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Abstract. We prove that if v = 4 + 7%, wheres >0 andt € {1,7,13,19,25,31,
43,67}, then there exist v — 4 disjoint packings on v points of pairs into triples, all of
which have the same leave, which is a (fixed) 4-cycle.

1. Introduction

Suppose X is a set of v elements (called points) and A is a collection of w-
subsets (called blocks) of X. Then we call (X,.A) a w-uniform hypergraph. A
(2,3)-packing on X is a 3-uniform hypergraph (X, A) such that every pair of
points appears in at most one block. The leave of a (2, 3)-packing A is the graph
(X, E), where E consists of all the pairs which do not appear inany blockof A. A
(2, 3)-packing (X, A) is said to be maximum if there does not exist any (2,3)-
packing (X, B) with |A| < |B|. Two (2,3)-packings (X,A) and (X, B) are
disjoint if AN B = @. Two (2, 3)-packings (X, A) and (X, B) are compatible
if they have the same leave. A set of more than two (2,3)-packings is called
disjoint (compatible, resp.) if each pair is disjoint (compatible, resp.). Throughout
this paper, we restrict our attention to (2, 3)-packings on v points in which every
point occurs in at least one block (since, if there are points that occur in no blocks,
then we have a (2, 3)-packing on v’ points for some v’ < v).

We denote the maximum number of disjoint compatible packings on v points
by M(v). Determination of the numbers M (v) is related to the construction
of perfect threshold schemes (see, for example, [2], [10]). The following upper
bounds are proved in [10].

Theorem 1.1. [10]. M(v) < v—2 forv = 1,3 (mod 6); M(v) < v — 4
forv = 0,2,5 (mod6); and M(v) < v—6 forv = 4 (mod 6). Further,
except when v = 4 (mod 6), the upper bound is attained only if the packings are
maximum.

Values of v for which M (v) meets the upper bound are summarized in the
following.
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Theorem 1.2.

(1) Forv = 1,3 (mod6)and v > 7, M(v) = v—2. Also, M(7) = 3.
([71,[81,[12])

(2) Forv = 0,2 (mod 6) except possibly for v = 260,516 (mod 768), M (v) =
v—4. ([31,[4])

(3) Forv=4+2 3% k>1, M(v)=v—6.(4)

4) Forv=11,17,23, M(v) = v —4. ([2],[10])

In this paper we will prove the following result which provides the first infinite
classes meeting the upper bound when v = 5 (mod 6).

Theorem 1.3. If v=v+ 7' wherei >0 and t € {1,7,13,19,25,31,43,
67}, then M(v) = v —4.

We should also mention that there has been some recent interest in constructing
sets of disjoint packings which are not required to be compatible. Such structures
have applications to the construction of constant-weight codes [11,[13]. In [S],[6],
Etzion proves that there exist 6 k + 3 disjoint maximum packings on n points if
n=6k+4o0r6k+5.

2. Some Lemmas
In this section we collect some results which will be used in the next section.

Lemma 2.1. [91,[11]. A maximum (2 ,3) -packing on v = 5 (mod 6) points has
(v(v—1) —8/6 blocks and the leave is a 4 cycle. Sucha (2,3) -packings exists
forall v=15 (mod 6).

Suppose v = 5 (mod 6) and we have a set of disjoint compatible (maximum)
(2, 3)-packings on point set X = {co1,002,003,004} U Z,_4 having leave
{{o01,002}, {002,003}, {003,004 }, {004, 001 }}. Then, every (2, 3) -packings
has a block {00, 003, 1} for some i € Z,_q. Since |[{{oo1,003,1}:1 € Zy—4}| =
v — 4, there are at most v — 4 disjoint compatible (2, 3)-packings on v =
5 (mod 6) points, as states in Theorem 1.1.

A group-divisible design is a triple (X,G,B) which satisfies the following
properties:

(i) X is a finite set of points

(ii) G is a partition of X into subsets called groups

(ili) B is a set of subsets of X (called blocks), such that a group and a block
contain at most one common point, and every pair of points from distinct
groups occurs in exactly one block.

We abbreviate the term group-divisible design to GDD. The type of a GDD is
the multiset {|G|: G € G}. The type is denoted by 1"2* ..., where there are
precisely u; occurences of 4,4 > 1. In this paper, we only use GDDs with block
size 3. Such a GDD is called a 3-GDD.
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Two 3-GDDs with the same group set are said to be disjoint if their block sets
are disjoint. A set of more than two 3-GDDs is called disjoint if each pair is
disjoint. It is easy to see that the maximum number of disjoint 3-GDDs of type t*
is at most t(u — 2). If s > t, then the maximum number of disjoint 3-GDDs of
type t¥s! is at most ¢(u — 1). We will call such a collection of disjoint 3-GDDs a
large set, and denote it by LS(t*) and LS(¢"s') respectively.

Lemma 2.2. If u+ 1 is even, then there exists an LS(1**1ul).

Proof: A 3-GDD of type 1**!u! exists if u + 1 is.even. Let (X, G, B) be such a
3-GDD and G be the (unique) group of size u. It is easy to see that every block
intersects Go. Let 7 be a permutation acting on the points of Gy that consists of a
single cycle of length u. Applying 7' (0 < i < u) on BB, we will obtain u disjoint
block sets. Hence there exists an LS(1%*1u!) if u + 1 is even.

A parallel class in a GDD is a set of blocks which forms a partition of X.

Lemma 2.3. Suppse u = 1 (mod 6). There exists an LS( u®) in which each
3-GDD has a parallel class and such that these u parallel classes form the block
set of 3-GDD of type u*.

Proof: Let S = {a,b,c}. Let X = S x Z, and G = {{s} x Z,:s € S}. For
every i € Zy, let B; = {{(a,z), (b,y),(c,2) }: z+ y + z = 3; (mod u)}. Then
(X,G,B;),i € Z, form y disjoint 3-GDDs. Therefore they form an LS(u?). Let
P; = {{a,z+1),(b,2z+i),c,—3z +1)}:z € Z,}. Then each P; is parallel
class in B;, and (X, G, U, c;c, Pi) is a3-GDD of type ul.

3. The main construction

In [10], a set of 7 disjoint compatible packings on 11 points was presented. It
turns out to have some special properties which are very useful. Take a point set
X = {001, 002,003,004 } U Z7. We list the packings in Table 1 and classify the
blocks of each A; into 4 types.

For 1 < k < 4, define A;(k) be the set of blocks of type k in A;.
The following properties will be important in our construction.

(1) The blocks in A;(1) are {oo1, 003,i — 1} and {c02,004,1 — 1}.

(2) Forz € {oo1,002,003,004 },define E(2,z) = {{a,b}: {z,a,b} € Ai(D) }.
Then Ei(2) = U, ooy 1003 008004} E;(2, z) forms a 6-cycleon Z7\{i —1}.
Direct edges in E;(2) so that every point has indegree one and outdegree
one, and call the resulting collection of ordered pairs D;(2). Then the or-
dered pairs D;(2), 1 < i < 7, can be arranged so that they are mutually
disjoint. This is shown in Table 1.

(3) For1 <i<7,letR;={{i,i+1,i+3},{i+2,i+4,i+5}} (mod7).
Then (U;cic7 Ri) N (Uicicr Ai) = 0. Further, for each 4, (1 < 4 < 7),
the pairs of points of Z; contained in the blocks of A;(3) are precisely those
contained in the triples of R;.
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Table 1.
Al A Aj: Ay As: Ag: A7
type 1: {001,093} | [eo1,203,1} | {01,232} | {1,033 | (e01,034]) | {o01.23,5) | {eo1,3.6)
{0,240} | {o0.04,1) | {e2,04.2) | (02,043} | (opi04.4) | (020,045} | {o.04.6)
type 2: (146} | (250} | (461} [ (302} | (0413} |(=224) | (=335}
(262) | (103} [ (2,14} | (=425} |[(336} [ (=340} [ (251}
(0323} | (334) | (145} |(=256) |(1,60} |{<201} | (4,12}
(23.1) | (0142) | (2,53} | (=464} |{305) [ {116} | {2.2,0]
{0o4,1,5) | (0426} |{=3.30) | (o141) | (252} |({263} [ {104}
{054} [ (165) | (=006} | ({04.1.0} | ({0321} |{=432) | {2:4.3}
type 3: (o1.1,2) | (223} | {434} | (=345} |{456) [ (4,60} |{30.1}
(co424) | (2435} | ({346} | (=150} |({261) | {102} [ (e=1,13]
(034,1) | (=352) | (1,63} | (=204} [{1.15} [ (326} | (43,0)
{135} | (=246} | (=450} |(=361) [{402} [ (3,13} | (3,24}
(0356) | (=360} |(=101} | (=212} [(0123) [{1.34) | /(=4:4.5)
{4,63) | (<a04) | {3.15) | (126} | (=230} [ ({441} | (152}
type 4: {0,1,6) (1,2,0) 23.1) {3.42) {4,5,3) (564} {6,0,5)
{02,5) (13,6 (2,4,0) {35.1) (4,6,2) (503} (6,1,4)
{034) (14,5) (2,56) (3,60} {401} {5,12) 623}

Table 2
D1(2): Dy(2): D3(2): D4(2): Ds(2): D6(2): D7(2):
(4,6) (5.0) (6,1) (0.2) (1,3) (2,4 (3.5)
(6.2) 0.,3) (1,4) 2.5 (3,6) (4,0) (€N
2.3) (3.4) (4.5) (5.6) (6,0) ©,1) (1,2
(€R)) 4,2) (5.3) (6.4) (0,5) (1,6) (2,0)
(1,5) (2,6) (3,0) @1 (5.2) (6,3) (0,4)
(5.4 (6,5) (0,6) (1,0 @0 (32) 4.3)

This is shown in Table 2.

Now, suppose ¢ = 1 (mod 6). What we will do is to prove that M(7u +
4) = 7u if M(u + 4) = u. We construct the packings on point set X =
{001, 002,003,004 } U Z7 x Z,. Each packing will have leave L = {{co1,002},
{002,003}, {003,004 }, {004, 001}}. The construction proceeds in several steps,
each of which is related to one of the block types of 1.

Step 1: For 1 < i < 7 do the following. Take u disjoint compatible packings on
{o01,002,003,004} U {i — 1} x Z,. Each packing has the leave L. Name the

132



u packings B(1,4,7) 1 < j < u. (There are (u® + 7u + 4) /6 blocks in each
(1,1,7)2)

Step2: For1 < i < 7 dothe following. If (a,b) € D;(2) and{z,a,b} € Ai(2),
take an LS(1%*1u") on {z}U({a, b} x Z,), with groups {z}, {(a, k) } (k € Z.)
{(b,k): k € Z,}. (This large set exists by Lemma 2.2.) Name the u disjoint
block sets B((a,b),7),1 < j < u. Let B(2,4,7) = Uapeni2y B((a,0),7),
1 < j < u. (There are 3u(u + 1) blocks in each B(2,1,j), since a 3-GDD of
type 1%*1u! has u(u + 1) /2 blocks.)

Step 3: Do the following for 1 < i < 7. If R = {a,b,c} € R, then take an
LS(u®) on point set R x Z,, with groups {a} x Zq, {b} X Zu, {c} x Zu. We
use Lemma 2.3. Let B(R,7) (1 < j < u) be the u disjoint block sets. Let
P(R,j) C B(R,j) be a parallel class such that Ulstu'P(R,j) forms a block
set of a 3-GDD of type u3. If {z, a, b}, {y, b, c}, {2, ¢,a} are in A;(3), then let

C(R,)) = U{{I,(G,T),(b,S)},{y,(b,S),(C.t)}, {z,(c,1),(a,m)}}.

where the union is over the set {(a, ), (b,s),(c,t)} € P(R,J).

Since J; <<, P(R, j) forms the block set of a3-GDD of type u?, it follows that
C(R,j) A < < u) aredisjoint. Let B(3,1,) = Upeg,(B(R,/)\P(R,)) U
C(R,7)),1 < j < u. (There are 2u? + 4 u blocks in each B(3,1,7).)
Step 4: For 1 < i < 7 do the following. If A = {a,b,c} € Ai(4), then take an
LS(4?) on point set A x Z,, with groups {a} X Zy, {b} X Zu, {c} X Z4. Name
the u disjoint block sets B(A4,7),1 < j < u. Let B(4,1,/) = Uaea,ca B(A, 1.
(There are 3u? blocks in each B(4,1,7).)

Now we can present the construction. For 1 <1 <7 and 1 < j < u, define

B(i,j) = B(1,4,7) UB(2,i,7) UB(3,4,7) UB(4,4,7).

We claim that B(1,7) (1 <1< 7,1 <j < u)are disjoint (2, 3)-packings on
X with leave L. The verification is straightforward and we leave it to the reader.
Therefore, we get the following.

Theorem 3.1. Suppose u = 1 (mod6). If M(u+4) = u, then M(7Tu+4) =7u.

It would be nice if we had more sets of v — 4 disjoint compatible packings
(v = 5 (mod 6)) with similar properties as the set of packings on 11 points, but
we have not found any more examples yet.

4. Some small examples
First we prove that M (v) = v — 4 forv = 29,35,47,71.

Suppose u = 1 (mod 6) is a prime. We take pointset X = {oo1, 002,003,004 U
Z, where Z,, is the finite field of order u. The idea is to construct the first packing
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A1 (a(2,3)-packing on X), from which the others can be developed modulo u.
We will use the multiplicative structure of the field. Suppose ¢ is a primitive ele-
ment in Z,. Let 7 be the permutation of X which multiplies each element of Z,,
by f, but fixes oo , 002,003 and co4.

In order to narrow down our search, we assume the following properties hold:

(1) {oo1,003,0} € Ay and {o02004,0} € Ay

(2) If{z,a,b} € A;, then n?{z,a,b} € A1, where z = {001, 002,003,004 },
and a,b € Z,.

(3) If{a,b,c} € Ai,then n{a,b,c} € A1, wherea,b,c € Z,.

For a, b, c in Z,, there are six 4’s such that 7*{a, b, c} has the form {w,w +
1, w + u}. We denote the set of six u’s thus obtained by U({a, b, c}). Two block
sets developed from {a, b, c} and {a’, ', ¢} respectively (using 7 and developed
modulo u), where {a, b, c,a’,V', '} C Z,, are disjointifand only if U({a, b,c}) N -
U({d",t',c'}) = 0. To check that A, is a (2, 3)-packing, we simply check the
exponential differences.

We succeed with this approach for u = 43 and u = 67.

43 disjoint compatible packings on 47 points

A-l: ({3:3)
blocks developing by U
{e°1,923,0], {°92,904,0}
(1,183}, (=2,£.£5) n2
(eo3,187), (04,6 E8)

{0,1,-1} n_(but orbit length 21) 2,.22,.42
(1E8212) n 3,15, 21,23, 29, 41
(18224 n 5,12, 18, 26, 32, 39
(13819 n 4,11, 14, 30, 33, 40
(1£6€17) n 6. 8, 17,27, 36,38
(1£13£28) n 9. 16,20, 24, 28, 35
{1£1,€33) n 10, 13,19, 25, 31,34

For u = 25, we use the finite field GF(25) of order 25, generated from the
irreducible polynomial z? + z + 2 (¢ = ). Here we assume that:
(1) {oo1,003,0} € Ay and {o0z,004,0} € Ay
(2) If{z,a,b} € A1, then 7®{z,a,b} € A1, where z € {001, 002,003,004},
and a, b € GF(25)
(3) If{a,b,c} € A1, then n{a,b,c} € A1, where a, b, c € GF(25).
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67 disjoint compatible packings on 71 points

'a-lz @:2)

blocks developing by U
{201,903,0}, {=°2,%°4,0}
(o1 1£17), (o228 E18) n2
(2031 £19), (024,££%0)
{0,1,-1} n (but orbit length 33) 2, 34, 66
(151438 x 3, 23, 33, 35, 45, 65
(1,810 £40 T 4, 17,22, 46, 51, 64
(1£4£22) n 6, 12, 28, 40, 56, 62
{1.£6.£35) n 5, 18, 27, 41, 50, 63
(1,£3£23) n 7, 11, 20, 48, 57, 61
(1B E21) n 8, 19, 26, 42, 49, 60
(1,89.834) n 9, 15, 25, 43, 53, 59
(1££59) n 10, 16, 21, 47, 52, 58
(1£12£27) n 13, 29, 31, 37, 39, 55
(1,255 n 14, 24, 32, 36, 44, 54

For v = 31, we need some small adjustments. Here we assume
(1) {oo1,003,0}A1, {002,004,0} € A1
(2) IfA€ A, then?A € Ax.

For a, b, ¢ in Z,, there are three i’s such that 7*#{a, b, ¢} has the form {w, w +
1,w + u}. The set of three u’s thus obtained is denoted by U({a, b, c}).
Applying Theorem 3.1 and using the above resluts we have our main theorem.

Theorem 4.1. If v = 4+ 7 where i > 0 t € {1,7,13,19,25,31,43,67},

then M(v) =v—4.
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25 disjoint compatible packings on 29 points

A 1: (x2+x+2=0)

blocks developing by U
{°21,993,0}, {202,%04,0}
[°°1J8'x19]’ (ool,x4,x23] 78
{001x10x21), (o0; xx6)
(e02x3,x22), (002,38 x21) n8
[002,,‘17,,(12}, [002’,‘10’,(23}
[003’,(7',(20}, [003’,(11,,‘16] -
[,,03’)‘9,,‘22], [003,)(13’,(18}
{,,04’,(10,,(15], [°°4,x9,x20} 8
(24,153}, (ooa.x!1,x22)
{0,1x12) n(but orbit length 12) | x6x12 18
[1,x2,x8} T x7,x8,x”.xl3.x16,x17
[le,xm] T x3.x3 x10 x 14 419 421
(1x17 x20) T xx2x9x15 x22 x23
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31 disjoint compatible packings on 35 points

Al: (§=3)

blocks developing by U
{201,93,0}, {02,904,0}
(o01,£ £18) n2
(eo2,185) 2
(c03,1£15) 2
{°°4,§,§2O} n2
(0,1.) n2 3,11,15
(eL33 n2 12,18,19
(1,£2£6) n2 17,21,29
(1,818 n2 52325
(1£14.3) n2 7927
(£.£5.£6) 2 4822
(gelleld) 2 10,24,28
(££13£22) n2 2,16,30
(eL8E15) n2 13,14,20
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