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Abstract. In rhis paper, \r'e Prove for any even intger m ) 4 rlat there exists a nesled

m-cycle system of ordernif and urly if n = I mod 2m, u'ir'h atmosl 13 possible

exceprio'rs (for each value of m). The proof depends m the existence of certain Sroup
divisible designs that ate of independent interesl \\'e shou' there is a groupdivisible

design having block sizes fron the set {5,9, 13 ,17 ,29,49 }, and having u groups of

size 4, for all u ) 5, u y' 1, 8, 12, 14, 18, 19,23,24,33,34 -

1. Introduction

Let G be a graph, and let m ) 3 te an integer. An m-cycle decompostttan

of G is an e.dge-decomposition of G into cycles of size m. \Ve will *rite the

rn-cycle decomposition as a pair (G, C), $'here C is the set of cycles in the edge-

decomposition. An m{ycle decomposition of K,, u'ilIbe called an ra-c}cle 't}'s-

tem of order zr Of course, a 3-cycle system is aStetner trtple system; these designs

exist for all orders n: I or 3 modulo 6.

\\'e will say tJrat an m-cycle decomposil-ion, (G, C ), can be nesled if we can

associate with each cycle C € C a Yertex of G, ri'hich s'e denote lG), such

thatl(Q eVG),andsuchthatt}eedgesint{r, f(C)}: z € V(C},C e
C ) form an edge-decomposition of G (where V (G) denotes the vertex set of the

cycle C). Alternatively, we can view a nested rn{ycle decomposition as an edge-

decomposition of the multigraph 2G into wheels n'ith m spokes, where every

edge occurs in one wheel as a sPoke and in one u'heel on the dm.
In this paper, we are intereste.d in nested rn-cycle systems for even values of

m. It is easy to se€ that a netessar)'condition for the existence of a nested rn{ycle
system of order n is that n: I mod 2 m. The first examples of nested m-cycle

systems to be studied in the lite.rature were nested 3-cycle s)'stems (i.e., nested

Steiner triple systems). It was proven by Stinson [10] that there exisls a nested

Steiner triple system of order rl if and only if n : I modulo 6. More recently,

Lindner, RMger and Stinson pJ showed for each odd m ) 3 that tliere e)Lists a

nested rn-cycle s)'stem of order a if and only if n: \ modulo 2 m, with at mosl

I 3 possible exceptions.
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Much less is known regarding lle exislence of nested m-cycle systems for

even values of m. In the smalJcst case' m = 4, it has been shou'n by Stinson

[11] that the necessary condiLion n: 1mod 8 is sufficient for existence, wift a[

moit 6 possible exceplions. In this paper, we prove for any even rn ) 4 that there

exisls a nested *-.yLI. system of order n if and only if n: I mod 2 m, *'ith at

most 13 possible excePtions.

We prove the result s'hen m is not a power of two in Section 2' For m a

power of to'o, the proof is given in Section 3; the proof depends on tJre exis-

ience of cerlain gpupdivisible designs *'hich are construcl'ed in Section 4' The

group-d.ivisible designs we construct are of independent interesq we show there

Is a group-Civisible Oesign having block sizes from the set {5 , 9 , 13, 17 ,29 ,49},
and having u goups of size 4, for ail but a few values of u (see Theorem 4'14)'

2. Cycle lengths not a pon'er of tn'o

The construction we use for cycle lengths which are rwt a power of fr*'o depends

on cerlain nested cycle decompositions of complete multipartite graphs' \\'e will

deno{e the complete multipartite graph having u parls of size t by K1t'1' Also, we

refer Lo the pafls a lwles.

Lemma 2,1. Suppose therc is a nested m-cycle decomposition of K11'1' lat
& > 1 . Then there is a nested (k*) -cycle decomposition of Kgr4'1'

Proof: Replace ever)' vertex u of K1t.1 by & independent t'e'fljces, (nanred u;,

I < i < /c), thereby constructing ff11try'). Lel. (ff1t') , C) be an m-cycle decorn-

position of Ktt'1, and let / be a nesting of C. Each cycle C e C con'esponds to

a subgraph of K11rry.y isomorphic to the Cartesian product C I (Kt)'(i'e' each

yertex of C is reptaied by & independent vertices, and each edge is replaced by &2

edges forming a complete bipartite graph K*,t). It is well-knorvn that the graph

Cg( ffr)' hai an (mk) -cycle decomposition (this is a decomposirion into Hamil-

tonian cycles; see [4] or t6l). The number of (m&)-cycles in this decomposition

is &. Suppose these cycles are named C;, I < i < /c. \\'e define a nesting by

associating with each G the vertex f (C);. If we do this for every cycle C, we

obtain t}e desired nesting. I
\\'e shall employ the following knou'n class of nested m-cycle decomposi-

tions of KKz^).).

Lemma 2,2. Suppsem) 3 isodd,n= Zum+ l,and " I {1,2,3,4,6,
22,23,24 ,26,n ,28,30,34,38). Then there is a nested m'cycle decomposi'

lion of K11z-1.;.

Proof: This follows from Theorem 2.2 andTheorem 3.1 of [7]. I
S'e also use the following class of nested cycle systems which are constructed

by difference methods.
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Lemma 2.3. Suppse r is even. Then lhere is a nested r-cycle systen of arder
2r+ l.
Proof: I*tr = 2k,and define a = (or,..., ar) by

o;=(-l)ii, ifl<f<&-l
a;=(-l)i*lr, if&<i!r,

q'here each o; is reduced moCulo 2r + 1. a represenls the cycle ai az...atat.
LetC - {"+ j: j e Zz,*t }. Then,itiseasytoseerhat? isacycles)'stem
of order 2n+ l. We define a nesting / of C by /(a + j) = j, for every cycle

Ia+ j eC.
We now have the following immediate consequence.

Theorem 2.4. Suppose rn ) 3 is dd, n= 2um + 1,, 4 {2,3,4 ,6 ,22,23,
24 ,26 ,n ,?3 ,30 ,34, 38 ), and i ) O . Then therc exists a nested (2;*) +ycte
syslem of order Zi*r um + l.
Proof: For u = l, the result is given in I-emma 2.3. For u > 1, prcreed as

follows. Apply Lemma 2.1to the m-cycle decompositions obtained from Lernma
2.2, using k = 2i. \\re obtain a nested (2im)-cycle decomposition of ff112,.r*;.;.
Now, fill in the holes with nested (Zi*)+ycle s)'slems of order zi*r m+ I *'hich
exist by lxmmaZ.3. I
Corollary 2.5. Suppse r rs even,r isnotapowerof 2,n= I moduloZr,and
n) 78r * l. Then there is a nested r+ycle system of order n-

3. Cycle lengths a po*'er of fs'o
In this section we address the question of constructing nested 2i-cycle systems.

It was shown in tlIl tJrat the necessary condition n: 1 mod 8 is sufficient for
existence of a nested 4+ycle system, with at most 6 possible exceptions. Hence,
we shall assume i > 3 for tlre remainder of this secdon.

Our construcLion for nested 2i-cycle systems depends on t}re existence of
certain group-divisible designs. A group-dtv*ible design (or, GDD), is a triple
(X, G, A ), which satisfies the following properties:

1) G is a partition of X into subsets called groups,
2) A is a set of subse6 of X (calle.d blocks) such that any goup and

any block contain at most one common point" and
3) every pair of points from distinct groups occtns in a unique block.

'I\e group-gpe of a GDD (X,G,A) is rhe multiser tlcl : G e G).
We usually use an'txponential" nolalion to describe group-types: a $oup-t)?e
f 2i 3k . . . denotes i occurrences of l, j occurences of 2, etc. We will saythat a
GDD is a ff-GDD if lll € ff for every A e A.

We shall proye the following result in Section 4.

1
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Theorem 4.14. Supposeu ) S,u /'1 ,9,12,14,I9,1g,23,24,33,or34.
Then there is a {5,9 ,t3,17 ,Zg ,49}-GDD having group-grye 4!.

The existence of certain nested 4-cycle decompositions will also prove use_
ful.

Lemma 3.I [11, lxmma 11. Suppse k: I modu]o 4 is a prime pwer Then
there is a nested 4-cycle decomposition of K p1.

Combining Theorem 4.14 andlemma 3.1, we have

Lemma 3.2. Suppose u ) 5,u / 7,8,12, 14, 19,19,23,24,33, ar34. Then
there is a nested 4+ycle decompsition of K(e.).

Proof: I-et (X,G , A ) be a {5 ,9 , l3 ,17 ,29,49 }-GDD having group-ty,pe 4 s.
Take2 copies of every po;nt z, say {r, , rr}. For every block ,4, consf.uit i nested
4-cycle decomposition of Kpv\ where fre hotes are {21 ,rz}, E e A. We get a
nested 4-cycle decomposition of K6$vt1, where the holes e {rr ,:Ez : :E e C1,GeG I

From this point on, we prmeed as in Section 2.

Lemma 3i. Suppose u ) 5, u / 7 ,8,12, 14, lg ,lg ,23,24,33, or 34 , and
i > 3. Then there is a nested (Zi) <ycte decomposition of Kgyur1,,y.

Proof: Apply l*mmata3.2 ud}.l. I
Theorem 3.4, Suppose u ) l, u / 2,3,4 ,7 ,g,lZ,l4, lg, 19 ,23,24 ,33, or
34, and i > 3 . Then there is a nested (Zi) -cycle system ofirdei 2;it u * 1.'

Proof: For u = l, apply Lemma 2.3. For u ) 2
struct a nested ( 2 d) -cycle decomposition of K11-2u,
fill in the holes with nested (2i)-cycle sysrems of
I*mma2.3.

Corollary3.5..gupposer ) 4 isapowerof two,n: I mduloZr,andn) 70r + l. Then there is a nested r-cycle sS,slem of order n

4. Group divisible designs q'ith btock sizes from t5,9 , 13 ,17 ,2g ,4gl
In this section, we prove Theorem 4.14. This theorem is an extension of results

proved in Mullin, Schellenberg, Vansbne and Wallis [gJ and is proved using the
techniques developed in that papr. It will be useful to recall several resuls irom
[8], but fint" we define some design-theoretic terminology.

A patrwtse balanced de stgn (oa pBD) is a pair (X, A ), such lhat X is a set
of elements (called points) and A is a sel of subsets of X (called D/ocfu), such
that every unordered pair of points is contained in a unique block of A . If u is a
positive integer ud K is a set of positive integers, then we say that (X, A ) is a

, tve proceed as follon,s. Con-

1.;, using Lemma 3.3, and then
order 2i+t * I which exist by

I

150



(u,K)-PBD if lxl = u,and l/l e K fotevery A e A. Theinlegeru is called

lhe order of the PBD.
Using this notation, we can define a (u,k,1)-BIBD (balar'ced incornplete

bla ck desi gn)to be a ( r, { e}) -PBD. A BIBD is re solv abl e if the set of blocks can

be panidoned into parallel classes, each of which is a partition of the points'

Foranyset K ofpositiveintegers,defineB(i() - {': $ereis a(u,K)-
PBD). \\'e say that B (K) it rhe closure of ff. K is said La!cr- PBD-closed tf

6 = B(K).
We are interested in designs @BDs and GDDs) rvith block sizes 5' 9'73'17 '

29,or 49;hence we define Ks = {5,9 , l3 ,17 ,29 ,49}' The results in [8] pertain

mosrly !o designs with block sizes &om {5 , 9, 13 }. Ho*'ever, all the resuls from

t8l wtrictr we use remain tr'ue when the set of block sizes is enlarged lo include 17'

29, utd49, so we wiII resfate tJrem in this fonn. The follox'ing PBD resull tvas

proved in L8l and [5].

Theorem 4.1. Suppse u : I modulo 4 ,, I 33,57,93, 133 ' Then there is a

(u,Ks)-PBD.

Hence, u € B(Xs) foraII such u.

\Ve construct otu GDDs recursively, using the following construction of \\tl-
son [14].

Fundamental GDD Construction: Let(X,G,A) beaGDD,and Iets : X -+
Z+ Utg) be a function. For every block A e A, suppose tlat rl'e have a /(-GDD

of type trt"l i r e A\. Then there exists a K-GDD of tlpe tD,.c s(r) : G €
c).

\\Ie shall refer to the Fundame.nkl Construction as FC.

Define U = {u : there exists a ffs-GDD of group-ty'pe 4'}' Our goal is

to show that all positive integers are in the set U, n'ith a few exceptions' Our

main construction is from [E]; it uses lransversal designs, which we now define'

A transrersal design TD(/c,n) can be de.fined to be a {&}-GDD of group-ty'pe

,f . ltis well-known that a TD(,t, n) is equivalent to & - 2 mutuaUy orthogonal

I-atin squares of order zl

Lemma 4.218, Corollary 4.61. Suppose there is a TD(6,m),0 1- t S m'

{*,t} n {8, 14,23,33} = 0, and {*,t} nU I 0. Then,5m+ t eU.

Proof: Truncate m - t poinls from a goup of rhe TD(6,m), producing a (5,

6)-GDD of groupt5pe *5 tr . Give every poinl. weight 4 and apply FC, filling in

{5 }-GDDs of group-t1'pes 4 5 and 4 6 (t}rese are constructed by deleting a point

from a (21,5, l)-BIBD and a (25,5,1)-BIBD, respectively). fnis produces a

{5}-GDDof group-ty'pe1Cm1s1+t)1. Supposet eU (thecasem € Uis
handled similarly) and let Go b the group of size 4t. Adjoin a new point m
to each goup, producing a (4(5m + ,) + 1,8 (fs))-PBD. Now, delete some

point z € Go from every block in which it. occurs in the design' This produces a
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B( }fs)-GDD of groupry'pe 4s*(4t)I. Reptace every btock B by a(lBl,Ki-
PBD, constructin Ea Ks-GDD of grouptype 4s- (4t) I . Finally, replace'the group
of size 4t by a Ks -GDD of group-t1pe 4t .This yietds a ffs -GDD of group_type
4Sm+t,as desired. a

TD(6 ,m) are known to exist as follows.

Theorem 4.3. Suppse m / 2,3,4,6, l0 ,14 ,lB ,22,26 ,30 ,34 , or 42 , Then
there exists a TD(6,m).

Proof: For mosl. values of m, this result is proved in t2l. A few unknown cases
have recently been constructed as follon's. A TD(6,24) *,as produced by Roth
and Peters t9l; a TD( 6, 20) rr,as found by Todorov tl 2l ; TD( 6, 2g) and TD( 6, 52)
were constructed by Abel [I]; and TD(6,38) and TD(6,44) have L,een con_
sfructed by TMorov [13]. I
Lemma 4.4. Suppose u: I mdulo4,uy' 33,57,93,133. Thenu €.IJ.

Proof: There exists a resolvable (3 u+ 1,4, l) -BIBD,by t3l. Adjoin a new point
to each of the u parallel classes, and adjoin the blocks of a ( u, Ks) _pBD on the
new points. Now, delete an old point, thus forming Lhe desired GDD. I
Lemma4.5[SrLemma 6.21. Supposeu:0 orl mdu]oS. Thenu e{J.

\4'e can now eliminate three of the four exceptions in l*mma4.4.

Lemma 4.6. Suppose u, = 57 ,93, or 133. Then u e u.

Proof: ApplyI-emma4.2,notingthat52= 5 x ll+2,93= 5 x 16+ 13,and
I33 = 5 x24 + 13; and rhat{il,I3} g U. I

As a resultoflrmmata 4.U.6,wehave that u E U if u: 0, l, 5, 6,9, 10,
lI, 13, 15, 16, or 17 modulo 20,u ) 5,u / 33. For the re.maining 9 congruence
classes modulo 20, we can alrcady establish pretiminary bounds beyond which
u e U. These bounds are all applications of I-emm a 4.2, using TD(6 , m) from
Theorem 4.3.

The following lemmara will be useful in handling some sprecial cases.

Lemma 4.7 [8, Lemma 6jl. Suppose u = Z or 22 mdu]o 25, u > 2. Then
u eu.

Lemma 4t. SuppsethereisaTD(r,m),0 ( r ( m,and {r,*} e [t. Then
rmCU.

Proof: The TD yields an (rm,{r, m}) -pBD. The resulr follows since U is pBD-
closed ([8,Irmma 6.1]). I

152



7

Table I

u modulo 20 equation allowable values of m values of u handled

u:2 mod 20 u= 5n* 17 rn: I mod 4,
ml17,m/33

u) 102,u / 182

u: 3 mod 20 u=5m*13 m: 2 mod 4,
m) 46

u)243

u: 4 mod 20 u=5m+9 m:3 mod 4,
m)lI,m/23

u)64,u/724

u:'7 mod 20 u=5m*l'l m: 2 mod 4,
m)46

u) 247

u: 8 mod 20 u=5m+13 m=3 mod 4,
m)15,m/23

u ) 88,uy' 128

u: 77 nod 20 u=5m+17 fn: 3 mod 4,
m)19,m/23

u ) 112,u/ 132

u: 14 mod 20 u=5m+9 rn: 1 mod 4,
m)9,m/33

u) 54,u/ 174

u: 78 mod 20 u=5m+13 m: I mod 4,
m)17,m/33

u ) 98,u/ 118

u: 19 mod 20 u=5m+9 m: 2 mod 4,
m)46

u)239

Lemma 4.9. 32 e U.

Proof: A (129,{5,29 })-PBD having a unique block of size 29 is presenred in
[5]. Delete some point not rn the block of sizr 29 to constmct a ( 5 ,29) -GDD of
type 432 . I

The following is a variation of Irmma 4.2.

Lemma 4.10 [8, Corollary 5.I5]. Suppose there is a TD(6,m), 0 I t I m,
and b ) 0. Suppose there is a (4m+ b,Ks)-PBD, say (Y,B), which conhins
a block B of size b, and suppase there is a (4t * b, K5) -PBD. Then there is a
(2Am+ 4t+ D,If5) -PBD. It fulher, there is a point r eY \B which &curs
onlyinblocksof size5,then5m+ t+ ((D -t)/4) eU.
Proof: As in lrmma4.Z,consrruct a {5 }-GDD of group-qpe G d5 Gt) l, say
(.t,G,A). IrtQ nX = 0, lOl = D. For each group Gof size 4m,let (GU
O, Bc) be a (4 m * b,K5)-PBD, where fl € Bc is a block of size b. For the
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$oup Go of size4.t,let (Go UO,Bo) b a(4t + D,lfs)-pBD. Then (X U
o, Ucec ( gc\{o}) UBoUA ) is a (20 m+ 4 t+ b, Ki-pBD. ifwe deteteapointr
as hypothesized above, then we obtain a Ks-GDD of grouptype 4sn+t+((b-t)/4) ,
as desired. I
Corollary 4.11, Z9 e U,

Proof: ApplyLemma4.I0 n,ith m = 7,t = 2,b = 9, so4 m+ b = 37 and
4t + b = 17 . By adjoining infinite points fo lhe parallel classes of a resolvable
(28 ,4, I) -BIBD, we canconsrruct a(37 ,{5, 9}) -pBD which conrains a (unique)
block of size 9. A btock of size 17 is a (17 , {i7 }) -pBD. We obrain a Ifs _CbO
of group-type4ge, s desire& I
Corollary 4,12. 42 eU.

Table2

u isueU? autiority construcdon

7

8

t2
14

l8
19

22
23
24
27

28

32
34
38

39
42
43
44
47
48
52
58
59
62
63

no
no
?

?

?

?

yes

?

?

yes
yes

yes

?

yes

yes
yes

yes

yes

yes

yes
yes

yes

ye.s

yes
yes

I-emma4.7

I*mma4.7
I*mma 4.2
l*mma4.9

u: 22 modulo 25

v: 2 modulo 25
5 x 5+ 3

u:22 mod 25
5 x 9+ 3

u:2 mod 25
5xll+3
5 x ll+4
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[8, Table l]
Corollary 4.ll
Corollary 4.12

[8, Tbble l]
lt, Thble 1I
I*mma 4.7
Lemma4.2
I-r-mma 4.7
I*mma 4.2
I*mma4.2
[E, Thble l]

Corollary 4.13



u isueU? authority construction

67

68
72
78
79
82
83
87

92
99
103

i07
119

123
124
127

128

132
139

143

147

159

163

167

t74
178

t79
i82
183

187

199

203
207

219
223

227

yes

yes
yes
yes

v9s
yes

yes
yes

yes

yes

)'es

)'es
)'es
yes
yes
yes

yes

yes
yes
yes

yes
yes

yes
yes
yes

yes
yes

yes

yes
yes

yes

yes

yes

yes
yes

yes

Lemma 4.2
Lemma4.2
Lemma 4.7
Lemma4.2
Lemma4.2
Lemma4.2
Lemma4.2
Lemma4.2
Lemma 4.2
Lemma 4.8
Lemma 4.2
Lemma4.2
Lemma4.2
Lemma4.2
Lemma 4.2
Lemma 4.2
Lemma4.2
Lemma4.2
Lemma4.2
Lemma4.2
Lemma4.2
Lemma4.2
l-emma4.2
Lemma4.2
Lemma4.2
Lemma4.2
Lemma4.2
Lemma4.2
L:unma 4.2
Lemma4.2
Lemma4.2
Lemma4.2
I*mrira4.2
Lemma4.2
Lemma4.2
Lemma4.2

5 x13+2
5x13+3

u:22 mod 25

5 x 15+ 3
5x15+4
5 x16+2
5 x 16+ 3
5 x16+7
5x17+7
9xll

5 x20+ 3

5 x20+7
5x20+19
5x2l+18
5 xZl+ 19

5 x25+ 2

5 x25+3
5 x25+7
5x27+4
5x25+18
5 x29+2
5x3l+4
5 x32+ 3

5 x32+7
5x31 +19
5 x 35+ 3
5 x35+4
5 x36+2
5 x 36+ 3
5x37+2
5 x39+4
5 x 40+ 3

5 x4l+2
5 x43+4
5 x41+ 18

5 x45+ 2

Proof: ApplyLemma4.l0with rn = 8,t = l, b = 5,so4m+ b = 37 and

4t + b = 9. As in Corollary 4.11, we can construct a (37, {5,9 }) -PBD which
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conlrains a block of size 5. A block of size 9 is a (9, {g})-pBD. We obrain a
lfs-GDD of groupt)?s 442,as desired. I
Corollary 4.13. 63 e U.

Proof: Apply I-emma4.10 with m = 12,t = 2, D = 5, so 4 m+ b = 53 and
4t + b = 13. By adjoining infinite points to the parallel classes of a resolvable
(40 ,4, 1) -BIBD, we can consruct a ( 53 , {5 , I3 }) -PBD s,hich contains a block
of size 5. A block of size 13 is a (13,tl3))-PBD. We obrain a K5{DD of
group-tlpe 4 63, as desired. I

In Table 2,we list all values of u : 2,3 ,4 ,7 ,8 ,lZ ,14, I8, or l9 modulo
29, u ) 7, which are not handled in Thble l. For each such u, we indicate if it is
known tlrat u € U. If so, $'e give a construction Lo show that u € U.

Summarizing tlre results of I-emmata 4.44.6,Table I, and Table 2, we have
our existence resull..

Theorem 4.14, Suppose u ) 5,u y' 7,8,12, 14, 19,19,23,24,33,34. Then
there is a {5,9 , 13, 17 ,29 ,49}-GDD having grouyts,p 4".
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