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ABSTRACT. An important class of BIBDs is that of (strongly) self-complementary-
designs, designs which are invariant under complementation. Their parameter sets
satisfy the relation wv = 2k, yet for k odd, there are an infinity of parameter
sets which cannot be realized as self-complementary designs. For these parameters
the idea of near-self-complementary designs is introduced. These designs have many
aspects similar to self-complementary designs.

An extension of Bose's method of mixed differences is introduced and is applied

to show the residuality of certain near-self-complementary designs.

1. INTRODUCTION.

A balanced incomplete block design BIBD (v,b,r,k,A) is a pair (V,F) where

V 1is a v-set of objects called varieties, F is a family of k-subsets of V, b in

number, which has the property that each variety occurs in precisely r of these

subsets and each pair of distinct varieties occurs in precisely A of these subsets.

An important subclass of these designs is the self-complementary or strongly self-

complementary designs, which are invariant under complementation. (Some authors

refer to self-complementary designs as those isomorphic to their complements, for
this reason, the option "strongly self-complementary design'" is given as an
alternative; for sake of simplicity, we use self-complementary or SCD). Am SCD

(v,b,r,k,A) is simple if (b,r,A) = 1. Simple self—complementary designs enjoy the

following properties.

(i) Simple self-complementary designs are affine resolvable, that is, any block
meets all blocks excépt itself and its complement in precisely k/2 varieties
[5].

(ii) Simple self-complementary designs are residual designs (cf. [3]).

(iii) Simple self-complementary designs are 3—designs, that is, every triple of
varieties occurs in k3 blocks, where A3 is independent of the triple
chosen. (This property is valid for any SCD design).

(iv) There exists an SCD (4t+4, 8t+6, 4t+3, 2t+2, 2t+1) if and only if there

Lt L4l.

Clearly a necessary condition for the existence of an SCD (v,b,r,k,\) is that

v = 2k. This yields parameters of the form (2x+2, t(4x+2), t(2x+l), x+1, tx).

exists an Hadamard matrix H
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However, if k 1s odd and ¢t = (b,r,)) 1is also odd, then‘it is known [5] that no
SCD exists. Because of this deficiency, the following definition is given. A BIBD
D is near—selflcomplementary (NSC) if there exists an involutory mapping ¢ define
on the blocks of D such that (i) |[Bn ¢B| =1 and (1) |Bu ¢B| = v-1, for all
blocks B of D. ¢B is the near-complement of B. An NSC v,b,r,k,1) is simple
if (b,r,)) =1.

It is evident from the definition that in any NSC (v,b,r,k,1) the relation
v = 2k holds, hence the set of parameters again has the form (2x+2, t(4x+2),
t(2x+1), x+1, tx). Since (t (6x+2, t(2x+1), tx) = t, for simple NSC designs the
parameters have the form (2x+2, 4x+2, 2x+1, x+1, x). Not surprisingly, the designs
have different properties in the cases of x even and x odd. 1In either case the
designs are quasi-residual [3], and some aspects of residuality are discussed in a

later section.

2. PROPERTIES OF SIMPLE NSC DESIGNS WITH ODD BLOCK SIZE
The most interesting of the cases is that in which x is even,'or k is odd,
since no SCD can exist in this case. Letting x = 2s, the parameters become

(4s+2, 8s+2, 4s+1, 2s+l, 2s).

THEOREM 2.1. 1In an NSC (4s+2, 8s+2, 4s+l, 2s+1, 2s) any block meets any block

other than itself or its near—complement in either s or s+l elements.

PROOF. The result follows from a standard argument involving intersection numbers.

(See, for example [5]). 0

A variety of an NSC D 1is said to be an infinite element if for all BeD,
© dis in B U ¢B. Since there are r pairs {B,¢B}, each infinite element occurs

in precisely one of {B,¢B}.

THEOREM 2.2. In an NSC (4s+2, 8s+2, 4s+l, 2s+1, 2s) there are either one or two

infinite elements.

PROOF. Since there are 4542 varieties and only 4s+1 pairs of blocks, there is
at least one infinite element. Let us now assume that there are at least three
infinite elements ©p P ®g3 Let Fi denote the set of blocks containing 4 for

i=1,2,3. Let lFl NF,nF,| =a. Then [Fl nF,n f3| = ]Fl n FZ n F3] =

[Fl n F2 n F3l where Fi is the complement of F, in the block set of the design.

i
Let B denote the common value of these cardinalities. Further let

y = [Fl nF,u F3)]. Then {Fll =a+28+y=4s5+1, and o+ = IFZ n F3|

hence 28 = 25 + 1, which is clearly impossible. [J
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Regrettably the NSC designs do not share the balance property with respect to
triples that the SC designs possess. However the number of blocks containing a

fixed triple cannot vary greatly within such a design, as is shown below.
/

THEOREM 2.3. In an NSC (4s+2, 8s+2, 4s+1, 2s+l, 2s) with one infinite element
every triple of distinct varieties occurs in either s-2, s-1, s, or s+l blocks.
PROOF. If A 1is a subset of varieties, then let SA denote the set of blocks of
the design D which contain A. Let u, v, w denote three distinct varieties of
D. Usually if a block contains u and not v or w, then its near—complement will
contain v and w but not wu.

This fails only if one of u, v or w is repeated or omitted from the pair
{B,¢B}. It is easily established that in any NSC with one infinite element, every
non-infinite variety is contained in the intersection of precisely one near-
complementary pair and is omitted from the union of precisely one near—complementary
pair. Let él(x,y) denote the number of near—complementary block pairs which
contain u in one block, x 1in the other block, and omit y from both, 62(x,y)
denote the number of complementary block pairs which contain u in both blocks and
which are such that uxy occur together in one of the blocks, 63(x,y) denote the
number of near—complementary block pairs such that ux is in one block and xy is
in the other, and 54(x,y) be the number of block pairs in which u occurs in
neither but x and y occur together in one of the blocks.

Let & = Gl(v,w) + Sl(w,v) + 62(v,w) - 63(v,w) - 63(w,v) - 64(v,w). Then

s - {s
u

v Y suw}] = ]svw - Sul + §(v,w).

Since each element is repeated at most once and omitted at most once 0 < 61 <1
for 1=1,2,3,4., Hence -3 < § < 3.
H=1ls]-Is | -|s. |+]s_|=r-2x+]|s_ | and
u uv uw uvw uvw
| =Ax-]|s __|. This yields |S | =t + (8-1)/2. O
uvw uvw

Now |s -{S _us
u uv u

ISVW - Sul B |SVWI - |SUVW

w

COROLLARY. If T is a triple of varieties which contains the infinite element,
then T occurs in either s -1 or s ©blocks.

This follows from the fact that if u = «, then 62 = 64 =0. 0

In the case of two infinite elements it can again be shown that any triple of
varieties again occurs in s-2, s-1, s or s+l blocks, and a triple containing
both infinite elements can only occur in s-1 or s blocks. The proof is similar
to the above.

The authors know of only one such design with two infinite elements. It is
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listed below

Bl s 1% 1 B6 : 123
B2 2oy 2 B7 124
B3 ey 13 BS 2 e, 14
B4 P 34 B9 P, 23
35 oo 24 BlO: % 34

This design can also be re-partitioned to vield a design with just one infinite
element as follows. (Bl,Bg) (BZ,B7) (B3,B8) (BA’B6) (BS’BIO)'
For larger values of the parameters, no repartitioning of any such NSC design

is possible in view of theorem 2.1.

3. PROPERTIES OF SIMPLE NSC DESIGNS WITH EVEN BLOCK SIZE

Nearly self-complementary designs with even block size are of less interest
since their parameters coincide with those of self-compl ementary designs and the
latter are known to exist for all possible parameter sets provided that Hadamard
matrices H4n exist for all positive n. Moreover the properties of NSC designs
are weaker for these parameter sets.

These properties are listed below (without proofs, since these are analdgous to

those of the previous section).

THEOREM 3.1. 1In any NSC (4s+4, 8s+6, 4s+3, 2s+2, 2s+l) there are either one, two

or three infinite elements.

THEOREM 3.2. In any NSC (bs+h, 8s+6, 4s+3, 2s+2, 2s+l) with either one or two
infinite elements, every triple of distinct varieties occurs in either s-1, s or
stl blocks. In any NSC (4st+h, 8s+6, 4s+3, 2s+2, 2s+1) with three infinite
elements every triple of distinct varieties occurs in either s-2, s-1, s, s+l or

s+2 blocks.

4, CYCLIC NSC DESIGNS
In this section a standard method [1] for obtaining certain NSC designs based
on cyclic groups (cyclic designs) is discussed. As usual Zn denotes the cyclic

*
group of order n, and Zn denotes the non-zero elements of Zn.

THEOREM 4.1. Let G = Zn where n = 2s+l. If one can find a pair of blocks of the
* * )
form A = {«,0} UA and B = {0} u B where A and B are s-1 and s-subsets
*
of G such that An B =¢ and the differences of {0} U A and {0} U B are

*
symmetrically repeated (each occurring s times), then the translates of A and
*
B form an NSC (2s+2, bs+2, 2s+1, s+1, s).
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PROOF. That the configuration is a BIBD with the required parameters is immediate
* *

from the method of differences. The appropriate block pairs are {A +0,B 48},

6 eG D 5 g

EXAMPLES.
CASE 1 (s EVEN)
® 0 2 034 mod 5,
© 0245 03678 mod 9,
0234811 0567 91012 mod 13.
CASE 2 (s ODD)
o 0 02 mod 3,

© 026 0345 mod 7.

Note that the general parameters (2s+2, 4s+2, 2s+1, s+l, s) are parameters of the
designs derived from the symmetric designs (4s+3, 4s+3, 2s+1, 2st+l, s) which exist
if and only if there exists an Hadamard matrix H45+4 (see, for example, [4]). It
is well known (see, for example, [2, p.256] that a quasi-residual design (""design
with the parameters of a residual design") is not necessarily a residual design.
However we shall show that every cyclic NSC design is residual, hence the existence
of such a design implies the existence of an Hadamard matrix. In particular, if k
is odd, say k = 2s+l, then the corresponding Hadamard matrix has order 8s+4. For
this reason, the existence of cyclic NSC designs with odd values for k could prove
useful in the theory of Hadamard matrices. To prove the cited result, we will use

a new approach to the method of mixed differences [1].

5. A GENERALIZATION OF THE METHOD OF MIXED DIFFERENCES
It will be assumed here (as it was above) that the reader is familiar with the

contents of [1]. The method will be extended here in terms of rings.

Let R be a finite ring of order n, R = {0,r,s,...,t}. Consider m "copies"
of R,
Rl = {Ol,rl,sl,...,tl}
R2 = {02,r2,sz,...,t2}
Rm = {Om,rm,sm,...,tm}.

Given two elements X, and ¥y from the ith copy, we define the pure difference

X, - as the element (x-y)i. Thus pure differences are the natural differences

y
1. i
operating within the ith copy. Now to each copy Rk of R assign an invertible
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element w(k) of R, called the weight of k. By the exterior combination x, © yj
of xy and yj (where X € Ri and yj € R:y, i # j) we mean the quantity
m

(w(ix - w(j)y)ij. Let S = {Si’tj""’vz} be a subset of V = iglRi. If one forms

the set of blocks S @ 6 for 6 € R where

$80=1{(s+ Wi O, ¢+ @I, ..oy v+ @O,

then S 1is said to be developed through R.

THEOREM 5.1. Let m copies Rl’RZ""’Rm of a ring R be given. Let
w(l),w(2),...,w(m) be a set of corresponding invertible weights, also be given.

If one can find a set of t ©blocks B_,B

3¢ e 5B each of size k with elements in
1’72 t

R, such that
1 i

v=U
(i) the non-zero pure differences are symmetrically repeated, each occurring A
times, and
(ii) the exterior combinations xij are symmetrically repeated, each occurring A
times,
then the blocks Bl’BQ""’Bt vhen developed through R, form BIBD (mn,ms,r,k,\) for an
appropriate value of r.
PROOF. Since the pure differences are symmetrically repeated A times, each pair
{xiyi}, x # y occurs in precisely A  blocks. Suppose that Xy and yj are
given with 1 # j. Let dij denote the exterior combination, so that
d = w(i)x - w(j)y. Now dij is represented as an exterior sum )X times in the set

% =] o
of blocks Bl’BZ’ ,Bt Let ug vj be such a representation in Bl Then

w(i)u - w(§v = w(i)x - w(I)y,
5wy ) T D)

However there exists a unique 6 € R such that u + (w(i))—le = x, namely
8 = w(i) (x-u). Then B2 + 6 contains (corresponding to {ui,vj} the pair
{xi, (v + (w(j))_lw(i)(x—u))j} = {xi,yj}. Hence the pair {xi,yj} occurs in

precisely X blocks of the developed set. [J

If all weights w(i) = 1 in the above, then the result is the standard method
of mixed differences. The case of interest here is that of two copies of Zn (for
appropriate n) and weights 1,-1. Thus we look at mixed sums. Examples of this
case are given below. (The blocks here can also be employed for mixed differences if

minor modifications are made).
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EXAMPLE 1. BIBD (10,30,9,3,2)

Initial blocks (01,12,42)-(01 2
(01,02;12) (01s22,42) (01’313
(01,11,21) modulo 5

12,,3,)

02)

EXAMPLE 2. BIBD (16,80,15,3,2)

Initial blocks (01,12;72) (01,22,62) (01,32,52)

(0150,,1,) (0,,2,,7,) (0;,3,,6,) (0;,4,,5,)

(0,54, 54,) (0;51,,37) (0,,1,,3,) modulo 8
EXAMPLE 3. BIBD (22,154,21,3,2)
Initial blocks (0;,1,,10,) (0;,2,,9,) (0,,3,.8,)

3
(0154,57,) (0,,5,,6,) (05,0,,1,) (0;,2,,10,)
(0,,3,,9,) (0,,4,,8,) (0,,5,,7,) (0;,6,,0,)
(01,11,21) (01’21’51) (01,31,71) modulo 11.
It is also easy to construct such BIBD's modulo 14, 17, 20, 23, 26, 29 and probably
for any modulus = 2 (mod 3).

6. THE RESIDUALITY OF CYCLIC NSC DESIGNS
As mentioned in section 4, cyclic NSC designs are generated by initial blocks of
* *
the form A = {»,0} U A and B = {0} U B where An B =¢.

THECREM 6.1. Let 'D be a cyclic NSC (2x+2, 4x+2, 2x+l, x+l, x) design. Then D
is the residual of a symmetric (4x+3, 4x+3, 2x+1, 2x+l, x) design.

PROOF. D is defined by the cyclic group G = Z View G as the additive

2x+1°
group of the ring R of integers modulo 2x+l. Take two copies R1 and R2 of R,
and weights w(l) =1 and w(2) = - 1. Using the notation employed above, let A'

*
denote {0} u A. Let B® denote the complement of B in R. We adopt the
convention that if S is a subset of R, then Si is the corresponding set in Ri’
i =1,2. It is readily verified that in A' and B¢ the differences are

symmetrically repeated, each occurring x-1 times. Consider the set of blocks

* c * 1
{a—AluBz,s—BlUAz}.

Let Si & Sj denote the multiset of exterior sums formed between Si and Sj.

Since addition is commutative,



Moreover it is clear that

for disjoint sets Y and W, where & denotes multiset union.

Hence

and the mixed sums of

a1 - =

consisting of the elements of R

times. Hence

' c * '
(Al & BZ) & (B1 ;) A2)

B eA'

XeY)s Xow

A1 @ B

=X& (YuwWw

'
Al L4 (B

A1 & R2,

U B )

a and B are symmetrically repeated, each occurring
o and B developed through R, together with B, a block
2 form the required design. [J

As an example of the previous theorem, the design

1s embedded in

8

= o
[
w N

8

as a residual design.

In conclusion, the authors reiterate the fact that NSC designs are in a

© 0 2
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position to contribute to the theory of Hadamard matrices.

designs are residual.
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