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Univer sity of !traterloo

ABSTRACT. An important class of BIBDs is that of (strongLy) self-complerneatary-
designs, designs which are invariant under coaplemeotation. Their paraneter sets
satlsfy the relation v = 2k, yet for k odd, there are an inflnity of parameter

sets which cannot be reaLlzed as self-cooplementary deslgns. For these paraneters
the idea of near-self-conploentary desLgns is iotroduced. These designs have m2ny

aspects simil-ar to self-comploeotary desigos.

An extensiou of Bosets method of mixed di-fferences is introduced and 1s applled
to show the residuality of certain near-self-complementary designs.

1. INfNODUCTION.

A baLcnced incornplete block design BIBD (v,b,r,k,l) 1s a pair (V,F) where

V is a v*set of objects ca1led vari.etles, F is a fanily of k-subsets of V, b la
nuuber, which has the property that each variety occurs in precisely r of these

subsets aod each palr of distinct varleti.es occurs ln precisely I of these subsets.

An important subclass of these designs is ttre self-complementary or strongly self-
conryLenerttaty desigr.s, whieh are invariant under complementation. (Some authors
refer to self-comp1-ementary desigos as those isonorphic to thelr complements, for
thls reason, the optlon I'strongly self-conplementary design" is given as an

alternativel for sake of siroplicity, we use self-conplementary or SCD). An SCD

(v,b,r,k,).) is sirnple if (b,r,).) = 1. Siacple self-complementary designs enjoy the
followiag properties.
(i) Sinple self-courpleoentary desi-gns are affine resolvable, that l-s, any block

Eeets all blocks exeept itself and its complemeat ln precisely k/2 varieties
tsl.

(ii) Simple seLf-complcmentary designs are resldual designs (cf. t3l).
(iii) Sinple self-complementary designs are 3{esigns, that Ls, every tripl-e of

varietles oecurs ln 
^: 

blocks, where l: is independent of the trlple
chosen. (This property is va1ld for any SCD design).

(iv) There o<ists an SCD (4t+4, 8r+6, 4r+3 , 2t+2, 2r+1) if and only 1f there
exists an Hadamard ioatrix H4a*+ i4l.

Clearly a necessary condition for the exj"stence of an SCD (v,b,r,k,l) is that
v = 2k. Thls yields parrmeters of the form (2x*2, t(4x+2), t(2x+1), x*1", tx).
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However lt is known [5] that no
SCD exLsts. Because of thLs deflcleocy the following defioltion 1s g1vea. A BIBDD ts neat-seZf-eotrplementaty (NSC) if t here exlsts an Lnvolutory napping Q deflne<
on the blocks of D such thar (1) lS n OBI = I and (11) lo u 6rl = ,-t, for allblocks B of D. OB 1s the near_colry) Lqnent of B. An NSC (v,b,rrkrl) fs simplelf (b,r,l) 1

It is evident ff_pn the defiaition that ln any NSC (v,b,r,krl) the relationv = 2k holds, hence the set of par:mglers again has the foru (Zx+2, t(4x+2),
t(2x+1), x*1, tx). Since (t(4x+2, t(2x+1)r tx) = t, for slmp1e NSC designs the
par=meters have the form (2x+2r 4x+2r 2x+1, x*1, x). Not surprisingly, the designs
have different propertles in the cases of x even and x odd. In either case the
designs are quasl-residual [3], and some aspeets of residuality are dlscussed in alater section.

2. PROPERIIES OF SIMPLE NSC DESIGNS I,J-ITH ODD BLOCK SIZE
The most interesting of the cases is that in whlch x is even, or k is odd,

since no SCD can exist in this case. Letting x = 2s, the parameters become
(4s+2, 8s*2, 4s*1, 2s*1, 2s).

IIIEORS.I 2.1. In an NSC (4s+2, gs*2, 4s*1 , 2s*1 , 2s) any bloek meets any blockother than itself or its near_complement in either s or s+1 elements.

PROOF. The result follows from a standard argument iavolviog lntersection numbers.(See, for exanple [5J). I

A variety of an NSC D is said to be an infinite eZenent if for all B e D,- is in B u QB. Since there are r pairs G,rilg], each infinlte element occursin precisely one of {S,+g}.

THEORE"I 2.2. In an NSC

infinite elements.

(4s+2, 8s*2, 4s*1, 2s*1, 2s) there are either one or two

PROOF. Slnce there are 4s+2 varieties and only 4s+1 pairs of bloeks, there lsat least one infinite el-ement. Let us now assurne that there are at least three
infinite elements -,l -Z -3. Let ,, denote the set of blocks containi=7,2,3. Let lFl n;2irrl =o. ?hen lnrnrrnFrl =irrnFr.trlr =t 

for

]F, n FZ n F3 l *tl"re F. is the complemenr of a, in the block set of the design.Let B denote ghg gemsn value of these cardinaliiies. Further 1et

]= Irrn (F, urr)i. Then ltrl = a+28*y=4s*L, and o+y= lFznrrl = )+=Zhence 28 = Zs * 1, whlch is cl"early impossible. D

(brrrtr) is aLso odd
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trlples that the SC desigus possesa. Hourever the nuuber of blocks contaioing a

flxed triple cannot vary greatly withln such a design, as Ls shown below.

TItE0Rmt 2.3. In an NSC (4s+2, 8s+2, 4s*1, 2s*1, 2s)

every triple of dLstlnct varietles occurs Ln ef"ther

wLth one lafinite element

s-2, s-L, s, or s|-1 blocks.

PROOF. If A ls a subset of varieties, then l-et Sl denote the set of blocks of
the design D whieh contaln A. Let u, v, w denote three distlnct varieties of
D. Llsually if a block contalns u and not v or w, then its aear-conplenent w11L

contain v and w but not u.
This fails only if one of ur V or w is repeated or omitted from the pair

{8,08}. It is easily established that l-n any NSC rrith one lnfinite elenent, every

non-infiolte variety is contained in the intersection of preclsely one Dear-

complementary pair and Ls omitted fron the unLon of preclsely one oear--coupiementary
pair. Let 6r(x,l) denote the oumber of near-complementary block pairs which

eontain u in one b1oek, x Ln the other b1ock, and omlt y from both, Or(xrl)
Ceaote the number of corapleoentary block pairs whlch contain u ln both blocks and

which are such that uxy occur together in one of the blocks, 6r(x,l) denote the
number of near-complementary block pairs such that ux is l-n one block and xy ts
in the other, and 6.(x,l) be the nunber of block pairs ln whlch u occurs lu
neither but x and y occur together in one of the blocks.

Let 6 = 6,(v,w) + 6,(v,v) + 6^(v,w) - 6^(v,w) - 6^(w,v) - 6,(v,w). Then
I I I J- 3- 4- -

lsr, - {s,r',,' trr}l = ls',rr, - s,rl + 6(v'w)'

Slnce each element is repeated at laost once and onitted at most once 0 < 6

for i=1,2,3,4. Henee -3<6<3.

<1
1

Now ls'u {s
ls - s I'vw u' ls'.,rl

's''*]l = lt,l
ltr..,rl=i-l

uv - ls,r.rl - lt,rrrl + ls,r.,.nrl = E - 2r + lsuvrrl
s-----l . rhisylelds lS -l=t+(6-1)/2.uvw' r '| uvlr,

and

D

COROLLARY. If T is a tripLe of varieties r^'hich contains the inf lnite elment,
then T occurs in either s -1 or s bloeks.

This follows from the fact that if s = -, then =Q. 0

In the case of two infinite elements it can agai-n be shown that aoy triple of
varieties again oceurs in s-2, s-1, s or s*1 bLoeks, and a triple containing
both infinite elments can only occur in s-l or s blocks. The proof is sirnilar
to the above.

The authors know of only one such design with two infinlte el,ements. It is

62=64

RegrettabJ.y the NSC desLgns do not share
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Thls design can also be re-partitloned to yield a deslga rdth just one infinite
element as follows. (81,89) (BZ,B7) (B3,Bg) (B4,86) (B5,Bl0).

For larger values of the parameters, no repariittontng of any such NSC design
is possible Ln view of theoro 2.1.

3. PROPERTIES OF S1UPLE NSC DESIGNS TITH E}EN BLOCK SIZE
Nearly self-conplsnentary designs vith even block sLze are of less interest

si-nce their paraeeters coincide wlth those of self_compleneotary designs and the
Latter are knom to exl-st for all possible parameter sets provided that I{adanard
matrices H4., exlst for all positlve n. Moreover the propertles of NSC deslgns
are weaker for these paraxaeter sets.

These properties are llsted below (without proofs, slace these are analogous to
those of the previous section).

IIiEOREU 3.1. In any NSC (4s+4, gs*6, 4s*3, 2s*2, 2s+J-)
or three infinlte eleoents.

there are either one, t\ro

inflnite elements, every triple of distinct varietles occurs 1n elther s_l, s or
s*1 blocks. In any NSC (4s+4, gs*6, 4s*3 , 2s+2, 2s*1) rs:ith three lnflnite
elements every triple of distinct varietles occurs ln either s_2, s_1r s, s*1 or
s+2 blocks.

4. CYCLIC NSC DSSIGNS

In this seetion a standard nethod [1] for obtaining certain NSC designs based
on cyclic groups (cyclic desl-gns) is discussed. As usual ,o denotes the eyclic
group of order n, and Z: denotes the non-zero elements of z .n-n

:HE0RE'1*4.1. ::t 
, = rn u'here n = 2s*1. If one can find a pair of blocks of theform*A ={-,0}uA and B^=i0}uB where A and B are s-l ands_subsets

of G suchthat AnB=O andthediffereneesof {0}ua and {0}uS aresymetrlcally repeated (eaeh occurring s tlmes), then the translates of A* andB form an NSC (2s+2,4s*2, 2s*1, s*1, s).
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of differenees. The apProPr

0eG. I

E(AMPLES.

CASE L (s EVEN)

CASE 2 (s oDD)

-OZ
-0245
*O2348I-1

034
03678
05679L012

ood 5,

uod 9,

aod 13.

oQ

*026
o2
0345

rood 3,

rnod 7.

Note that the general paraaeters (2s+2r 4s*2r zs+L, s*1, s) are Paraoeters of the

designs derlved froo the s)'rniDetrlc designs (4s+3, 4s*3, 2s*1-, 2s*1, s) which exlst

1f and only if there exlsts an Hadanard Eatrix H4"*4 (see, for exanPle, t4l) ' It

ls well known (see, for.v'-ple, [2, P.256] that a quasl-restdual deslgn ("desLgn

with the parameters of a residual deslgn") is not necessarily a resldual deslgn'

Ilowever we shal1 show that every cyclic NSC design is resldual, hence the existence

of such a design implles the existeoce of an I{adam:rd oatrlx' In particular, if k

ls odd, say k = 2s+1 , then the corresponding Hadamard matrix has order 8sl{' For

this reasoo, the existence of cyelic NSC designs wlth odd values for k eould Prove

useful in the theory of Hadamard matrlces. Io prove the cited result, we w111 use

a Dew approach to the method of nixed differences [1].

5. A GENERAIIZATION OF THE METHOD OF MIXED DITFERENCES

It will be assi:med here (as it was above) that the reader 1s familiar with the

contents of i1l. The method r'{11 be extended here ln terms of rlngs'

Let R be a fioite ring of order n' R = {Orrrsr...rt}. Consider m "copi'es"

of R,

R, = {0r,r1rsl,...,a1}
R, = {0r,r ZrsZ,... r"Z}

R, = iOrrr*rsmr... rar].

Given tlro e1 @ents *i and yi from the ith copy, we define t]ne pure difference

*i - yl as the elenent (x-y)f. Thus pure differences are the natural differences

operating withl-n the lth copy. Now to each eopy Rt of R assign an invertible

l
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l
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PROOF. That the conflguratloa ls a BIBD rrith the regul-red parameters le
tA*+e,B*+o),
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eleneat w(k) of
of *i and yJ

(w(1)x - w(j)y)rJ
the set of bLocks

we !]ean the quantity
If one forms

-1So0={(s+(w(1)) 0)r, (t + (w(j))

be a subset of

-1e) ,

v = ,PrRr'

(v + (w(x))-1e)r],

u

I

I

i
I
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then S ls said to be developed through R.

TEEORB'I 5.1. Let m copi.es R1 ,R2r...,Rm of a rlng R be given. Let

w(1),w(2) r... ,w(m) be a set of eorresponding lnvertibLe welghts, also be given.

If one can find a set of t blocks B1,B2,...rBt each of slze k rrith elements in
v = .B-x.. such that1=I r-

(1) the non-zero pure differences are s1rometriea11y repeated, each occurring I
times, and

(1i) the exterior combinations *ij are syrmetricaLly repeated, each occurrl-ag I
t imes,

then the bl-ocks 81 ,BAr...rBt vhen developed. through R, form BIBD (nn,ns,r,k,),) for aa

appropriate value of r.
PROOF. Slnce the pure differences are sSmetrlcally repeated l, times, each palr
{xrfr}, x * y oceurs in precisely }, blocks. Suppose that *i and yJ are
gLven with i * j. Let UrJ denote the exterior combinatlon, so that
d = w(i)x - w(j)y. Now UrJ is represented as an exterior sun ), times in the set
of blocks 81 ,82, . . . ,8t . Let ,r U rj be such a representat lon ln Bg. Then

ur(i)u - w(j)v = w(i)x - w(j)y,
y = v +(w(j))-1r,(i)(x-u).

1However thereexi-stsaunique 0 eR suehthat u+ (w(i))
0 = w(i) (x-u). Then Bg + e contains (eorrespondlng to {

-1{*r, (v + (w(j)) *w(i)(x-"))ji = {xr,lri. Hence the pair
precisely I bl-ocks of the devel-oped set. I

0 = x, namely

,tj ) the pair

i'Yj ] occurs l-n
1

{x

If all weights w(i) = 1 in the above, then the result is the standard method

of nlxed differences. The case of interest here is that of two coples of ,n (for
appropriate n) and weights 1,-1-. Thus we look at mjxed sums. Examples of this
case are given be1ow. (The blocks here ean al-so be employed for ol_xed differences if
minor uodifieations are nade).
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R, ealled the aeight of
(where *i . Rl and yJ

Let S = {sr,tr,...,vg}
SOe for 0eR where

k. By the arteriot cornbtnsti.on



D(A}'{PLE 2.

D(A}IPLE 3.

Initial bloeks

Initial blocks
(01,02,12)

(0L,4L,42)

(0r,12;7 ) (0L,22,62) (01,32,52)

(0L,22,7 2) (OL,32,62) (0:l'42,52)

(01,11,31) (01,11,31) oodulo 8

BrBD (22,L54,2L13,2)

Ioltial bl-ocks (01,12,102) (OL,22,92) (0I,32,82)

(0L,42,7 2) (01,52,62) (01,02,12) (0L,22,LO2)

(01,32,92) (0L,42,82) (0L,52,7 2) (01,51,02)

(01,11,21) (0r,21,51) (01,31,71) :nodulo 11.

It 1s also easy to construct such BIBDTs oodul-o 14, L7,20,23,26,29 and probably

for any modulus = 2 (mod 3).

6. TEE RESIDUAIIIY OF CYCLIC NSC DESIGNS

As mentioned 1n seetlon 4, cycilc NSC designs are generated by initlal blocks of
**

rheforo 6-={-,0}uA aod B ={0}uB where AnB=0.

TI{EORS{ 6.1. Let D be a cyellc NSC (2x*2, 4x*2, 2x*1, x*1, x) deslgn. Then D

is the residual of a slmmetric (4x+3, 4x*3, 2x*1, 2x*1, x) deslgn.

PROOF. D is defined by the cyclic group G = ZZ.*L. Vlew G as the additlve

group of the ring R of lntegers nodulo 2x*1. Take two coples Rt and RZ of Rt

and weights s,(1) = 1 and w(2) = - 1. Uslng the notation employed above, 1et Al

denote {0} u A. Let Bc denote the complement of B* ln R. We adopt the

eonvention that if S ls a subset of R, then Si is the eorresponding set in Ri,

L = !,2. It 1s readily verified that in At and Bc the differences are

symmetrically repeated, each occurring x-l tioes. Conslder the set of blocks

{.=oiur!,e=uiuair.
Let Sl e S. denote the rnultiset of o<terior suas foraed betveen St

Slnce addition is eoumutative,

and S
J

D(AMPLE 1. BrBD (10,30,9,3,2)
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for disjolnt sets y and W, where & denotes Eultiset unLon.
Hence

R2'

B are symetrically repeated, each occurring
I developed through R, together with B, a bloek

RZ foror the required deslgo. D

As an exaople of the previous theorm, the design

*02 234 rood5

ls eunbedded in

as a residual design.
In conclusi.on, the authors reiterate the faet that NSC designs are in a

position to contribute to the theory of l{adamard matrices. }Ie ask if a1l- si_np1e NSCdesigns are residual.
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=Aio
=Aie

and the ntxed sums of q and

leil =* rimes. I{ence o and

consisting of the elements of :

i2)
t3l

3z 4z

2t 3t 4t az 2z

3r 4t ot 4z Lz

4t ot Lt 3z oz

ot lt 2t 2z 4z

11 2t 3t 1z 3z

2zaz 7z

- o1 21 ozlz
*113142o2
*2L413z4z
-3ro1 2z3z
-4111L222

t4l

9()

Moreover lt ls clear that

(Aioall a trf enll = (t* rirc*(AioB;)
(B; u 82)
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