

subsqunre of side 7. Ilut as displayed in []-,p.11+5.1 , there exists a

skew 2-frame of orcler 5, and 31 = 5(7-l) + 1, so by Theorem 1.2, such
a square of order 31 exists. Thus 115 e SS.

(ii) Since 213 = 4(57-5) + 5 (and since an IA(13,1) is a pair of
or:thogonal latin squares of side 13), if we take ,3 = 9 all that is
recluired for the existence of a skew Room square of order 213 is a skew
Room square of side 57 with a skcw subsquare of order 9. Ilut
5l = 7(9-1) + 1, and uslng a slcew Room square as a (7,1) frame prodLlces
the required square. Hence 213 e SS.

C. For a definition of startc:{, and skan adder see [6].

The following skew adder generates a skew Room square of side 35.
It has the furrl-rer property that the subgroup of ,3, i-somorphic to ,7
gives rise to a shew Room squarc of side 7 in the skew Room square of
side 35. llhus by delering the elements of this subgroup from the
given starter and adder, one obtains a starter and aclder which can be
used to generate a skew 7-frame of order 5.

Starter l,2B 2,13 3,17 4 ,2L 6,22

Adder

l r6

I
9,32

3l
11 ,33

9

72,16

32

14,23

t7
78,24

l4
19,26

2

27 ,29

B

31,34

16

5,30

29

10, 25

24

15,20

I2 22 28 10 20 5

Now 215 = 7(35_5) + 5, ;rnd using a skew Room square as a (1,7)_
frame and taking v3= 7, we have a skew Room square of order 2l_5
provided rhat there exists an IA(30,2). But in t3I it is noted thar
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an IA(n,2) exists for all n > 6. Hence 215 e SS. Thus the only

odd sides greater than or equ:il to 7 for which the existence of a

sliew ltoorn squ.lrie is in clr"rubt ;rre 69, 87, 93, 95, 123, 159, ancl 237.

The authors wisir to th:rnk Mr. D. McDougall for his able programm-

ing assis tance .
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