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Abstract. It is shown that for all odd v 2.1565 there exists a skew Room

square of side v. Moreover, for 7 < v < 1565 there are at most 31 odd

v for which no such square exists.

1. Introduction.
Thus we assume the definitions and terminology which occur in [3] and [4].

The following theorem appears there as well.

m

Theorem 1.1. (i) i1if v 1 mod 6 and v > 46017
or

(ii) if v =3 or 5 mod 6 and v 2 17301

then there exists a skew Room square of side wv.

Qur purpose here is twofold. We wish to improve the result above to
show that if v > 1565 and v odd then v e SS, where SS = {v : 4 a skew
square of side v}, as in [3]. Further we wish to outline a method of
obtaining this result without employing a computer. We will assume the table
of v not known to be in o0a(l0) as obtained in [4] to be given. Although
this table was constructed by computer, for the small values employed here
that paper is essentially constructive. It is written so that for any
particular value of t claimed to be in o0a(l0), a method for producing- 8
mutually orthogonal latin squares of side t can be obtained readily by

using a sieving technique through the tables presented there. Further a
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"computer-free" proof (relying partially on that table for a few small values)

of the following theorem is given there.

Theorem 1.2. If v is positive and v = 1 mod 8 and {65,129} ¢ SS, then

v € SS.

Since that time J. Dinitz [2] has shown that 65 € SS. Hence if 129 ¢ SS,
then v e SS for all positive v = 1 mod 8, v € SS. The result cited as
Theorem 1.1 was proved without employing a computer except to prove that for
positive v = 1 mod 8 (with the possible exception of v = 129), v ¢ SS.
Thus the existence of a skew Room square of side 129 is sufficient to(yield a
"computer-free" proof of Theorem 1.1.

In the present paper, apart from obtaining members of 0a(l10) as

mentioned above, the results given do not rely on a computer.

2. Squares of side. v = 1 mod 6.

The following is shown in [3].

Theorem 2.1. Suppose m # 16, m ¢ oa(10) and {6m+1,6t+1}<SS. Then there
exists a skew square of side 56m + 6t + 1. (It is easily verified that this

square has subsquares of side 6m+l and 6t+1).

In view of the above, it is clearly important to consider which values
vV =1 mod 6 belong to SS. To this end, we list several results and
constructions concerning the existence of skew (Room) squares. The Lemmata
2,2 - 2.7 form an update of the results cited in [3], based on the results

obtained there.

Lemma 2.,2. For v an odd prime power, v # 3, 5, v ¢ S.
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Lemma 2.3. Suppose there 1s a skew Room square of side v, which contains

a skew Room subsquare of side Vq-

1) If v, = ¥y # 6 and if there is a skew Room square of side vy
then there is a skew Room square of side 'vlfvzfv3) + vy which
contains skew Room subsquares of sides Vi VY, and Vqe This
result also holds for vy = 0.

ii) 1f vy # 0 and v, =V, # 12, then there is a skew Room square
of side 5(v2-v3) + v, which contains skew Room subsquares of

sides v2 and v3.

¢

Lemma 2.4. If v 1s an odd positive integer and v * SS, then v = 3n or

v=5n or v = 75n, where (n,15) 1.
Lemma 2.5. If v 1is odd, and if 7 < v < 67, and if v # 55, then v € SS.

Lemma 2.6. If v Z1 mod 12 and v is positive, then Vv € SS.

m

Lemma 2.7. If v

1 mod 8 is positive and v # 129, then v e SS.

Lemma 2.8. If v 1l mod 10 is positive, then v € SS.

The following is proved in [5].

Lemma 2.9. If v = 7 mod 24 and v > 0, then v ¢ SS. Moreover such

squares contain subsquares of order 7.

Other constructions based on pairwise balanced designs are given below.

(For definitions, see [ 4]).

Theorem 2.10. Suppose that there exists integers m and t such that

0<t<m, me oa(18), and {6m+l,6t+l} < SS. Then 112m + 6t + 1 € S.
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Proof. The broof is based on the fact that {16,17}coa(7) as is that of

-the similar theorem in [3], mutatis mutandis. ]

Theorem 2.11. Suppose that there exist integers m and t such that

0<t<m and that m € 0a(18). Then 176m + 10t + 1 € SS.

Proof. The proof is based on the fact that {16,17} c 0a(ll) and is that

of the similar theorem in [2], mutatis mutandis. 0

Theorem 2.12. Suppose that there exist integers m and t such that

0 <t <m, and that m € oa(l4). If {6mt+1,6t+1l} c SS, then 84m + 6t‘+ 1 e SS.

(

Proof. This is as based on the fact that {12,13} c oa(7). Proceed as

above.’ 0

Lemma 2.13. If m and t are integers such that 0 < t < m, m € oa(43)

and if {m,mt6t} ¢ SS then 43m + 6t ¢ SS.

Proof. Employing EG(7,2) one obtains a group divisible design of type
42{1} + {7} by using a flat of order 7. Moreover, since 43 € SS there
is a group divisible design consisting of one block of size 43 and group type

43{1}. This gives rise as above *to a group divisible design with blocks of

size 43 and 7 and groups of size m and n + 6t. [1

The following is extremely useful for constructing skew Room squares of

smaller orders which are multiples of three.

Lemma 2.14. If m and t are integers such that 0 < t < m, m € oa(9),

and m + 6t ¢ SS, then 51lm + 6t ¢ SS.

Proof. There is a group divisible design of group type {1} + 8{7} and

blocks sizes 7 and 9 obtainable from a resolvable orthogonal array O0A(8,7)
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to which a new point has been added. Moreover since 7 € 0a(10) ,there is a
group divisible design with group type 9{7} and block sizes 7 and 9.

As before this yields a design with block sizes 7 and 9 and group sizes 7m
and 7m + 6t. However if 7m + 6t ¢ SS, then m 1is odd, and it was shown

in [ 4] that 7m e SS for all odd positive m. [J
The following theorem is proved in [5].

Theorem 2.15. Let K be a PBD closed set. Suppose that there exists a

PED (v,{K}) which contaihs a flat of order w. Suppose that a 1is an
integer such that 0 < a < w, and that there exists n - 2 rnutually orthogonal
latin squares of side v - a which contain n - 2 common subsquareé of order

w-—a for some ne¢ X. If n(w-a) + a € K, then n(v-a) + a € K.
Lemma 2.16. {695,2165,2995,3695,4435} < SS.

Proof. Note that 695 = 7(113-16) + 16. Since 16 € oa(7) there is a PBD
of order 7.16 + 1 with block sizes 7 and 17. Let F be a flat (block) of
size 17. Let a = 16 as in the above theorem. Since 97 € oa(5) the
required latin squares exist.

For the remaining cases except 2165 we present the required data in

numerical form.

v \ a n v-a with Order of design
sub w-a constructed
209 = 11 x 19 11 10 15 199 € oa(l5) 2995
533 =956 +6.3+1 7 6 7 527 € oa(7) 3695
405 = 15.27 15 2 11 403 = 13.31 4435

For 2165, we proceed as follows. Start with EG(7,2) taking a flat of

order 7. Applying the theorem once, we obtain 307 = 7(49-6) + 6 (since

- WLT =



43 € oa(7)). This PBD can be shown to have all blocks of size 7 except for
one of size 13. Using a well known construction for latin squares, we can
obtain 5 mutually orthogonal latin squares of side 307 with common subsquares
of side 7.

Now 323 = 21.23. Thus there is a PBD of order 323 with a flat of order
23. Since 2165 = 7(323-16) + 16 there is a PBD of order 2165 with block

sizes from SS. [}

Lemma 2.17. Suppose that v = 6p + 1 ¢ SS for all primes p satisfying

~
A

gl
IA

1931 except possibly for p e {19,59,199}. If v = 1 mod 6 and

1 < v < 11593, then v e SS, except possibly for v e {115,355,1195}.

Proof. By lemma 2.6, we need only consider integers of the form 6t + 1

where t 1is odd. Moreover by lemma 2.8, we may assume that (t,5) = 1.

Since 3% € SS for a = 2,3,4,..., and since 6.3 + 1 € SS, we have

o at+l
v=3(6.3t+1-1) +1=v = 6.3 +1eSS for o 22. But 6.9+ 1 ¢ SS,
therefore v = 6.3Ol+l + 1€ SS for all o 2 1. Moreover if s > 0 and

(s,15) = 1, then v = 6.3% + 1 ¢ SS for o 21 since s € SS. Thus we

may assume that (3,t) = 1. If t =1, then 6t + 1 ¢ SS. Let

IN

P = {p: p prime, 1 < p <1931, p ¢ {19,59,199}}. Suppose t is divisible
by a prime p ¢ P. Then v = 6t + ] = (t/p) (6p+1-1) + 1 ¢ SS. Thus if

1 <6t+1=<28389 and v ¢ SS, then t is a product of primes in
{19,59,199} and t < 1931. By Lemma 2.9, we may assume that the number of

primes (counting multiplicities) is odd. But 193 ¢ 1931. 0O

Lemma 2.17. Suppose that v = 6p + 1 where P 1is a prime satisfying

7 <p <1931, Then 6p + 1 ¢ SS except possibly for p e {19,59,199}.
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Proof. In view of the previous lemmata we need only consider those cases

where 6p + 1 = 0 mod 5 and both condition§ 6p + 1 = 7 mod 24 and

6p + 1 = 0 mod 25 fail to hold. That is we need only consider primes

P £ 9 mod 10 where p # 4 mod 25 and p $ 1l mod 4. These cases are treated

below.
P 6p+1. construction
139 835 9(99-7) + 7, 99 = 7(15-1) + 1
239 1435 35.41
359 2155 84.25 + 6.9 + 1
419 2515 5(547-55) + 55, 547 = 56.9 + 6.7 + 1
439 2635 85.31, 85 = 7(13-1) + 1
499 2995 lemma 2.16

599 3595 39(99-7) + 7, 99 = 7(15-1) + 1
619 3715 112.32 + 6.25 + 1

659 3955 35.113

719 4315 84.49 + 6.33 + 1

739 4435 lemma 2.16

839 5035 19.265, 265 = 33(9-1) + 1

859 5155 5(1051-25) + 25, 1051 = 25(43-1) + 1

919 5515 27(211-7) + 7, 271 = 7(31-1) + 1
1019 6115 7(883-11) + 11, 883 = 9(99-1) + 1, 99 = 9.11
1039 6235 43.145, 145 = 9(17-1) + 1

1259 7555 51(155-7) + 7, 155 = 7(23-1) + 1, 51 = 5(11-1) + 1
1319 7915 67 (127-9) + 9, 127 = 9(15-1) + 1
1399 8395 23.365, 365 = 13(29-1) + 1
1439 8695 7(1243-1) + 1

1499 8995 35.257
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1619 9715 67.145, 145 = 9(17-1) + 1
1699 10195 171.56 + 103.6 + 1

1759 10555 171.56 + 163.6 + 1
This completes the proof. []

Corollary. If v =1 mod 6, 1 <v < 1593, and v e {115,355,1195} then

v € SS.

Lemma 2.18, Suppose that there exists an increasing sequence of integers
M* = (ml’mZ""’mn) such that

(i) m, < oa(10), i = 1,2,...,n;

(11i) 6mi 1l e 88, = L2y uua i

(1ii) 56mi + 1< 62mi_1 +1 for i=1,2,...,n;

(iv) 6mn + 1 > 8389; and

(v) m, £ 0mod 3, 1 =1,2,...,n.

If v=1mod 6 and v satisfies 56mi +1<v < 62mn + 1, then v ¢ SS

* 1
with the possible exception of v e {56m+w :m ¢ M »weW= {115,355,1195},

w<6m+1l and m = 0 mod 5},

Proof. This is a direct application of theorem 2.1 and the corollary of
lemma 2.17 except for the condition that m = 0 mod 5 in the definition of
exceptional cases. But if v Z 1 mod 6 is positive and v & SS, then

vV 2 0mod 5. Since all members of ¥ = Q mod 5, v=56m+w=0mod 5

*
for we M dimplies that m = 0 mod 5. a

Lerma 2.19. Suppose that v = 1 mod 6. If for 11593 < v < 50593, then

v € SS.
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Proof. Consider the following table.

m
207
225
243
267
288

297
321

351
387
423
465
513
549
606
669
738

816

56mt1
11593
12601
13609
14953
16129

16633
17977

19657
21673
23688
26041
28729
30745
33937
37465
41329

45697

62mt1
12835
13951
15057
16495
17857

18415
19903

21763
23995
26227
28831
31807
34039
37573
41479
45747

50593

This covers all cases with the possible exception of v e {12955,13795,26395,

27235}.
But

12955

13795

Il

The lemma follows.

0

127(103-1) + 1,

11.19(67-1) + 1, 27235

26395

83(319-1) + 1,

17.89(19-1) + 1.
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Theorem 2.20. If v = 1mod 6, v >0, and v ¢ {115,355,1195}, then v € SS.

The proof is immediate from Theorem 1.1 and lemmata 2.17 and 2.18. [

3. Squares of side v = 5 mod 6.

If v 1is positive, v = 5mod 6, and v ¢ SS, then v = Omod 5 by
lemma 2.4. With this fact in mind we examine the spectrum of skew Room

squares of side = 5 mod 6.

Lemma 3.1. Suppose that there exists an increasing sequence of integers

M* = (ml,mz,...,mn) such that
(1) m, € oa(l0), i = 1,2,...,n;
(ii) 6mi +1¢ SS, 1i=1,2,...,n;
(111) 56mi + 1 < 62mi—l +1 for i=2,3,...,n;
(iv)  6m + 1 s 2094;
(v) m, =2mod 3, i =1,2,...,n.
If v=5mod 6 and v satisfies 56mi +1<vg 62mn + 1, then
v € S5 with the possible exception of v ¢ {56m + w : m € M*, m = 0 mod 5,

w e {115,355,1195}, w < 6m + 1}.
Proof. This is the proof of lemma 2.18, mutatis mutandis. [J

Lemma 3.2. Let p be a prime such that 7 < P < 239. Then 5p € SS

except for p e€ Q where Q = {19,23,43,67,71,79,103,223,239}.

Proof. For 7 < p < 13, this is covered in §2. By lemma 2.7, we need not

consider p = 5 mod 8.
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P 5p P 5p

17 85 =7(13-1) + 1 137 685 = 19(37-1) + 1
31 155 = 11(15-1) + 1 139 695 = lemma 2.16
47 235 = 13(19-1) + 1 151 755 = 29(27-1) + 1
59 295 = 21(15-1) + 1 163 815 = 37(23-1) + 1
73 365 = 13(29-1) + 1 167 835 = 9(99-7)+7, 99 = 7(15-1) + 1
83 415 = 23(19-1) + 1 173 865 = 19(47-1) + 1
89 445 = 37(13-1) + 1 179 895 = 37(31-7)+7, 31 = 5(7-1) + 1
97 485 = 11(45-1) + 1 191 955 = 53(19-1) + 1
107 535 = 56.9 + 6.5 + 1 193 965 = 56.17 + 6.2 + 1 °
109 545 = 5(121-15)+15, 121 = 15(9-1) + 1
113 565 = 47(13-1) + 1 199 995 = 71(15-1) + 1
127 635 = 56.11 + 6.3 + 1 211 1055 = 31(35-1) + 1
131 655 = 27(31-7)+7, 31 = 5(7-1) + 1
227 1135 = 81(15-1) + 1
233 1165 = 97(13-1) + 1

This establishes the lemma. [J

Lemma 3.3. Let v be an odd integer such that v = 0 mod 5, (v,3) =1,
and 7 < v < 1200. If v ¢ SS, then v ¢ {95,115,215,335,355,395,515,695,1115,

1195}.

Proof. Clearly if 5n is odd and satisfies (i) (n,3) =1 and (ii)

7 < v £1200, then n is a product of primes in the set Q of the previous
lemma and n < 240. The above values correspond to the members of Q itself,
therefore we need only consider proper products of these. However

192 = 361 > 240. [
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Lemma 3.4. Suppose v = 5 mod 6, and 1195 < v < 4625. If v ¢ SS, then

v = 1565.

Proof. Consider the following tables.

m 56mt+1 62mr-1
23 1289 1400
29 1625 1799
32 1793 1985
41 2297 2543
47 2633 2915
53 2969 3287
71 3977 4403
m 112m+1 118m+1
13 1457 1535

31 3473 3659

In view of the above we need only consider the following values (multiples

of 25 are omitted) in view of lemma 2.4 (o denotes a value = 1 mod 8).

1205 = 43(29-1) + 1 2135 = 35.61

1235 = 19.65 2165 = lemma 2.16

1265 = 23.55 2195 = 5(451-15)+15, 451 = 15(13-1) + 1
1415 = 101(15-1) + 1 2255 = 41,55

1445 = 17.85 = 7(13-1) + 1 2285

17(141-7)+7, 141 = 7(21-1) + 1

1595 = 55.29 2555 = 35.73

2015 = 31.65 2585 = 55.47

2045 = 73(29-1) + 1 2615 = 43.59 + 6.13
2105° 2945°
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3305° 3845 = 31(125-1)

+
[l

3335 = 23.145, 145 = 9(17-1) + 1 3905 = 55.71

3365 = 29(117-1) + 1, 117 = 9.13 3935 = 281(15-1) + 1

3395 = 15.97 3965 = 61.65

3455 = 157(23-1) + 1 4415 = 19(239-7) + 7, 239 = 7(35-1) + 1
3665° 4445 = 35,127

3695 = lemma 2.16 4505 = 53.85, 85 = 7(13-1) + 1

3755 = 83.43 + 6.31 4535 = 101.43 + 6.32

3785° 4565 = 101.43 + 6.39

3815 = 15.109 4595 = 101.43 + 6.42

This completes the lemma. []

Lemma 3.5. If v = 5 mod 6 and 4625 < v < 9353, then v € SS.

Proof. Consider the following tables:

n 56urk1 62m+1
83 4649 5147
89 4985 5519

101 5657 6263

107 5993 6335

113 6329 7007

125 7001 7751

137 7673 8495

149 8345 9239

In view of the above we need only consider the following cases. (Again

multiples of 25 are omitted).
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5555 = 55.101 5645 = 17(333-1) + 1, 333 = 13.27
5585 = 349(17-1) + 1 7115 = 112.61 + 6.47 + 1
5615 = 401(15-1) + 1 7355 = 56.131 + 6.3 + 1

For 9245 < v <9335, and v = 5 mod 6, write v = 191.43 + 6w, where

w =172, 177, 182, 187. (]
Lemma 3.6. If v = 5mod 6 and 9353 < v < 17423, then v e SS.

Proof. Consider the following table:

m 56mt1 62mt1
167 9353 10355
179 10025 10799
191 10697 11843
197 11033 12215
209 11705 12703
221 12377 13703
239 13385 14819
263 14729 16307
281 15737 17403

This completes the lemma. []

The foregoing can be summarized as follows.

Lemma 3.7. If v >5 and v = 5mod 6, then v € SS with the possible

exception of v e {95,215,335,395,515,1115,1565}.
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4. Squares of side v = 0 mod 3.

In this section we investigate the remaining case of v odd and

v = 0 mod 3, that is, v = 3 mod 6.

Lemma 4.1. Suppose that there exists an increasing sequence of integers

%
M = (ml,m ,mn) such that

oo
(i) m, ¢ 0a(10), i = 1,2,...,n;

(i1) mid {16,19,199}, i = 1,2,...,n;

(111) 56.1 + 1 5 62m 1 for 1i= 2,3,...,n;

i-1 t
(iv) m E1mod 3, 1 =1,2,...,n.

If v=3mod 6 and v satisfies 56ml +1<vs 62mn + 1, then v € SS,

with the possible exception of Vv e {56m + w : m ¢ Mx, w ¢ {115,355,1195},

w<6a+1l, mflmod 10}.

Proof. See theorem 2.18, mutatis mutandis. (The condition m # 1 mod 10

arises from lemma 2.8). ([

Lemma 4.2. Suppose there exists a sequence of increasing odd integers

*

M = (ml,m ,mn) such that

g
(1) me oa(9), i = 1,2,...,n;
(ii) 57mi < 63mi—l for 1= 2,3,...,n;
(i1i) m, $+ 0mod 3, i = 1,2,...,n.
If v=3mod 6 and v satisfies 57ml v < 63mn then v € SS, with the
possible exception of v € {57m + 6t: m + 6t ¢ {95,115,215,335,355,395,515,

1115,1195,1565}.

Proof. See theorem 2.18, mutatis mutandis. [J
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Lemma 4.3. Suppose that there exists a sequence of odd integers
*
M = (ml,mz,...,mn) such that
(1) w, € 0a(l10), i = 1,2,...,n;
(1i) m, ¢ (16,19,199};
i < + = RPN ¢ 5
(iid) 57mi 62mi—l 1 for 1i=2,3, ,N;

(iv) m, 2 1mod 3, i=1,2,...,n.

If v=3mod 6 and v satisfies 57m < v < 62mn + 1, then v € SS.

Proof. As above, with the following extension. The constructions of lemmata
4.1 and 4.2 can only fail in the simultaneous application above if 6t + 1
and 6t + m are simultaneously in {115,1195}. This requires that m = 1801

and t =19, that is, v = 60651. However 60651 € SS by theorem 1.1. 0]
Lemma 4.4, If v 23 mod 6 and v 2 6777 then Vv € SS.

Proof. Consider the following table.

m 56m+1 57m 62mt1 possible exceptions
121 6777 6897 7503

127 7113 7239 7875 7227
139 7785 7923 8619 7899
151 8607 9363

163 9291 10107

169 9633 10479

181 10317 11223

193 11001 11967

211 11817 13083

229 13053 14119

253 14169 14421 15687 14283
277 15513 15789 17175 15627
283 16131 17751
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Thus in view of theorem 1.1, once we show that {7227,7899,14283,15627} c SS,
the theorem follows. But 7227 = 9,803, 7899 = 359(23-1) + 1,

14823 = 243.61, 15627 = 601(27-1) + 1. [
Lemua 4.1 can be strengthened as follows.

*
Lemma 4.5. Suppose there exists a sequence of odd integers M satisfying
the hypothesis of lemma 4.1. If m € 115, v = 3 mod 6 and v satisfies the

inequalities 56ml +1sv¢< 62mn + 1, then v € SS.

Proof. Since m < 115 any exceptions arising to the lack of skew Room

squares of sides = 1 mod 6 are compensated for by lemma 4.3. [

3 mod 6 and if v > 2073, then v € SS.

Lemma 4.6. If v

Proof. We must treat appropriate v satisfying 2073 <v < 6771. For vV
satisfying 2073 < v < 2103, v e {5637 + 6t + 1, 0 < t < 6}.

Now consider the following table.

possible exceptions
m 57m 63m exceptions covered
37* 2109 2331
41 2337 2583 2391 2511
3" aus1 2709 2511
47 2679 2961 2727 2847
49" 2793 3087 2847
53 3621 3329 3063,3183,3303

(* Since these numbers are congruent to 1 mod 6, lemma 4.5 applies).
This shows that the result is valid for 2109 < v < 3339 with the possible

exception of v e {2391,2727,3063,3183,3303}. But 2391 = 1 mod 10 and

- 429 -



2727 and 3303 are multiplies of 9, hence lemmata 2.4, 2.8 apply. Moreover,
3063 = 176.17 + 10.7 + 1 and 3183 = 51.61 + 6.12 (cf lemma 2.14).
For 3299 <v < 3417, v § 3363, v is covered by {112.29 + 6t + 1,

16 s t <29, t # 19}. Moreover 3363 = 57.59.

m S56mt+1 62mt1 possible exceptions
61 3417 3783

67 3753 4155

73 4089 4527

79 4425 4899

82* 4593 5085 4707, 4947.

(* Since m 1s even, lemma 4.5 does not apply).

Since 4707 2 Omod 9 and 4947 = 51.97, we need only consider v 2 5091.
However for 5091 < v = 5229, consider {83.57 + 6t : 60 < t < 83}. This
covers all cases except 5133 = 29.177, but 177 = 11(17-1) + 1. Note that
5235 = 15.349, 5241 = 131(41-1) + 1, and 5247 = Omod 9 and 5235 = 51.103.
For v =3 mod 6 and 5256 < v < 5447, v # 5379, note that

ve {112.47 + 6t + 1, 0 s t < 47, t = 19}. Moreover 5379 = 33.163.

Retuiniag to tables we have the following.

m 56m+1 62mt+1
97 5433 6051
103 5769 6387
109 6105 6759

Since 6765 = 15.451 and 6771 = 61.111 where 111 can be written as
11(11-1) + 1, the result follows.
The foregoing can be summarized as follows. If v is an odd integer

and ¥ 2 2069, then there exists a skew Room square of side wv.
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5. More special cases.

Lemma 5.1. If v = 0mod 15 and v 1s an odd positive integer, then v € SS

with the possible exception of v = 75.

Proof. It suffices to prove that 75p e 58S for.all prirzes satisfying

7 <p £23 4in view of the foregoing. Bui if 5p € SS, then 15 x 5p € SS.
Hence we need only consider those p < 23 such that 5p has not been shown
to belong to SS, i.e., p € {19,23}. Buc 75.19 = 57.25 and

75.23 = 57.26 + 6.12. [
Lemma 5.2. Suppose v = 3 mod 6 and v 2 1311, then v € SS.

Proof. For 2015 < v < 2067, we consider 1ill cases. (Multiples of 5 and 9

are omitted, as are v = 1 mod 10).
2013 = 33.61 2049 = 1 mod 8
2019 = 17(131-13) + 13, 131 = 13(11-1) + 1
2037 = 21.97 2067 = 39.53

A

For 1737 < v < 2007, consider the following tables

m 56mrt1 62mt1

31 1737 1923

m 112m+1 118m+1

17 1905 2007

For 1695 < v < 1731, there is only one case not ruled out by the criteria
of divisibility by 5 and 9 and v = 1 mod 10, namely 1713 = 1 mod 8.
For 1653 < v < 1689, v € {57.29 + 6t, 0 <t < 6}. For 1581 < v < 1647, we

consider all cases, with the usual exceptions.
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1587 = 61(27-1) + 1, 1599 = 39.41, 1617 = 33,49, For 1311 < v < 1575,

consider the following.

m 56mt1 57m 62nrt1 63m possible exceptions
25 1401 1551 1575
23 1311 1449 1383

Also 1383 = 5(287-13) + 13, 287 = 13(23-1) + 1. O

Lemma 5.3. Suppose there exists a group divisible design of order v with
block sizes from SS and with group sizes from L. Suppose also that for each
2 € L there exists a skew Room square of order & + k which contains a

skew subsquare of side k. Then v + k € SS.

Proof. This is obtained by using the standard PBD construction of Lawless,

on which this work is based, with a straightforward modification. [

Lemma 5.4. Suppose 7 < p < 461.If 3p ¢ SS, then p e {23,29,31,41,43,53,71,

73,79,101,151,199,233,239,293,311,349,359,409,421}.

Proof. We consider all cases. Clearly p = 7mod 10 and p = 3 mod 8 can

be omitted, and by lemma 2.5, we need not consider primes p < 23. [
Corollary. {447,843} c SS.

Proof. By deleting a point from EG(7,2), one obtains a group divisible
design with blocks of size 7 and group type 8{6}. Moreover since 8 € oa(7)
there is a PBD of blocks of size 9 and 7 from which one can obtain a group
divisible design with blocks of size 7 and 9 and group type {8} + 8{6}.

Since 8 € o0a(9), one can construct a group divisible design of order 440 with
block sizes 7 and 9 and group type 8{48} + {56}. By lemma 2.9 there is a

skew Room square of side 4817 with a subsquare of side 7. Also 56 + 7 = 9.7.
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Hence 440 + 7 ¢ SS. Similarly there are group divisible designs from
PG(8,2) and EG(9,2) with block sizes 9 and group types 9{8} and 10{8}
respectively. Since 11 €o0a(10), there exists a group divisible design Qith

blocks of size 9 and group type 9{88} + {40}. But 88 + 11

9.11 and

40 + 11 = 5(11-1) + 1. O

P 3p P 3p

61 183 = 13(15-1) + 269 807 = 31(27-1) + 1

|

89 267 = 19(15-1) +

b=

271 813 = 29(29-1) + 1

[

103 309 = 11(29-1) + 281 843 = lemma 5.3

109 327 = 5(71-7)+7,71=7(11-1)+1 313 939 = 67(15-1) + 1
113 339 = 13(27-1) + 1 353 1059 = 23(47-1) + 1
149 | 447 = lemma 5.3 373 1119 = 43(27-1) + 1
173 519 = 37(15-1) + 1 379 1137 = 71(17-1) + 1
181 543 = 57.9 + 6.5 383 1149 = 41(29-1) + 1
191 573 = 13(45-1) + 1 389 1167 = 53(23-1) + 1
193 579 = 17(35-1) + 1 401 1203 = 13(99-7)+7,99=7(15-1)+1
223 669 = 57.11 + 6.7 431 1293 = 17(77-1) + 1
229 687 = 49(15-1) + 1 433 1299 = 59(23-1) + 1
241 723 = 19(39-1) + 1 439 1317 = 47(29-1) + 1

This completes the lemma. [J

Lemma 5.5. Suppose that v = 3 mod 6, (v,5) =1 and 7 £ v £ 1305.
If v e SS, then v ¢ {69,87,93,123,129,159,213,219,237,303,453,597,699,

717,879,933,1047,1077,1227,1263}.

Proof. This is immediate from lemma 5.4 and the fact that 232 > 461. [
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We conclude with our main result, which summarizes the foregoing.

Theorem 5.6. If v is an odd integer 2 7, then there exists a skew Room
square of side v with the possible exception of those given in the following

table.

69 75 87 93 95
115 123 129 159 213
215 219 237 303 335
355 395 453 515 597
699 717 879 933 1047

1077 1115 1195 1227 1263

1565

Corollary. There are at most 31 odd v 2 7 such that no skew Room square
of side v exists.
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