Resilient functions and large sets of orthogonal arrays

D. R. Stinson
Computer Science and Engineering Department
and Center for Communication and Information Science
University of Nebraska
Lincoln, NE 68588-0115, U.S.A.
stinson@bibd.unl.edu

Abstract

In this paper we discuss the connections between resilient functions, large sets of orthogonal arrays and error-correcting codes. Some recent results on resilient functions are then derived as consequences of known results on orthogonal arrays from design theory.

1 Introduction

The concept of resilient functions was introduced independently in the two papers Chor et al [4] and Bennett, Brassard and Robert [1]. Here is the definition. Let \(n \geq m \geq 1 \) be integers and suppose

\[
f : \{0,1\}^n \rightarrow \{0,1\}^m.
\]

We will think of \(f \) as being a function that accepts \(n \) input bits and produces \(m \) output bits. Let \(t \leq n \) be an integer. Suppose \((x_1, \ldots, x_n) \in \{0,1\}^n\), where the values of \(t \) arbitrary input bits are fixed by an opponent, and the remaining \(n - t \) input bits are chosen independently at random. Then \(f \) is said to be \(t \)-resilient provided that every possible output \(m \)-tuple is equally likely to occur. More formally, the property can be stated as follows: For every \(t \)-subset \(\{i_1, \ldots, i_t\} \subseteq \{1, \ldots, n\} \), for every choice of \(x_j \in \{0,1\} \ (1 \leq j \leq t) \), and for every \((y_1, \ldots, y_m) \in \{0,1\}^m\), we have

\[
p(f(x_1, \ldots, x_n) = (y_1, \ldots, y_m)|x_{i_j} = x_j, 1 \leq j \leq t) = \frac{1}{2^m}.
\]

We will refer to such a function \(f \) as an \((n,m,t)\)-resilient function.

A closely related concept is that of a correlation-immune function, which is defined by Siegenthaler in [11] and further studied in [10], [6] and [3]. Let \(n \geq 1 \) be an integer and suppose \(f : \{0,1\}^n \rightarrow \{0,1\} \). As before, suppose \((x_1, \ldots, x_n) \in \{0,1\}^n\), where the values of \(t \) arbitrary input bits are fixed by an opponent, and the remaining \(n - t \) input bits are chosen independently at random. Then \(f \) is said to be correlation-immune of order \(t \) provided that for every \(t \)-subset \(\{i_1, \ldots, i_t\} \subseteq \{1, \ldots, n\} \), for every choice of \(x_j \in \{0,1\} \ (1 \leq j \leq t) \), and for \(y = 0,1 \), we have

CONGRESSUS NUMERANTUM 92(1993), pp.105-110
A correlation-immune function is balanced if
\[p(f(x_1, \ldots, x_n) = y | x_j = z_j, 1 \leq j \leq t) = p(f(x_1, \ldots, x_n) = y). \]

In other words, a balanced correlation-immune function is the same thing as an \((n,1,t)\)-resilient function.

Two possible applications of resilient functions are mentioned in [1] and [4]. The first application concerns the generation of shared random strings in the presence of faulty processors. The second involves renewing a partially leaked cryptographic key. Correlation-immune functions are used in stream ciphers as combining functions for running-key generators that are resistant to a correlation attack (see, for example, Rueppel [10]).

Many interesting results on resilient functions can be found in [1] and [4]. The basic problem is to maximize \(t \) given \(m \) and \(n \); or equivalently, to maximize \(m \) given \(n \) and \(t \). Here are some examples from [4] (all addition is modulo 2):

1. \(m = 1, \ t = n - 1 \). Define \(f(x_1, \ldots, x_n) = x_1 + \ldots + x_n \).
2. \(m = n - 1, \ t = 1 \). Define \(f(x_1, \ldots, x_n) = (x_1 + x_2, x_2 + x_3, \ldots, x_{n-1} + x_n) \).
3. \(m = 2, \ n = 3h, \ t = 2h - 1 \). Define
\[
 f(x_1, \ldots, x_{3h}) = (x_1 + \ldots + x_{2h}, x_{2h+1} + \ldots + x_{3h}).
\]

In fact, all three of these examples are optimal. It is easy to see that \(n \geq m + t \), so the first two examples are optimal. The result that \(t < \lceil \frac{n}{m} \rceil \) if \(m = 2 \) is much more difficult; it is proved in [4].

2 Resilient functions and orthogonal arrays

Resilient functions turn out to be equivalent to certain large sets of orthogonal arrays, which we now define. An orthogonal array \(OA(t, k, v) \) is a \(kv^t \times k \) array of \(v \) symbols, such that in any \(t \) columns of the array every one of the possible \(v^t \) ordered pairs of symbols occurs in exactly \(k \) rows. If \(\lambda = 1 \), then we write \(OA(t, k, v) \).

An orthogonal array is said to be rowwise simple if no two rows are identical. Of course, an array with \(\lambda = 1 \) is rowwise simple. In this paper, we consider only rowwise simple arrays.

A large set of orthogonal arrays \(OA(t, k, v) \) is defined to be a set of \(v^{k-t} \lambda \) rowwise simple arrays \(OA(t, k, v) \) such that every possible \(k \)-tuple of symbols occurs in exactly one of the OA's in the set. (Equivalently, the union of the OA's forms an \(OA(k, k, v) \).

Here is our main result.

Theorem 2.1 An \((n,m,t)\)-resilient function is equivalent to a large set of orthogonal arrays \(OA_{n,m,t}(1, n, 2) \).

Proof. First, suppose \(f : \{0,1\}^n \to \{0,1\}^m \) is an \((n,m,t)\)-resilient function. For any \(y \in \{0,1\}^m \), form an array \(A_y \) whose rows are the vectors in the inverse image \(f^{-1}(y) \). \(A_y \) is a \(|f^{-1}(y)| \times n \) binary array. It is clear that the \(2^m \) arrays \(A_y \) together
contain every possible n-tuple as a row, so if each \(A_y \) is an \(OA_{2n-1}(t,n,2) \), then we automatically get a large set.

Let \(\{i_1, \ldots, i_t\} \subseteq \{1, \ldots, n\} \) be a \(t \)-subset, and let \(z_j \in \{0,1\} \) \((1 \leq j \leq t) \). For every \(y \in \{0,1\}^m \), let \(\lambda(y) \) denote the number of rows in \(A_y \) in which \(z_j \) occurs in column \(i_j \) for \(1 \leq j \leq t \). It is easy to see that

\[
\sum_{y \in \{0,1\}^m} \lambda(y) = 2^{n-t}.
\]

Now

\[
p(f(x_1, \ldots, x_n) = (y_1, \ldots, y_m)) \mid x_{ij} = z_j, 1 \leq j \leq t) = \frac{\lambda(y)}{2^{n-t}}.
\]

Since \(f \) is \(t \)-resilient, we get

\[
\frac{\lambda(y)}{2^{n-t}} = \frac{1}{2^{m}},
\]

or \(\lambda(y) = 2^{n-m-t} \). Since \(\{i_1, \ldots, i_t\} \) and \(z_j \) \((1 \leq j \leq t) \) are arbitrary, we have shown that each \(A_y \) is an \(OA_{2n-1}(t,n,2) \), as desired.

Conversely, suppose we start with a large set of \(OA_{2n-1}(t,n,2) \). There are \(2^m \) arrays in the large set; name them \(A_y \), \(y \in \{0,1\}^m \). Then define a function \(f : \{0,1\}^n \rightarrow \{0,1\}^m \) by the rule

\[
f(x_1, \ldots, x_n) = (y_1, \ldots, y_m) \Leftrightarrow (x_1, \ldots, x_n) \in A(y_1, \ldots, y_m).
\]

It is easy to see that the function \(f \) is \(t \)-resilient.

\[\square\]

Remark. The fact that the \(t \)-resilient function gives a large set of orthogonal arrays was remarked in [4, p. 402].

As an illustration, consider Example (3) in Section 1 with \(h = 2 \):

\[
f(x_1, x_2, x_3, x_4, x_5, x_6) = (x_1 + x_3 + x_4 + x_5 + x_+ + x_6),
\]

where addition is modulo 2. This is a \((6,2,3)\)-resilient function, and by Theorem 2.1, it is equivalent to a large set of \(OA_3(3,6,2) \). There are four \(OA_3 \) in the large set, one of which is obtained from \(f^{-1}(0,0) \):

0 0 0 0 0 0	0 0 0 0 0 0	1 0 1 0 1 0	0 0 0 0 0 0	0 0 0 1 1 1	0 1 0 1 1 0
0 0 0 0 0 0	1 1 0 0 0 0	0 1 0 1 0 1	1 1 0 0 0 0	1 1 0 1 1 1	1 0 1 0 1 0
1 1 1 0 0 0	1 1 0 0 1 1	1 0 0 1 1 0	0 0 1 1 1 1	0 0 1 1 0 1	1 0 0 1 0 1
0 0 0 1 1 0	0 0 1 1 1 1	1 1 1 0 0 0	1 1 1 1 1 1	1 1 1 1 1 1	1 1 1 1 1 1

A related result for correlation-immune functions was proved in [3]:

Theorem 2.2 A correlation-immune function \(f : \{0,1\}^n \rightarrow \{0,1\} \) of order \(t \) is equivalent to an orthogonal array \(OA_\Lambda(t,n,2) \) for some integer \(\Lambda \).

Theorem 2.2 can be proved in a similar way as Theorem 2.1 (however, the proof in [3] is very different, making use of a Walsh transform characterisation of correlation-immune functions). In fact, we get two orthogonal arrays: an \(OA_\Lambda(t,n,2) \) from
f^{-1}(0)$ and an $OA_2(t, n, 2)$ from $f^{-1}(1)$. For $i = 0, 1$, we have $\lambda_i = |f^{-1}(i)|/2^t$, and the union of the two orthogonal arrays is an $OA(k, k, n)$.

In view of Theorem 2.1, any necessary condition for the existence of an orthogonal array $OA_{2t-1}(t, n, 2)$ is also a necessary condition for the existence of an (n, m, t)-resilient function. One classical bound for orthogonal arrays is the Rao bound [9], proved in 1947. We record the Rao bound as the following theorem.

Theorem 2.3 Suppose there exists an $OA_2(t, k, u)$. Then

$$\lambda u^t \geq 1 + \sum_{i=1}^{t/2} \binom{k}{i} (u - 1)^i$$

if t is even; and

$$\lambda u^t \geq 1 + \sum_{i=1}^{(t-1)/2} \binom{k}{i} (u - 1)^i + \binom{k-1}{(t-1)/2} (u - 1)^{(t+1)/2}$$

if t is odd.

We obtain the following corollary which gives a necessary condition for existence of a (n, m, t)-resilient function.

Corollary 2.4 Suppose there exists an (n, m, t)-resilient function. Then

$$m \leq n - \log_2 \left[\sum_{i=0}^{t/2} \binom{k}{i} \right]$$

if t is even; and

$$m \leq n - \log_2 \left[\sum_{i=0}^{(t-1)/2} \binom{k}{i} + \binom{k-1}{(t-1)/2} \right]$$

if t is odd.

Proof. Set $v = 2$ in Theorem 2.3 and apply Theorem 2.1.

Remark. For t even, the bound of Corollary 2.4 was proved in [4] from first principles. For t odd, our bound is a slight improvement over the bound in [4].

The Bush bound for orthogonal arrays with $\lambda = 1$ [2] also will provide a necessary existence condition for certain resilient functions. This bound is as follows:

Theorem 2.5 [2] Suppose there exists an $OA(t, k, u)$, where $t > 1$. Then

$$k \leq u + t - 1 \quad \text{if } u \geq t, \text{ even}$$

$$k \leq u + t - 2 \quad \text{if } u \geq t \geq 3, \text{ odd}$$

$$k \leq t + 1 \quad \text{if } u \leq t.$$

As a corollary, we can obtain the following result that was proved in [1] from first principles:
Corollary 2.6 [1] There exists an \((n,m,t)\)-resilient function with \(n = m + t\) if and only if \(t = 1\) or \(m = 1\).

Proof. The cases \(t = 1\) and \(m = 1\) were given earlier in examples. So, suppose \(n = m + t\) and \(2 \leq t \leq n - 2\). Apply Theorem 2.5 with \(v = 2\) to get \(m + t \leq t + 1\), or \(m \leq 1\), a contradiction.

3 Resilient functions and error-correcting codes

The most important construction method for resilient functions uses (linear) binary codes. We will be using several standard results from coding theory without proof; see MacWilliams and Sloane [7] for background information on error-correcting codes.

An \((n,m,d)\) linear code is an \(m\)-dimensional subspace \(C\) of \((GF(2))^{n}\) such that any two vectors in \(C\) have Hamming distance at least \(d\). Let \(G\) be an \(m \times n\) matrix whose rows form a basis for \(C\); \(G\) is called a generating matrix for \(C\). The following construction for resilient functions was given in [1, 4]:

Theorem 3.1 Let \(G\) be a generating matrix for an \((n,m,d)\) linear code \(C\). Define the function \(f : (GF(2))^n \to (GF(2))^m\) by the rule \(f(x) = xG^T\). Then \(f\) is an \((n,m,d-1)\)-resilient function.

This result can easily be seen to be true using the orthogonal array characterization. The inverse image \(f^{-1}(0, \ldots, 0)\) is in fact the dual code \(C^\perp\). It is well-known that \(C^\perp\) is an orthogonal array \(OA_{2^{m-n-d+1}}(d-1,n,2)\) (see for example [7, p. 139]). In fact, this is obvious since any \(d-1\) columns of the generating matrix for \(C^\perp\) (= the parity check matrix for \(C\)) are linearly independent. Now, any other inverse image \(f^{-1}(y)\) is an additive coset of \(C^\perp\), and thus is also an \(OA_{2^{m-n-d+1}}(d-1,n,2)\). Hence we obtain \(2^m\) OA's that form a large set. By Theorem 2.1, \(f\) is an \((n,m,d-1)\)-resilient function.

As an example, suppose we start with the perfect binary Hamming code [7, p. 25]. This is an \((2^r-1, 2^r - r - 1, 3)\) code. It gives rise to a \((2^r-1, 2^r - r + 1, 2)\) resilient function; or equivalently, a large set of orthogonal arrays \(OA_{2^r-1}(2^r-1, 2)\).

These resilient functions are optimal in view of Corollary 2.4.

As another example, suppose we start with the Reed-Muller code \(R(1,s)\) [7, p. 376]. This is a \((2^s, s+1, 2^{s+1})\) linear code, which yields a \((2^s, s+1, 2^{s+1} - 1)\)-resilient function. (Note that a \((2^s, s, 2^{s-1} - 1)\)-resilient function is constructed in [4]. This function corresponds to the code obtained from \(R(1,s)\) by deleting the row 1, 1, \ldots, 1 from the generating matrix. So we get one more output bit than [4], while maintaining the same resiliency.)

Here is an interesting question for future research. It is conceivable that a (rowwise simple) orthogonal array might exist, but a large set (= resilient function) does not. One interesting situation where this might happen concerns the parameters \(n = 3h\), \(m = 2, t = 2h\). It was mentioned earlier that there is no resilient function with these parameters. But the proof of this fact, which is found in [4], does not seem to rule out the existence of an \(OA_{2^h}(2h, 3h, 2)\). So this is a case where an OA might exist even though the large set does not.

In fact, there is no \(OA_{2^h}(2h, 3h, 2)\) if \(h = 2\) or \(h = 3\), as can be seen by applying
the Rao bound. But for $k \geq 4$, it seems that no results are known concerning this class of OA's.

Finally, we mention that Teirlinck has observed in [12] that existence of an orthogonal array $OA(t, k, u)$ (with $\lambda = 1$) implies the existence of a large set of $OA(t, k, u)$. Also, recent results of Friedman [5] show that, for certain other parameter situations, existence of an OA implies the existence of a large set.

Acknowledgements

D. R. Stinson's research is supported by NSF Grant CCR-9121051.

References

