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Abstract

Let n. and & be positive integers, where ft ( n. Two /c-permutations irf an n-set,
say a: (rror,..o1) andb: (6rb2...61), aresaid to be properly separoted ifthere
exist indices i and j, where i f j, such that a;: bj. Let PS(t,n,b) denote a

set of b Ic-permutations of an n-set such that any two of the ,t-permutations are
properly separated. Then, define P(t, n) to be the maximum value o[ [ suc]r that
a P.9(&,n,0) exists. In this paper, we study the numbers P(i:,n).
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1 Introduction
Let a and h be positive integers, where /c ( n. A k-permutotion of an n-set is an

ordered list of t distinct elements of thc n-set. Two [-permutations of an n-set,

s&y a : (rror... a1) and 5 : (6rb2 ... br), are said lo be propeily teporolcd if there

exist indices i and j, where i I j, such thrt o; : D;' Let PS(/c,2,0) denote a

set of 6 /c-permutations of an n-sct such that any two of the /c-pennutations are

properly separated. Then, define P(tc,n) to be the maxirnum value of 6 such that

a PS(I;,n,b) exists.
It'is ciear than P(n,n) = n! and P(1,2) = 1r for any n ) 1' It is almost '

immediate that P(2, n) : 3 if z 2 3.

Proof: Let S be any PS(Ic,n,P(,t,n)) on an n-set S' For a symbol c € 'S' let

.S" denote the ft-permutations in S in which r occurs in ths first position' Clearly'

th.r" *" at most.P(k - 1,2 - 1) l-permutations in 5,' Lettiug ' range over S'

we see that P(&,n) < n x P(& - l,n - 1). D

If we iterate the above inequality, we get the following corollary'

Corollary 1.1 P(Ic,n) < 3 x rr!/(n - [ + 2)!.

In the case k--n- 1, the bound of Theorem 1'1 is exact, as we demonstratein

the following theorem.

Theorem 1.2 P(n-1,r) =nlf2.

Proof: P(n - 1,n) < rrt12 follows from Corollary 1'1' It remains to construct a

PS(n-l,nrnll2). This is done as follows. Let S: {1,2r"',rr,}, and let a:
(f2... n -lj. For any euen permutation r of S, let a' be the (n - l)-permutation

it'r'...(rr-1)'). Itiseasytoseethatanytwooftheresulting(n-1)-permutations
are properly separated. D

2 The numbers P(k' n) for fixed k

In this section, we discuss the behaviour of the sequence of numbers P([,n) for ;

fixed t. Our main result is that any such sequence is bounded above' That is, if we

fix ,t and let n grow, eventually we reach a point where P(Ic, n) does not change' In

particular, for lc:3, we can show that P(ls,n):12 for all n 2 4'

Let 5 be any PS(h,n { 1,b) on an (n { l)-set '9' Suppose some symbol a € '5

occurs in r of the lc-permutations in.S, where r < ('- 1)/([ - 1)' Then there

must be some symbol y such that z and I never occur in the sarne &-permutation,

since 1 +r(L - 1) S " - 
1. If we then replace every occurrence of y by r, wc obtain

a PS(f,n,6). Eence, we have the following result'
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Lemma 2.t Srpp*.S ir c PS(Ic,n * 1,6) in uhich therc is some rymbol that
occurs in al most (n - t)/(k - L) ,l thc k-permutotiont. Then p(k,n) Z b.

Now, we can establish our main result.

Theorem 2.1 For any k ) Z, there ezitt podtiae inlegers no : zo([) ond ph, ,uch
that P(k,n) = P(,t,ne) - p4 lor all integeru n) ns.

Proofi The proof is by induction on *. It is clearly true for k : 2, so assumel > 3. Let .S be any P^S(t,n* l,D) on an (zf l)-set S. For any symbol r € .9
and for any position j, L < i ( Ic, there can be at most p(lc _ I,n) /c_permutations
a C .S such that ai = c. So, the total number of occurrenc". "f , is at most
& x P(Ic - l,z) ( [pr-r. Let n =1 + &(fr - l)p.-r. Apply Lemma 2.1, to obtain
P(,t,z) > 6. If we take b : p(k,n+ 1), then we have tt,ui f1f,r; = p(lc,z * 1).
The orgument can be repeated, replacing n by n * 1, n 1 2,. . ., yielding the desired
conclusion. E

From the proof of Theorem 2.1, we have the following corollary.

Corollary 2.1 nn([) S I + [([ - l)pr_, anil p11 no(k)p*_r.

It the case k = 2, it is easy to see that ns(2) = 3 and p2 : 3. In the next
case, [ = 3r matters are already considerably more dilficult. Corollary 2.1 yields
,o(3) < 19 and p3 1 i7, but these bounds are not very good.

We now look more carefully at the numtrers p(3, n), n ) 3. Of course, p(3,3) :
6 and P(3,4) : L2. It happens that there is a unique example (up to isomorphism)
of a PS(3,4, 12). It has the alternating group ,4.a as its automorphism group, so
there are precisely 4l/l2 : 2 distinct examples on a specified symbol set. One of
the two examples is

123, 134, L42J14r231r243r3L2r324r34L,413,42L,432 (1)

and the other example consists of the twelve J-permutations not in (l).
Computer searches for n = E, 6, and T yield the following results.
There are precisely two non-isomorphic examples of p.g(i, S, L2), one using four

sylbols (i.e. a PS(3,4,12) on four of the five symbols), anclone urirrg fir" symbols.
A PS(3,5, 12) using five symbols is as follows:

123, 135, 152,214,231t243r312,324r341r4l3,4211532 (2)

The automorphism group of (2) is trivial, so there are 120 distinct isomorphic
copies of (2) 9T " fixed symbol set. Ifence, the total number of distinct pS(g, b; 12)
is120*2*(r=130.

When we enumerate the non-isomorphic pS(3,6, l2), we find precisely three
examples. These are (1) and (2), and thc following erample ttrat uses all six symbols:

123,135,152J14,231t243t3L2,326,361,413, 627t532 (3)
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It can be shown that (3) has an automorphism group of order 3. Hence, we c&n

count the distinct examples of PS(3,6,12) on a specified symbol set. There are

(;) : zzo copies of (2), and 6113 = 240 copies of2x
(3),

(:)
for

= 30 copies of (1), 120 x
a total of 990.

It is also interesting to observe that (2) can be obtained from (1) by "splitting"
points. For example, if all occurrences of the symbol 5 in (2) are changed to 4, then
(1) is produced. (3) can also be constructed from (2) in this fashion.

There are only three non-isomorphic examples of PS(3,7,12), as well. The

number of distinct examples on a specified symbol set can be computed to be 4270,

At this point, we might begin to suspect that zs(3) : 4 and Pt: !2. Proving 
n

this will be made easier by the following lemma.

Lemma 2.2 Suppose P(t,n) S (r'-1)/(t'- k). Then P(&,n1) = P(k,n) lot all -

inlegers n1 ) n.

Proof: Suppose P(b,n) < P(,t,n { 1), and let S be any PS(,t,n + 1,P([,n) + 1)

on an (n f l)-set S. Then, there must be some symbol c € S that occurs in at

most k(P(,t,a) + t)/(" * 1) of the Ic-permutations in S. But, we have

Ic(P(lt,n)*L) -n-L
"+1 

- t=
so Lemma2.1 can be applied. This contradictionimplies that P(ft,n) : P([,n*1).
The argument can be repeated for n * 1-rn ! 2r.. ., and so the result follows. 0

Suppose we can prove that P(3,9) = 12' Then Lemma 2'2 would tell us that

P(3,n1):12 for all integers nr 2 9. First, we show that P(3,9) ) 12 implies

P(3,8) ) 12, by refining the argument of Lemma 2.2.

Suppose S is a PS(3,9,13) on a 9-set .S. Then, there must be some symbol

r € S that occurs in at most four of the 3-permutations in.9 (since 3 x 13 < 9 x 5).

If o occurs in at most three of the 3-permutations, then Lemma 2.1 would yield

P(3,8) ) 12. Eence, &ssume, occurs in exactly four 3-permutations. Since there

are only three positions in which , c&n occur, there must be two 3-permutations in
S in which , occurs in the same position, say a and b. Since a and b are properly

separated, they must contain a common symbol other than z. It follows that r
occurs with at most seven other symbols, and hence there is a symbol y with which

c does not occur. Then we c&n replace all occurrences ofg by o, thereby producing -

a P,S(3,8,13).
Next, we show that P(3,8) > 12 implies P(3,7) ) 12. Suppose that.S is a

PS(3,8,13) onanS-set5. If thereexistdistinctsymbolsr',y€S suchthatcand--:
y never occur in the same 3-permutation, then we could replace all occurrences of
y by a, as before, and obtain P(3,?) ) 12. Hence, we can &ssume that for every

pair of distinct symbols, there is a 3-permutation in which they both occur.

There must be some element c appearing in at most four 3-permutations, since

3 x 13 < 8 x 5. If z appears in fewer than four 3-permutations, then there is an
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element y with which it does not occur. Hence, c must eppear in exactly four
S-permutations. Without loss of generality, we c&n &ssume that c = 1, and that
the 3-permutations containing 1 are permutations of the sets {1, 2, 3}, {1, 4, 5},

{1, 6, ?} and {1, 7, 8}. Now, there must be some 3-permutation a containing the
syrnbols 6 and 8. But then a must contain at least one symbol from {1, 2, 3} and

at least one symbol from {1,4,5}, in order that it be properly separated from the

corresponding 3-permutations. It follows that a must be a permutation of {1, 6,

8). But this is impossible, as we have already accounted for the four occurrences of
the symbol 1.

Since we have already established that P(3,7) = 12, we get the following result.

Theorem 2.2 P(3,n) : !2 lor all integeru n 2 4.

When we turn to the next case, h = 4r we know almost nothing. From Theorems

1.1 and 1.2, we have P(4,5) = 60, and 60 < P(4,6) ( 72. From Corollary 2.1, we

have ns(4) ( 145 and yta 1 1740, but these bounds are undoubtedly very poor.

3 Regular sets of permutations

A PS([,n,6) is said to be regulor if every one of the n. symbols occurs in exactly
bkln of the lc-permutations. A regular PS(,t,n,6) is denoted ,RPS(,t,u,6), and the

nraximum value of 6 such that an RPS(fr,n,6) exists is denoted by l?P(,t,n).
Certainly RP(nrn): nlr and the construction of Theorem l.2 yields a regular

example, so PP(n - t, n) : nll2. Up until now, lve have presented no examples of
.RPS(Ic,n,0) when lc < z - 1. Ilence, we.present a construction that gives a lower
bound on the numbers nP(e,2[ - 1).

Theorem 3.1 RP(t,2t - 1) > (2[ - lxft - 1)!.

Proof: DefineA-t1,2,...&-1). Forany j€ Z2y-1,let A;={i*j:ie A}.
It isnot dilEcult toseethat i I jimpliesthat i € A; or j e Ai. Now,forany
j e Zr*-r, define the ft-permutation aj - (1, j + 1, ..., j * * - ,), where all entries
are reduced modulo 2k-L. Next, for any permutation / of {2,3,...,I;}, Iet af
denote the fr-permutation (o14612,, . .. a6(r))r where a; = (a1a2. .. oo). The resulting
set of (2ft - lxfr - 1)! ,t-permutations are properly separated, and are easily seen

. to be regular. E

The regularity condition is a very strong one to impose, and we obtain the

. 
following necessary condition for existence.

Theorem 3.2 RP(,t,n) :O iln>k2 -k+2.
Proof: Let S be any ftPS(t,n,b) on an a-set.9, where 6 > 1. For every

L-permutation a € .S, Let .4" denote the lc-subset whose members &re the sym-

bols in a. Define ,4 to be the family of [-subsets {.4, : a € 5}. Then ,4 is a
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t-design (every point ocurs in the same numbcr of &-subsets). Also, any two of
the lc-subsets in .4 intersect in at least one element. Applying a theorem of Frankl

and Firedi (see [f] for a short proof), we obtain n 1 k2 - [ + 1. tr

In the case n = k7 - k + 1, we have the following.

Theorem 3.3 RP(t,,t2-&+1) = *'-.t+1 il and only it thete ezittt a prcjectiae

plane of order k - l.

Prooft Let S be any.RPS([ ,n.,6) on an n-set S, where D ) 1. Define "4 as in the

proof of Theorem 3.2. The proof of the theorem of Frankl and Fiiredi shows that ',4 -
must be a projective plane of order,t-1; hence 6 = fr2-t+1. Conversely, suPpose a

projective plane of order t - 1 exists. Then every pair of Jc-subsets contain exactly

one common element, and every element occurE in exactly L; of the /c-subsets' .

ClearlS what we desire is an ordering of the blocks, so that every element occurs

exactly once in each position. Such a structure is called u Youden rquare and can

be obtained by using well-known results on systems of distinct representatives (see,

for example, [2, pp. 10a-105]). tr

4 Spanning sets of permutations

A P.S(h,4,6) is said to be tpanning if every one of the n symbols occurs in at least

one of the /c-permutations. A spanning PS(t,n,D) is denoted SPS(,t,n',0), and

the maximum value of 6 such that an SP.S(t,n,6) exists is deloted by ,SP([,n)'
From the results of Section 2, thc following theorem is immediate'

Theorem 4.1 For any k 12, there etists a posiliae inleger nr : rr.r([) rluch that

SP(,t,n) - o for all integen n ) n1.

From Section 2, we can obtain the (weak) bound n1(h) S no([)p,, +1. Conversely,

it is clear that ns(&) < ,t(Il) and p1 ( P(b, n1(&) - 1). Ilence, it would be of interest

to obtain direct proofs of good upper bounds on z1(ft).
We give a construction that provides a lower bound on n1(,t).

Theorem 4.2 For any k 2 2, therc ezists on SPS(f,, [3 - 3,t2 + 3,t + 1, k2 - k).

Proof: Place the symbol 1 in the first position of the first h - 1 ,t-permutationsl 
i

in the second position of the next /c - 1 ft-permutations; etc. Nert, insert symbol

2 into & - 1 distinct positions in the first * - I t-permutationsl insert symbol 3.;
into t - 1 distinct positions in the next ,t - I &-permutationsl etc. Finally, fill out

all remaining positions with distinct symbols. The total number of symbols used is

f +t+e(&-1Xfr -2)= [3-3[2*3[11, and the resultingset of lc-permutations
is easily seen to be properly separated. E
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Example 4.1 An SPS(4,ZI,LZ)

5 Summary
The problem of constructing properly separated sets of rt-permutations seems to
be a very difEcult one. We mention several open questions.

1. Compute P(4,6).

2. Determine n6(4) and pa.

3. Determine the asymptotic behaviour of p1. Is it true that p1 is O(Ict)?

4. Find anyexample of a PS(l,n,b) with k < z and b> (k +t)!l\.
5. Find improved bounds on the numbers P(n - 2rn).

6. Prove good bounds on n1([). In particular, determine if n1([) < ,t3.
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