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Abstract

In this paper we discuss the conaections betweea resilient fuactions, la:ge
eets of orthogonal afrays and error-correcting codes. Some recent results on
resilieat functions are then derived as consequences of kaown results on orthog-
oual arrays from design theory.

1 Introduction
The concept of resilient functions was introduced independently in the two papers
Chor et ol [4] and Bennett, Brassard and Robert [1]. Here is the definition. Let
n>m 2 1 be integers and suppose

/:{0,1}'*{0,1}-.
We will think of / as being a function that accepts z input bits and produces rn output
bits. Let t f n be an integer. Suppose (rr,...,c.) € {0,1}', where the values of t
arbitrary input bits are fixed by an opponent, and the remaining z - t input bits are
chosen iodepeudeutly at random. Then / is said to be t-resilientprovided that every
possible output rn-tuple is equally likely to occur. More formalln the property can
be stated as follows: For every t-subset {ir, . . . , ir} g {1, . . . , n }, for every choice of
zi e {0, U (1 < j 

= 
t), and for every (y1, ... ,U^) € {0, 1}', we have

p7(tr,...,ro) = (Ur,...,U-)lr ii : zi,l < j <r) : #
We wiII refer to such a function / as au (n.,rn,t)-resilient function.

A closely related concept is that of a correlation-immune function, which is defiued
by Siegeathaler in [11] and further studied in [10], [6] and [f]. nt rz ] 1 be an integer
aodsuppose/: {0, 1}".{ {0,U. Asbefore, suppose (rr,...,o") € {0, 1}',wherethe
values of t arbitrary input bits are fixed by an opponent, a.ud the remaiuing rz-t input
bits are chosea iadependeutly at random. Then / is said to be conelotion-immune
oJ oriler i provided that for every l-subset {i1,...,i,} G {1,...,2}, for every choice
of" zi e {0, 1} (1 < j < ,), aud for I = 0,1, we have

CONGRESSUS NUMERANTruM 92(1993), pp. 105-1 10

.t



p(f(rr,...,ao) =yla;;: zi,l 1j <t):p(f@r,...,c.) = y).
A correlation-immune functioq is bolonced, if.

P(l@', "',an) = Yla;; = zi,! S i < t) = Ll2).

In other words, a balanced correlation-immuae functiou is the same thing as au
(rz, 1, t)-resilieot fuoction.

Two possible applications of resilieat fuuctions are mentioued in [lJ and [a]. The
flrst applicatiotr corcerns the geueration of shared random strings in tle preseoce of
faulty processors. The secoad irvolves renewiag a partially leaked cryptographic key.
Correlation-immune functions are used in stream ciphers as combining functioas for
ruuning-key generators that are resistaot to a correlation attack (ree, for example,
Rueppel [10]).

Many interesting results ou resilient fuuctions caa be found in [1] and [4]. The
basic problem is to mocimize t giveo rn and n; or equivalently, to maiimize zn, given
n and t. Here arc some examples from [4] (all addition is modulo 2):

(1) rzr = L,t:n - 1. Define f(rrr...,o,) = or *...*rr.
(2) m = n - L, t= 1.. Define t(rrr.,.,c-) = (*t * az,az* csr.. .,rn_1 * an),

(S) rn = 2, n = 3h, t = 2fi. -.1. Define
'l(rr,'..,ogl) = (r, +.. .*r211,a741*... * cal).

Ia fact, all three of these examples are optimal. It is easy to see that n ) rn ! t,
so the first two examples are optimal. The result that J < lff) iI m = 2 is much
more diftcult; it is proved in [4].

2 Resilient functions and orthogonal arrays
Resilient functions turn out to be equivalent to certain large sets of orthogoual arrays,
which we now define. An, orthogonol anag OAg(t, ,b, r.,) is a lut x it amay of u symbols,
such that in any I columns of the array every ose of the possible ut qrdered pairs of
symbols occurs in exactly ) rows. If ) = 1, then we wite OA(t,k,a).

An orthogonal array is said to be rowuise sbnpleif no two rows are identical.
Of course, arr array with ,\ : 1 is rowwise simple. Ia this paper, we consider only
rowwise simple arrays.

A lorge set of orthogoaal arrays OAy(t,,t, o) is defined to be a set of r.,[-t/) rowwise
simple arrays OA;(t,&ru) such that every possible,t-tuple of symbols occurs in
exactly one of the OA's in the set. (Equivalently, the uniou of the OA,s forms ao
OA(k,k,u).)

Here is our main result,

Theorem 2.t An (n,m,t)-resilient funetion is equitolent to a lorge set of orthogo-
nol onoys OAr -^-,(t,n,2).
Prool. First, Buppose .f , {0, 1}" + {0, 1}- ia an (z,m,t)-resilient fuaction. For
any y € {0, 1}-, form an array .4, whose rows are the vectors io the inverse image
l-'fu). A"is a l/-t(y)l x z binary array. It ie clear that the 2- arrays ,4., together
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contaiu cvery possible n-tuple as a row, eo if each .A, is an OA2 -^-r(t,n,2), then
we automatically get a large set.

Let {i1,...,i,} g {1,...,2} be a t-subset, aud let z; € {0,i} (t S j < t). For
every y € {0, 1}-, let )(y) deaote the number of rows in .A, io which z; occurs iu
column i; for I < i St. It is easy to see that

D )(Y):2'-t'
y€{0,1)a

Now

p(f(rr,.",o.) = (yr,...,?-)lc;, = zi,! 1j 3t):H
Since / is t-resilient, we get

r(v) _ t
2n-. - 2m,

or )(y) :zn-m-t. Since {i1,. . . ,ir} and z; (1 < j S ,) are arbitrarn we have shown
that each .A, is an OA2^-^;(t,n,2), as desired.

Conversely, suppose we start with a la^rge set of O.42.---'(t,nr2). There are
2- arrays in the large set; name them .A, y € {0, 1}-. Then define a function
f : {0,1}' --+ {0,1}' by the rule

J(rr,...,co) = (yr,...,g-) e (rr,...,o.) € A(y,,...,rr").

It is easy to eee that the function / is t*resilient. tl

Remork. The fact that the t-resilieat functiou gives a large set of orthogonal arrays
lcas remarked in [4, p. 402].

As an illustration, coneider Example (3) in Section 1 with lr. = 2:

f(rrrrrr',sra4rx5,a6) = (cr + az * ,.s* a*, cs * ,,e+ rs + 16),

where addition is modulo 2. This is a (6,2,3)-resilieut function, and by Theorem
2.1, it is eguivalent to a large sel, oL OA2(3,6,2). There are four OA's it the large set,
one of which is obtaiued from /-1(0,0):

A related result for correlation-immune fuactions was proved in [3]

Theorem 2.2 A conelotion-immune fimction .f , {0, 1}" -' {0, 1} o/ oriler t is
equhtalent to or orthogonol onay OA1(t,nr2) for some integer \,

Theorem 2.2 car be proved in a similar way as Theorem 2.1 (however, the proof in

[3] is very differeut, making use of a Walsh traasform characterization of correlation-
immuue functions). In fact, we get two orthogoual a.rrays: at OATo(t,n 2) from

107

0. 10101000000
010110000011
100101110000
100110
011001001100
011010
101001111100
101010

110011

001111

111111

-.4



f-1(0) aod an Or{1,(t,n,2) from /-,(1). For i : 0,1, we have ); = l/-r(i)l/2., aad
the union of the two orthogoaal arrays is ao, OA(h,k,n).

In view of Theorem 2.1, any necessary condition for the exigtence of an orthog-
onal array QA2 -^-r(t,n,2) is also a necessary coudition for the existence of ar
(z,nr,t)-resilieat functioa. Qne classical bouud for orthogonal arrays is the Rao
bouud [9], proved in 1947. We record the Rao bound as the]olowing ih"or"*.

Theorem 2,3 Suppose there ezists onOAy(t,k,l). Then

tlz t.t
)u,>1-E(l(,-1),

if t is elen; and

)o,> 1* "P," (l)a -,1* (,,1 ,l))r, _ 1)(,+1)/2

if t is odd,.

We obtain the following corollary which gives a trecessary conditiou for existence
of a an (2, rn, t)-resilient fun'ction.

Corollary 2.4 Suppose there exists an (n,m,t)-resilient function. Then

7n<n_tos,[.t0]

irt is etsen; anit 
,-sn_,"r,[,,# (l) - (,,i;irr)]

if t is od.d,.

Proof. Sel o = 2 iu Theorem 2.3 and apply Theorem 2.1. U

Rernark. For t even, the bound of Corollary 2.4 was proved in [4] from first principles.
For t odd, our bound is a slight improvement over the bound in [4].

The Bush bouud for orthogonal arrays with ) = 1 [2] also will provide a necessary
existeuce condition for certait resilient functioas. This bound is as follows:

Theorem 2.5 [2] Srppose there edsts on OA(t,k,u), where t > L. Then

o*t-t ifu>t,u eqen
u+t-2 if u>t)3,a oilil
t+1 ifa<t.

As a corolla^ry, we carl obtain the following result that was proved in [1] from first
principles:
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Corollary 2.6 [1] There erbts on (n,m,t)-resilient function uith n =.m * t if arul
onlyif t=t orm=L.

Proof. The cases , : 1 aud rn = I were given earlier ia examples. So, suppose
rL:rrl *t and 2 < t < n - 2. Apply Theorem 2.5 with u:2 to get m*t < t+L,
or rn ( 1, a coatradiction. 0

3 Resilient functions and error-correcting codes
The most important coustructioa method for resilient functions uses (linear) binary
codes. We will be using several standard results from coding theory without proof;
see MacWilliams and Sloane [7] for background in{ormatiou on error-correcting codes.
Aa (n,n,d) linear code is an zn-dimensional subspace C of (Gf Q)). such that aay
two vectors in C have Hamming distance at least d. Let G be an rn x n matrix
whose rows form a basis for Ci G is called a generoting matric for C. The following
construction for resilient fuoctions was given in [1, 4]:

Theorem 3.t LetG be o generoting matriafor an(n,rn,d.) linear cod,eC. Define
the function f | (GF(2))^ - (GF(z))^ bs the rule f(a) = a€. Then f is an
(n,m,il - L)-resilient function.

This result can easily be seen to be true using the orthogonal array characteriza-
tion. The inverse image /-1(0,...,0) is in fact the dual code CL. lt is well-known
that Cr is an orthogonal array OA2^-^-+r(d - 1,n,2) (see for example [2, p. 139]).
In fact, this is obvious since any d- L columns of the generatiug matrix for Ca (- 169
parity check matrix for C) are linearly iadependent. Now, any other inverse image
.f-'(g) ir an additive coset of Ca, and thus is also an OA2*-^-t+r(il-L,n,2). Hence we
obtain 2- OA's that form a large set. By Theorem 2.L, f is ao. (n,rn d - 1)-resilieat
function.

- 
As an example, suppose we start with the perfect binary Hamming code [?, p.

25]. This is an (2' *1,2' -r - 1,3) code. It givbs rise to a (2, * 1,2, - r + L,2)
resilieot function; or equivalently, a large set of orthogonal arrays OA2-r(2r2, -L,Z),
These resiiient functious are optimal in view of Corollary 2.4.

As another example, s[ppose we start with the Reed-Muller code R(1,s) [?, p.
3?6]. This is a (2',s*1,2'-1)linear code, which yields a(2,,sq1,2,-1 -L)-resilient
function. (Note that a (2',s,2'-1 - l)-resilieat fuuction is constructed in [4]. This
functioa corresponds to the code obtained from 7?(l, s) by deleting the row 1, 1, . . . , 1
from the generatiog matrix. So we get one more output bit thaa [4], while maiutaining
the same resiliency.)

Here is an interestiug questio. for future research, It is conceivable that a (rowwise
simple) orthogonal array might exist, but a large set (- resilient functiou) does not.
One interesting situatiou where this might happen concerns the parameters z = 3[,
rn = 2, t : 2h. It was mentioned earlier that there is no resilient function with these
parameters. But the proof of this fact, which is found iu [4], does not seem to rule
out the existence of an OA2x-r(2h,3h,2). So this is a case where an OA might exist
even though the large set does not.

Iu fact, there is ro OAp-z(2h,3h,2) if. h = 2 ot i = 3, as cau be seen by applying
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the Rao bouad. But for ,l > 4, it seems that no results are knowa conceraing this
class of OA's.

Finally, we mention that Teirlinck has observed in [12] that existence of an orthog-
onal array OA(t,kru) (with ) :_1) implies the existenceof a large sel of OA(t,k,ti.
Also, recent results of Friedman [b] show that, for certain other pirameter situatioas,
existence of an OA implies the existence of a large set.
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