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Abstract

In this paper we discuss the connections between resilient functions, large
sets of orthogonal arrays and error-correcting codes. Some recent results on
resilient functions are then derived as consequences of known results on orthog-
onal arrays from design theory.

1 Introduction

The concept of resilient functions was introduced independently in the two papers
Chor et al [4] and Bennett, Brassard and Robert {1]. Here is the definition. Let
n > m > 1 be integers and suppose

f:{0,1}* - {o,1}™.

We will think of f as being a function that accepts n input bits and produces m output
bits. Let t < n be an integer. Suppose (z1,...,7,) € {0,1}", where the values of ¢
arbitrary input bits are fixed by an opponent, and the remaining n — ¢ input bits are
chosen independently at random. Then f is said to be t—resilient provided that every
possible output m—tuple is equally likely to occur. More formally, the property can
be stated as follows: For every t—subset {i1,...,1,} C {1,...,n}, for every choice of
z; € {0,1} (1 £ j < t), and for every (y1,...,¥m) € {0,1}™, we have

. 1
p(f(zln"')zﬂ)=(y17"')ynl)|zij =zj;1 <7 _<_t)= '2;

We will refer to such a function f as an (n,m,t)—resilient function.

A closely related concept is that of a correlation-immunre function, which is defined
by Siegenthaler in [11] and further studied in [10], [6] and [3]. Let n > 1 be an integer
and suppose f : {0,1}" — {0,1}. Asbefore, suppose (z1,...,z,) € {0,1}", where the
values of ¢ arbitrary input bits are fixed by an opponent, and the remaining n—t input
bits are chosen independently at random. Then f is said to be correlation-immune
of order t provided that for every t—subset {i1,...,%} C {1,...,n}, for every choice
of z; € {0,1} (1 < j <), and for y = 0,1, we have
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p(f(z1,...,zn) =ylz;; = 2,1 <5 < t)=p(f(21,...,20) = ).
A correlation-immune function is balanced if
P(f(zl:"WzF-) = ylzij =2z;,1<35< t) = 1/2)‘
In other words, a balanced correlation-immune function is the same thing as an
(n,1,t)—resilient function.

Two possible applications of resilient functions are mentioned in [1] and [4]. The
first application concerns the generation of shared random strings in the presence of
faulty processors. The second involves renewing a partially leaked cryptographic key.
Correlation-immune functions are used in stream ciphers as combining functions for
running-key generators that are resistant to a correlation attack (see, for example,
Rueppel [10]).

Many interesting results on resilient functions can be found in [1] and [4]. The

basic problem is to maximize ¢ given m and n; or equivalently, to maximize m given
n and ¢. Here are some examples from [4] (all addition is modulo 2):

(1) m=1,t=n—1. Define f(21,...,20) =21 +... + zp.

(2) m=n—1,t=1. Define flzy, .. zn) = (214 22,22 + 23, ..., Tny + z,).

(3) m =2, n = 3h, t = 2h — 1. Define
'f(xl,...,:cg;,)=(zl+...+zz;.,:ch+1+...+:cgh).

In fact, all three of these examples are optimal. It is easy to see that n > m + ¢,
so the first two examples are optimal. The result that ¢ < 2] if m = 2 is much
more difficult; it is proved in [4].

2 Resilient functions and orthogonal arrays

Resilient functions turn out to be equivalent to certain large sets of orthogonal arrays,
which we now define. An orthogonal array OA,(t, k,v) is a Mv* x k array of v symbols,
such that in any ¢ columns of the array every one of the possible vt ordered pairs of
symbols occurs in exactly A rows. If A = 1, then we write OA(t, k, v).

An orthogonal array is said to be rowwise simple if no two rows are identical.
Of course, an array with A = 1 is rowwise simple. In this paper, we consider only
rowwise simple arrays.

A large set of orthogonal arrays O Ax(t, k, v) is defined to be a set of v*~*/) rowwise
simple arrays OA,(t,k,v) such that every possible k—tuple of symbols occurs in
exactly one of the OA’s in the set. (Equivalently, the union of the OA’s forms an
OA(k, k,v).)

Here is our main result.

Theorem 2.1 An (n,m,t)—resilient function is equivalent to a large set of orthogo-
nal arrays OAzn-m—(t,n,2).

Proof. First, suppose f : {0,1}* — {0,1}™ is an (n,m,t)—resilient function. For
any y € {0,1}™, form an array A, whose rows are the vectors in the inverse image
F'(y). Ayis a |f~'(y)| x n binary array. It is clear that the 2™ arrays A, together
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contain every possible n—tuple as a row, so if each A, is an OAzn-m-t(t,n,2), then
we automatically get a large set.

Let {31,...,1} C {1,...,n} be a t—subset, and let z; € {0,1} (1 < j < t). For
every y € {0,1}™, let A(y) denote the number of rows in A, in which z; occurs in
column 3; for 1 < j < t. It is easy to see that

> A =2

ye{o,1}™
Now

A(y)

p(f(z1, .y 2n) = (Y1, ¥m)l2; = 25,1 <5 <) = pomry

Since f is t—resilient, we get

Aly) _ 1

on-t ~ 9m’
or My) = 2""™. Since {i1,...,%} and z; (1 < j < t) are arbitrary, we have shown
that each A, is an OAjn-m-e(t,n,2), as desired.

Conversely, suppose we start with a large set of OAsn-m-:(t,n,2). There are
2™ arrays in the large set; name them A, y € {0,1}™. Then define a function
f:{0,1} — {0,1}™ by the rule

f(21,-032a) = (15, ¥m) € (21, -+, Zn) € Ay, .iym)-
It is easy to see that the function f is t—resilient. ]

Remark. The fact that the t—resilient function gives a large set of orthogonal arrays
was remarked in [4, p. 402].

As an illustration, consider Example (3) in Section 1 with h = 2:
f(z1, 22,23, T4, T5, Te) = (€1 + T2 + T3 + T4, T3 + 24 + T5 + T6),

where addition is modulo 2. This is a (6,2,3)—resilient function, and by Theorem
2.1, it is equivalent to a large set of OA;(3,6,2). There are four OA’s in the large set,
one of which is obtained from f~*(0,0):

00O0O0GO0O 0010101
000011 010110
110000 100101
110011 100110
001100 011001
001111 011010
111100 101001
111111 101010

A related result for correlation-immune functions was proved in [3]:

Theorem 2.2 A correlation-immune function f : {0,1}* — {0,1} of order t is
equivalent to an orthogonal array OAx(t,n,2) for some integer A.

Theorem 2.2 can be proved in a similar way as Theorem 2.1 (however, the prodf in

[3] is very different, making use of a Walsh transform characterization of correlation-
immune functions). In fact, we get two orthogonal arrays: an OAj(t,n,2) from
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f7(0) and an OA,,(t,7,2) from f~3(1). For i = 0,1, we have \; = [f71(3)|/2¢, and
the union of the two orthogonal arrays is an O A(k, k,n).

In view of Theorem 2.1, any necessary condition for the existence of an orthog-
onal array OAzn-m-¢(t,n,2) is also a necessary condition for the existence of an
(n,m,t)—resilient function. One classical bound for orthogonal arrays is the Rao
bound [9], proved in 1947. We record the Rao bound as the following theorem.

Theorem 2.3 Suppose there exists an OA,(t, k,v). Then

b 21+§ (f)(v——l)i

1=1

if t is even; and

. (¢e-1)/2 k ) E—1 —
> — 1Y _
Mwi>1+ § (i)(v )+ ((t_l)ﬂ)(v 1)
if t is odd.

We obtain the following corollary which gives a necessary condition for existence
of a an (n,m,t)—resilient function.

Corollary 2.4 Suppose there ezists an (n,m,t)—resilient function. Then

B 5, {ﬁ (';)}

m < n — log, [(t‘é/z (I:) * ((tk—_l)l/ 2)]

Proof. Set v = 2 in Theorem 2.3 and apply Theorem 2.1. 0

if t is even; and

if t is odd.

Remark. For t even, the bound of Corollary 2.4 was proved in [4] from first principles.
For t odd, our bound is a slight improvement over the bound in [4].

The Bush bound for orthogonal arrays with A = 1 [2] also will provide a necessary
existence condition for certain resilient functions. This bound is as follows:

Theorem 2.5 [2] Suppose there exists an OA(t, k,v), where t > 1. Then
k< v+t—-1 ifv>t, v even
k< v+t—-2 ifv>t>3,vodd
E < t+1 fu<t.

As a corollary, we can obtain the following result that was proved in [1] from first
principles:
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Corollary 2.6 [1] There ecists an (n,m,t)—resilient function with n = m +t if and
onlyift=1orm=1.

Proof. The cases t = 1 and m = 1 were given earlier in examples. So, suppose
n=m+tand 2 <t<n-—2 Apply Theorem 2.5 withv =2toget m+t<t+1,
or m < 1, a contradiction. 1)

3 Resilient functions and error-correcting codes

The most important construction method for resilient functions uses (linear) binary
codes. We will be using several standard results from coding theory without proof;
see MacWilliams and Sloane [7] for background information on error-correcting codes.
An (n,m, d) linear code is an m—dimensional subspace C of (GF(2))" such that any
two vectors in C' have Hamming distance at least d. Let G be an m x n matrix
whose rows form a basis for C; G is called a generating matriz for C. The following
construction for resilient functions was given in [1, 4]:

Theorem 3.1 Let G be a generating matriz for an (n,m,d) linear code C. Define
the function f : (GF(2))* — (GF(2))™ by the rule f(z) = zGT. Then f is an

(n,m,d — 1)—resilient function.

This result can easily be seen to be true using the orthogonal array characteriza-
tion. The inverse image f~*(0,...,0) is in fact the dual code C+. It is well-known
that C* is an orthogonal array OAsn-m-a1(d — 1,7,2) (see for example [7, p. 139)).
In fact, this is obvious since any d—1 columns of the generating matrix for C* (= the
parity check matrix for C) are linearly independent. Now, any other inverse image
f7!(y) is an additive coset of C*, and thus is also an O Agn-m—s+: (d—1,n,2). Hence we
obtain 2™ OA’s that form a large set. By Theorem 2.1, f is an (n,m,d — 1)—resilient
function.

As an example, suppose we start with the perfect binary Hamming code [7, p.
25]. This is an (2" —1,2" —r — 1,3) code. It gives rise to a (2" — 1,2" — r + 1,2)
resilient function; or equivalently, a large set of orthogonal arrays OA,-—» (2,27-1,2).
These resilient functions are optimal in view of Corollary 2.4.

As another example, suppose we start with the Reed-Muller code R(1,s) [7, p.
376]. This is a (2°,5+1,27") linear code, which yields a (2*,s+1,2°~! —1)—resilient
function. (Note that a (2°,s,2°"" — 1)—resilient function is constructed in [4]. This
function corresponds to the code obtained from R(1, s) by deleting the row 1,1,...,1
from the generating matrix. So we get one more output bit than [4], while maintaining
the same resiliency.)

Here is an interesting question for future research. It is conceivable that a (rowwise
simple) orthogonal array might exist, but a large set (= resilient function) does not.
One interesting situation where this might happen concerns the parameters n = 3h,
m = 2, t = 2h. It was mentioned earlier that there is no resilient function with these
parameters. But the proof of this fact, which is found in [4], does not seem to rule
out the existence of an OA;x-2(2k,3h,2). So this is a case where an OA might exist
even though the large set does not.

In fact, there is no OAyn-2(2h,3h,2) if h = 2 or h = 3, as can be seen by applying
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the Rao bound. But for A > 4, it seems that no results are known concerning this
class of OA’s,

Finally, we mention that Teirlinck has observed in [12] that existence of an orthog-
onal array OA(t, k,v) (with A = 1) implies the existence of a large set of OA(t, k,v).
Also, recent results of Friedman [5] show that, for certain other parameter situations,
existence of an OA implies the existence of a large set.
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