NESTINGS OF DIRECTED CYCLE SYSTEMS

C.C. Lindner, C.A. Rodger
Dept. of Algebra, Combinatorics and Analysis
Auburn University
Auburn, AL 36849
U.S.A.

D.R. Stinson
Department of Computer Science
University of Manitoba
Winnipeg, Manitoba R3T 2N2
CANADA

Abstract. We show that for all odd \(m \), there exists a directed \(m \)-cycle system of \(D_n \) that has an \(\lfloor m/2 \rfloor \)-nesting, except possibly when \(n \in \{3m + 1, 6m + 1\} \).

1. Introduction.

Let \(K_n \) be the complete graph on \(n \) vertices. An \(m \)-cycle of a graph \(G \) is an ordered \(m \)-tuple \((v_0, v_1, \ldots, v_{m-1})\) such that \(v_i v_{i+1} \) for \(0 \leq i \leq m - 1 \) is an edge of \(G \) (where subscripts are reduced modulo \(m \)). An \(m \)-cycle system of \(K_n \) is an ordered pair \((V, C)\) where \(V \) is the vertex set of \(K_n \) (so \(n = |V| \)) and \(C \) is a collection of edge-disjoint \(m \)-cycles of \(K_n \) which induce a partition of \(E(K_n) \).

Let \((v_0, v_1, \ldots, v_{m-1}; w)\) denote the star which joins \(w \) to each of the vertices \(v_0, v_1, \ldots, v_{m-1} \). A nesting of the \(m \)-cycle system \((V, C)\) of \(K_n \) is a function \(\alpha: C \rightarrow V \) such that \(C(\alpha) \) induces a partition of \(E(K_n) \), where \(C(\alpha) \) is the set of stars defined by

\[
C(\alpha) = \{(v_0 v_1, \ldots, v_{m-1}; \alpha(c)) \mid c = (v_0, v_1, \ldots, v_{m-1}) \in C\}.
\]

Whether or not an arbitrary \(m \)-cycle system can be nested is an extremely difficult problem. However, it would seem tractable to consider the problem of finding the set of values of \(n \) for which there exists a nestable \(m \)-cycle system of \(K_n \). A simple counting argument shows that a necessary condition for a nestable \(m \)-cycle system of \(K_n \) to exist is that \(n \equiv 1 \pmod{2m} \). In the case where \(m = 3 \), this problem has been completely settled (this is precisely the nesting problem for Steiner triple systems) [2, 8], the set of possible values being all \(n \equiv 1 \pmod{6} \).

More recently it has been shown that [5] for any odd value of \(m \), with at most 13 possible exceptions the necessary condition is also sufficient, and for the particular case when \(m = 5 \) there are no exceptions. This nesting problem for even length cycles is essentially solved, since for any even \(m \geq 4 \), with at most 13 exceptions

ARS COMBINATORIA 32(1991), pp. 153-159
for each value of \(n \), there exists an \(m \)-cycle system of \(K_n, n \equiv 1 \pmod{2m} \) which has a nesting \([7, 9]\).

In this paper, we introduce analogous problems for directed \(m \)-cycle systems. Let \(D_n \) be the complete directed graph on \(n \) vertices. A directed \(m \)-cycle of a directed graph \(G \) is an ordered \(m \)-tuple \((v_0, v_1, \ldots, v_{m-1})\) such that \((v_i, v_{i+1})\) is an arc of \(G \) for \(0 \leq i \leq m - 1 \) (reducing sub-scripts modulo \(m \)). A directed \(m \)-cycle system of \(D_n \) is an ordered pair \((V, C)\) where \(V \) is the vertex set of \(D_n \) (so \(n = |V| \)) and \(C \) is a set of arc-disjoint directed \(m \)-cycles of \(D_n \) which induce a partition of \(A(D_n) \) (\(A(D_n) \) is the set of arcs of \(D_n \)). There are clearly several ways to define a nesting of a directed \(m \)-cycle system as the edges in each of the stars can be oriented in different ways. Perhaps the most satisfying problem would require that for some fixed \(x, 0 \leq x \leq m \), each directed star used in the nesting has exactly \(x \) arcs directed in and \(m - x \) arcs directed out of the centre vertex. Therefore, define \((v_0, v_1, \ldots, v_{x-1}; v_x, v_{x+1}, \ldots, v_{m-1}; w)\) to be the directed \((x, m)\)-star in which \((v_i, w)\) is an arc for \(0 \leq i \leq x - 1 \) and \((w, v_i)\) is an arc for \(x \leq i \leq m - 1 \). Then define an \(x \)-nesting of a directed \(m \)-cycle system \((V, C)\) of \(D_n \) to be an ordered pair \((\alpha, S(\alpha))\) where \(\alpha \) is a function \(\alpha: C \to V \) and \(S(\alpha) \) is a set of directed \((x, m)\)-stars defined by

\[
S(\alpha) = \{ (v_{\pi(c)(0)}, v_{\pi(c)(1)}, \ldots, v_{\pi(c)(x-1)}; v_{\pi(c)(x)}, \ldots, v_{\pi(c)(m-1)}; \alpha(c)) \mid c \in C \}
\]

for some permutations \(\pi_c \) of \(\{0, 1, \ldots, m - 1\} \), \(c \in C \), such that \(S(\alpha) \) induces a partition of \(A(D_n) \).

Example 1.1: Let \(m = 5 \) and \(n = 6 \). Then

\[
C = \{ (5, 0, 1, 3, 2), (5, 1, 2, 4, 3), (5, 2, 3, 0, 4), (5, 3, 4, 1, 0), (5, 4, 0, 2, 1), (0, 3, 1, 4, 2) \}
\]

is a directed 5-cycle system that has a 1-nesting defined by

\[
S(\alpha) = \{ (1; 5, 3, 0, 2; 4), (3; 1, 5, 2, 4; 0), (4; 2, 0, 3, 5; 1), (5; 3, 1, 4, 0; 2), (0; 4, 2, 5, 1; 3), (2; 0, 4, 1, 3; 5) \}
\]

and a 2-nesting defined by

\[
S(\alpha) = \{ (5, 3; 0, 2, 1; 4), (1, 5; 2, 4, 3; 0), (2, 0; 3, 5, 4; 1), (3, 1; 4, 0, 5; 2), (4, 2; 5, 1, 0; 3), (0, 4; 1, 3, 2; 5) \}.
\]

A simple counting argument shows that a necessary condition for the existence of a directed \(m \)-cycle system of \(D_n \) that has an \(x \)-nesting is that \(n \equiv 1 \pmod{m} \).
It is the object of this paper to show that if \(m \) is odd then this is also a sufficient condition, with at most 2 possible exceptions, in the case when \(x = \lfloor m/2 \rfloor \).

It is worth noting that if every arc in an \(x \)-nesting of a directed \(m \)-cycle system is oriented in the opposite direction then a \((m - x)\)-nesting results, so it suffices to consider this problem for \(1 \leq x \leq \lfloor m/2 \rfloor \).

Finally, notice that if we ignore the directed cycles then what remains is a decomposition of \(D_n \) into directed \((x, m)\)-stars. It is only recently [1] that the problem of finding such decompositions has been found when \(n \equiv 0 \) or \(1 \pmod{m} \) for all \(x \), the case when \(n \equiv 0 \pmod{m} \) now being possible since the condition of the directed stars arising from a nesting is no longer imposed. Even more recently, this decomposition problem has been completely solved [3].

Throughout the rest of this paper, we assume that \(m \) is odd. Let \(Z_m = \{0, 1, \ldots, m - 1\} \).

2. Directed \(m \)-cycle systems with \(\lfloor m/2 \rfloor \)-nestings.

Lemma 2.1. For \(1 \leq x \leq \lfloor m/2 \rfloor \) there exists a directed \(m \)-cycle system of \(D_{m+1} \) that has an \(x \)-nesting.

Proof: Define a directed \(m \)-cycle on the vertex set \(\{\infty\} \cup Z_m \) by

\[
\alpha = (a_0, a_1, \ldots, a_{m-1}) \quad \text{where}
\]

\[
a_0 = \infty, \quad a_j = (-1)^j \lfloor j/2 \rfloor \quad \text{for} \quad 1 \leq j \leq \lfloor m/2 \rfloor, \quad \text{and}
\]

\[
a_{m-j} = (-1)^{\lfloor m/2 \rfloor} \lfloor m/2 \rfloor + (-1)^j \lfloor j/2 \rfloor \quad \text{for} \quad 1 \leq j \leq \lfloor m/2 \rfloor.
\]

Let \(\alpha + i = (a_0 + i, a_1 + i, \ldots, a_{m-1} + i) \), reducing each component modulo \(m \) and defining \(\infty + i = \infty \). Then we can define a directed \(m \)-cycle system \((\{\infty\} \cup Z_m, C)\) as follows: if \(m \equiv 1 \pmod{4} \) then define

\[
C = \{ \alpha + i | 0 \leq i \leq m - 1 \} \cup \{(0, \lfloor m/2 \rfloor, 2 \lfloor m/2 \rfloor, \ldots, (m - 1) \lfloor m/2 \rfloor)\}
\]

and if \(m \equiv 3 \pmod{4} \) then define

\[
C = \{ \alpha + i | 0 \leq i \leq m - 1 \} \cup \{(0, \lfloor m/2 \rfloor, 2 \lfloor m/2 \rfloor, \ldots, (m - 1) \lfloor m/2 \rfloor)\}.
\]

To nest these directed \(m \)-cycle systems, begin by renaming \(\infty \) with \(m \), so the vertex set is now \(Z_{m+1} \). Of course in this case, for each \(c \in C, \alpha(c) \) is the unique vertex that is not in \(c \). Define

\[
s = (1, -1, \ldots, \lfloor x/2 \rfloor, -\lfloor x/2 \rfloor, (m+1)/2; 1+\lfloor x/2 \rfloor, -(1+\lfloor x/2 \rfloor), \ldots, [m/2], -[m/2]; 0)
\]

if \(x \) is odd, and
\(s = (1, -1, \ldots, x/2, -x/2; 1+x/2, -1-x/2, \ldots, [m/2], -[m/2], (m+1)/2; 0) \)

if \(x \) is even.

Define \(s + i \) to be formed by adding \(i \) (modulo \(m + 1 \)) to each component of \(s \). Then \(S(\alpha) = \{ s + i \mid 0 \leq i \leq m \} \) is an \(x \)-nesting of the directed \(m \)-cycle system \((Z_{m+1}, C)\) of \(D_{m+1} \).

The directed 5-cycle system together with the 1-nesting and 2-nesting in Example 1.1 illustrate the construction in the proof of Lemma 2.1 (with \(\infty \) being replaced by \(m = 5 \) throughout).

Lemma 2.2. For \(1 \leq x \leq \lfloor m/2 \rfloor \) there exists a directed \(m \)-cycle system of \(D_{2m+1} \) that has an \(x \)-nesting.

Proof: Let \(m = 2y + 1 \) and so as \(x \leq \lfloor m/2 \rfloor, x \leq y. \) Define

\[
c_1 = (-1, 2, \ldots, (-1)^y y, (-1)^{y+1}(y+1), (-1)^{y+1}(y+2), \ldots, (-1)^{2y}(2y+1))
\]

where each coordinate is reduced modulo \(2m + 1 \) and define \(c_2 = -c_1 \) (where \(-c_1 \) is formed by multiplying each component of \(c_1 \) by \(-1 \) modulo \(m \)). Also define

\[
s_1 = \begin{cases}
(-1, 2, \ldots, (-1)^xx; (-1)^{x+1}(x+1), \ldots, (-1)^y y, (-1)^{y+1}(y+1), \ldots, \\
(-1)^{2y}(2y+1); 0) & \text{if } x < y \\
(-1, 2, \ldots, (-1)^xx; (-1)^x(x+1), \ldots, (-1)^{2y}(2y+1); 0) & \text{if } x = y
\end{cases}
\]

and \(s_2 = -s_1 \).

Then \(C = \{ c_1 + i, c_2 + i \mid 0 \leq i \leq 2m \} \) is a directed \(m \)-cycle system and \(S(\alpha) = \{ s_1 + i, s_2 + i \mid 0 \leq i \leq 2m \} \) is an \(x \)-nesting of the directed \(m \)-cycle system \((Z_{2m+1}, C)\) of \(D_{2m+1} \).

For example, Lemma 2.2 produces the directed 5-cycle system \((Z_{11}, C)\) where

\[
C = \{(10+i, 2+i, 3+i, 7+i, 5+i) \mid 0 \leq i \leq 10\}
\]

that has a 1-nesting defined by

\[
S(\alpha) = \{(10+i; 2+i, 3+i, 7+i, 5+i; i) \mid 0 \leq i \leq 10\}
\]

and has a 2-nesting defined by

\[
S(\alpha) = \{(10+i, 2+i; 3+i, 7+i, 5+i; i) \mid 0 \leq i \leq 10\}.
\]
Define an m-nesting sequence $d = (d_0, d_1, \ldots, d_{\lfloor m/2 \rfloor})$ by $d_i = (-1)^{i+1} \lfloor (i+1)/2 \rfloor \pmod{m}$. This sequence has two relevant properties. Let $D(i, j) = \min \{i - j \pmod{m}, j - i \pmod{m} \}$. Then this m-nesting sequence d satisfies

$$
\{ D(d_i, d_{i-1}) \mid 1 \leq i \leq \lfloor m/2 \rfloor \} = \{ 1, 2, \ldots, \lfloor m/2 \rfloor \}, \quad \text{and} \quad \{ D(d_{\lfloor m/2 \rfloor}, d_i) \mid 0 \leq i < \lfloor m/2 \rfloor \} = \{ 1, 2, \ldots, \lfloor m/2 \rfloor \}.
$$

It will be convenient to denote the directed m-cycle

$$(y, d_0) \bullet (z, d_0)$$

$$(y, d_1) \bullet (z, d_1)$$

$$(y, d_2) \bullet (z, d_2)$$

$$(y, d_{\lfloor m/2 \rfloor - 1}) \bullet (z, d_{\lfloor m/2 \rfloor - 1})$$

$$\bullet (r, d_{\lfloor m/2 \rfloor})$$

by $(y, z; d_0, d_1, \ldots, d_{\lfloor m/2 \rfloor})$.

Finally, we need a pair of orthogonal idempotent quasigroups. These exist for all orders except 2, 3, and 6.

Theorem 2.3. For all $n \equiv 1 \pmod{m}$ except possibly $n \in \{3m + 1, 6m + 1\}$, there exists a directed m-cycle system of D_n that has a $\lfloor m/2 \rfloor$-nesting.

Proof: Let $n = ms + 1$ where $s \notin \{2, 3, 6\}$. Let (Z_s, o_1) and (Z_s, o_2) be a pair of orthogonal idempotent quasigroups of order s.

Define a directed m-cycle system $(\{\infty\} \cup (Z_s \times Z_m), C)$ of D_n as follows.

1. For each $r \in Z_s$ define a copy of an $\lfloor m/2 \rfloor$-nestable directed m-cycle system of D_{m+1} on the set of vertices $\{\infty\} \cup (\{r\} \times Z_m)$ (see Lemma 2.1) and place these directed m-cycles into C.

2. For $i \in Z_m$, $y \in Z_s$ and $z \in Z_s$, $y \neq z$, place the directed m-cycle $(y, z, y o_1 z; d_0 + i, d_1 + i, \ldots, d_{\lfloor m/2 \rfloor} + i)$ into C (reducting all the components $d_j + i \pmod{m}$).

By using property 1 of an m-nesting sequence, it is straightforward to check that $(\{\infty\} \cup (Z_s \times Z_m), C)$ is a directed m-cycle system. It remains to show that it has an $\lfloor m/2 \rfloor$-nesting.

1. For each $r \in Z_s$ let $(\alpha_r, S_r(\alpha_r))$ be an $\lfloor m/2 \rfloor$-nesting of the directed m-cycle system placed on $\{\infty\} \cup (\{r\} \times Z_m)$.

157
(2) For \(i \in \mathbb{Z}_m, y \in \mathbb{Z}_z, z \in \mathbb{Z}_s, y \neq z \) define
\[
\alpha((y, z, y o_1 z; d_0 + i, \ldots, d_{\lfloor m/2 \rfloor} + i)) = (y o_2 z, d_{\lfloor m/2 \rfloor} + i)
\]
and define the corresponding directed \((x, m)\)-star by
\[
s_{(y, z, i)} = ((y, d_0 + i), (y, d_1 + i), \ldots, (y, d_{\lfloor m/2 \rfloor} - 1 + i), (y o_1 z, d_{\lfloor m/2 \rfloor} + i), (z, d_0 + i), \ldots, (z, d_{\lfloor m/2 \rfloor} - 1 + i), (y o_2 z, d_{\lfloor m/2 \rfloor} + i)).
\]

Then the set consisting of the directed stars in the sets \(S_r, r \in \mathbb{Z}_m \) together with \(s_{(y, z, i)} \) for \(y \neq z, y \in \mathbb{Z}_s, z \in \mathbb{Z}_s, i \in \mathbb{Z}_m \) form an \(\lfloor m/2 \rfloor \)-nesting. To see this we should find the directed stars containing the arcs \(((a, j), (b, j)), ((a, j), (a, k))\) and \(((a, j), (b, k))\) for \(a \neq b \) and \(j \neq k \).

Since \((Z_1, o_1)\) and \((Z_2, o_2)\) are orthogonal, for some \(y \) and \(z, y o_1 z = a \) and \(y o_2 z = b \). Also, there is an \(i \) such that \(d_{\lfloor m/2 \rfloor} + i = j \). Then \(((a, j), (b, j))\) is in the directed star \(s_{(y, z, i)} \).

Clearly, \(((a, j), (a, k))\) is in one of the directed stars in \(S_a(\alpha) \).

Finally, by property 2 of \(m \)-nesting sequences, there exist values \(d_r \) and \(i \) such that either \(d_r + i = j \) and \(d_{\lfloor m/2 \rfloor} + i = k \) or \(d_r + i = k \) and \(d_{\lfloor m/2 \rfloor} + i = j \) (but not both). In the first case, let \(a o_2 z = b \), then \(((a, j), (b, k))\) is in \(s_{(a, z, i)} \). In the second case, let \(z o_2 b = a \), then \(((a, j), (b, k))\) is in \(s_{(z, b, i)} \).

The theorem now follows using Lemma 2.1 and Lemma 2.2.

Finally, we remark that several problems remain open.

(1) Find a directed \(m \)-cycle system that has an \(x \)-nesting for \(1 \leq x \leq \lfloor m/2 \rfloor - 1 \), and for \(x = \lfloor m/2 \rfloor \) when \(m \) is even.

(2) Find a directed \(m \)-cycle system of \(D_n \) that has an \(\lfloor m/2 \rfloor \)-nesting when \(n \in \{3m + 1, 6m + 1\} \).

3. Acknowledgement.

Research of the authors is supported by NSA grant MDA-904-89-H-2016 (CCL and CAR), NSF grant DMS-8703642 (CCL), NSF grant DMS-8805475 and NSERC grant A9287 (DRS).
References

1. P.V. Caetano and K. Heinrich, A note on distar-factorizations, Ars Combinatoria, 30 (1990), 27–32.