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1 Introduction

Since its introduction more than 15 years ago by Wallis [16], the notion of Room
frame (and the more general notion of holes in designs) has become one of the most
powerful tools in combinatorial design theory. The main purpose of this paper is to
present Room frames for many new orders. We begin with the definitions.

Let S be a set, and let {S),...,S,} be a partition of S. An {S;,...,S.}—Room
frame is an |S| x |S| array, F, indexed by S, which satisfies the following properties:

1. every cell of F either is empty or contains an unordered pair of symbols of 5,

2. the subarrays S; x S; are emptj, for 1 < 1 < n (these subarrays are referred

to as holes),
3. each symbol z ¢ S; occurs once in row (or column) s, for any s € S;,

4. the pairs occurring in F are those {s,t}, where (s,1) € (S x S)\ U, (S; x S:).
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As is usually done in the literature, we shall refer to a Room frame simply as
a frame. The type of a frame F is defined to be the multiset {|S;| : 1 < i < n}.
We usually use an “exponential” notation to describe types: a type #;“!#;%2,..¢,“
denotes u; occurrences of ¢;, 1 < i < k. The order of the frame is |S]|.

Frames of type 1!3* and 1¢3° are presented in Figures 1 and 2.

Figure 1: A frame of type 134

9¢ 5b | 2d 36 Ta | 48
8b | ad 5S¢ 79 | 16
lc | 95 5d 6a | 78
59 ac | 1b 7d | 68
2a |18 | 9d 4b | 3¢
ab | 8d 4c 13 | 29
8c 1d | 2b | 49 3a
6d Tec 3b 12 45
6b 17 2c | 4d 35
3d | 7b | B¢ 14 25
58 | 1a | 39 27 | 46
69 | 4a 28 | 37 15
47 | 5a 38 119 | 26

Figure 2: A frame of type 143°

T

ad 3¢ 28 65 79 [ 45
6d 47 ac | 95 15 38
| 14 6a | 8b 2¢ | 7d 59
39 [12 8d 5b 6¢c Ta
1 2b 8¢ ad 3a | 19
9¢ ab | 23 1d 48
9d 4c 3b |18 2a

34 | 75 | 5d lc 26
Tc 4b | 3d 25 16
Sc 1b | 2d | 46 37
S5a | 68 49 | 13 27

78 69 la 35 |24

The first Room frame construction was used to prove the existence of a Room
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square of side 257 in [16]. Room frames have been used extensively since then; see,
for example, [4], [5], [8], (11], [10] and [9].

We summarize existence results for frames in the following theorem. Parts 6 —
8 are restatements of theorems concerning Room squares with subsquares in the
context of frames.

Theorem 1.1 There ezist frames of the following types:
t* for all t divisible by 4 [5],

t® for allt divisible by 2,3,5 or 7 [5],

t* for u > 6 and both t and u even [5),

t¥ for allt and all odd u > 7 [5],

2°4} for alla+b =6 [8],

1“v! for v =3,5,7 and all odd u > 3v + 2 [8],
1¥"v? for odd v > 393 and all odd u > 3v + 2 [15],
12°+3y1 for odd v > 3 [17].

S I I S S

We also summarize nonexistence results.

Theorem 1.2 There does not ezist a frame of type T = t,“1#3% ... 4, in any of
the following cases:

Yh Ui =2 or 3 (ic. if the number of holes is 2 or 3)
T=2* (18],
T =1° [12],

there ezist 4 and j such that ¢t; # t; mod 2,
every t; 1s odd, but Z:.'-'=1 t;u; 15 even,
there ezist i and j such that 3t; + ¢; > Th_, thuy [14).

S L

The following corollary is an immediate consequence of parts 2, 5 and 6 of
Theorem 1.2.

Corollary 1.3 If a frame has ezactly four holes, then its type must be t* for some
event > 2.

In addition to the frames listed in Theorem 1.1 above, many frames can be
constructed by recursive techniques which use smaller frames as ingredients. We
will list some useful recursive constructions for frames. The first of these employs
group-divisible designs. A group-divisible design (or GDD) is a triple (X, G, A),
which satisfies the following properties:

1. § is a partition of X into subsets called groups,
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2. Ais a set of subsets of X (called blocks) such that a group and a block contain
at most one common point, and

3. every pair of points from distinct groups occurs in a unique block.

The group-type (or type) of a GDD (X, G, A) is the multiset {|G|: G € G}. As
with frames, we use an “exponential” notation to describe group-types.
We refer to the following construction as the Fundamental Frame Construction

or FFC.

Construction 1.1 (Fundamental Frame Construction) [14] Let (X,G,.A) be
a GDD having type T, and let w : X — Z* U {0} (we say that w is a weighting).
For every A € A, suppose there is a frame having type {w(z) : z € A}. Then there
is @ frame having type {¥,cw(z): G € G}.

Another recursive construction is the Filling in Holes Construction which we

give next.

Construction 1.2 (Filling in Holes) Suppose there is a frame of type t,“11," ...
t,s, and for each 1 < i < k suppose there ezists a frame of type a; ¥ a;s%? .. .a;m b
where 175 a;;b;; = t;. Then there ezists a frame of type {a;;*% :1< i<k, 1<
j <m}.

If T is the type ;“1#;*...%“* and m is an integer, then mT is defined to be
the type mt;“1mt;*? ... mi ¥, The following recursive construction is referred to as
the Inflation Construction. It essentially “blows up” every filled cell into a pair of
orthogonal Latin squares.

Construction 1.3 (Inflation Construction) [1§] Suppose there is a frame of
type T, and suppose m is a positive integer, m # 2 or 6. Then there is a frame of
type mT. -

Several newer recursive constructions for frames can be found in 2] and [10].

In this paper we will make extensive use of a direct method for making Room
frames which uses the computer. The algorithm employed is called a kill-climbing
algorithm. This algorithm was first developed for finding one-factorizations of K,
and Room squares [7]. In [8] a discussion is given describing the application of this
algorithm to finding frames. We note here that this is a nondeterministic algorithm
that is never guaranteed to find a given frame. However, we have found that with
the experience gained from running the program, that we can determine orders for
which the algorithm has a good chance of succeeding. We will discuss this further
in Section 4.

The purpose of this paper is to give Room frames for many new orders. In
Section 2 we will prove a new non-existence result. In Section 3 we will give the
results of computer runs to construct frames of relatively small sizes. Then in
Section 5 we will use some of these frames and a PBD-closure result to construct

frames of type 2°4° for all a + b > 48.
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2 Non-existence of certain frames
In this section we will prove two theorems which extend Theorem 1.2.

Theorem 2.1 If there ezists a frame F of order m which contains three holes of
sizes a,b and c respectively (not necessarily distinct), then 3(b + ¢) < 2(m — a).
Further, if F contains ezactly five holes and if a=b=c, then 3(b+c¢c) < 2(m —a) (or
equivalently, m > 4a).

Proof: Let F be an {S}1,...,S,}-frame of order m on symbol set S, where |S;| = a,
|S3] = b and |Ss| = ¢. Let A denote the rows of F indexed by S\(S; U S;U Ss), and
let B denote the columns of F' indexed by S\(S1 U S; U Ss).

Since any symbol from S; must be paired with all of the symbols from S; and
Ss, and since these pairs can only occur in cells in the regions A U B, we see that
b+c<2(m—(a+b+c)). Thus, 3(d+ c) < 2(m — a), which is the desired result.

Now, make the further assumptions that a = b = ¢, F' contains exactly five holes
and m = 4a. This last assumption implies that every occurrence of an element from
S; (1 £1<3)in A or B must be with an element from S; for some j, 1 < j < 3,
j #1. Let z € S4. Now, z must occur in each column indexed by S;. In such a cell,
z cannot occur with any symbol from S; U §; U Ss, nor with any symbol from S, or
Ss. Hence, no symbol can occur with z in such a cell, and we have a contradiction.

a

Theorem 2.2 If there ezists a frame F of order m which contains three holes of
size a and ezactly siz holes in total, then m > 4a.

Proof: Let F be an {S,...,Ss}-frame of order m on symbol set S, where |S;| =
|S2| = |Ss| = a. By Theorem 2.1, m > 4a. Assume m = 4a. Let A denote the rows
of F indexed by S\(S; U S; U S;s), and let B denote the columns of F indexed by
S\(S1U S3U Ss). As in the proof of Theorem 2.1, every occurrence of an element
from S; (1 < i < 3)in A or B must be with an element from S; for some j,
1<5<38,5#1.

Now, let z € S;. Suppose the pair {z,y} occurs in a cell of A N B, say in cell
(ryc) where (without loss of generality) r € S5 and ¢ € Ss. First,y € S;US;U Ss by
the observation above. Also, y & S5 since r € S5, y & Se since ¢ € S, and certainly
y € Si. It follows that z cannot occur in any cell of A N B. Then z must occur
in @ — |Sy| cells of A\B and in a — |S| cells of B\A. As well, z must occur in at
least 3a further cells, since it must occur with every symbol of S; U S; U Ss, and
no such pair can occur in AU B. Since z occurs a total of 4a — |S,| times in the
frame, we must have 5a — 2|S,| < 4a — | Sy, or |Ss| > a. But [S;| < @, so we have a

contradiction. O

In the Sections 3 and 5, we will be concerned with frames with holes of sizes 2
and 4. The following corollary rules out one particular frame of this type.
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Corollary 2.3 There does not ezist a frame of type 240,

Proof: Let a = b=c =4 and m =16 in Theorem 2.1. O

3 Existence of some small frames

In this section we will discuss the existence of small frames of several different types.
These types include #¢, 1°3%, 2°4%, 4°6°, and 1¥~*p!. All of the frames given in this
section were found using the hill-climbing algorithm for frames which was discussed
in [8]. In order to save space in this paper, these frames are given in the research
report [3].

The first result we give concerns frames with exactly four holes. Recall from
Corollary 1.3 that if a frame F has exactly four holes, then all of the holes must be
of the same size. We also note from Theorem 1.2 that if F is of type t4, then ¢ must
be even and t # 2. From Theorem 1.1 there exists a frame of type 4* and indeed
for all types (41)* for ¢t > 1. The two smallest unknown types for frames with four
holes are the types 6* and 10%. Their existence is ensured by the next theorem, and

the actual frames are presented in (3].
Theorem 3.1 There ezist frames of type 6% and 104,

Using the Inflation Construction and Theorems 1.1 and 3.1, we have the follow-
ing result concerning frames with exactly four holes.

Corollary 3.2 There ezists a frame of type t* if t is divisible by 4, 6, or 10.

We next turn our attention to frames of types 1°3%. We note here that it was
the existence of a frame of type 1°3! which was the key ingredient in finding an
exponential lower bound on the number of nonisomorphic Room squares in [6]. By
Theorem 1.2, a frame of type 1°3® must necessarily have a+b odd and greater than
3. We have the following result in the cases of 5, 7 or 9 holes.

Theorem 3.3 There ezist frames of types 1°3® for alla+ b= 15,7 or 9, ezcept for
(a,b) = (2,3), (3,2), (4,1), (5,0), (5,2) or (6,1).

Proof: The exceptions follow from Theorem 1.2. Frames of type 1'3% and 143°
were presented in Figures 1 and 2. The other frames are given in [3. O

The following theorem concerns the existence of frames of type 2°4%, The exis-
tence of these frames is completely determined when the number of holes is between

5 and 14.

Theorem 8.4 There ezist frames of type 2°4® for all 5 < a + b < 14, ezcept for
(a,b) = (4,1), (3,2) and (2,3).
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Proof: The non-existence results follow from Theorem 1.2. The frame of type 214*
is given in [14], and the frames of types 2° and 4° exist from Theorem 1.1. The

other frames are in the research report [3]. O

By Theorem 1.2, there is no frame of type 35? or 345!. We attempted to find
frames of type 3'5* or 3?5° by the hill-climbing algorithm, but we were unsuccessful.
We did, however, have no trouble finding frames of type 3°5* for a + b = 7. The
frames are given in [3] and the following theorem results.

Theorem 8.5 There ezists a frame of type 3°5° for alla +b=1.

There is a frame of type 446! [14] but no other frames of type 4°6® wherea+b =15
are known. The following theorem gives the existence of some new frames of this

type.
Theorem 3.8 There ezists a frame of type 4°6° for alla+b=6 or 7.

An important problem in this area of design theory is that of finding Room
squares with subsquares. In this context we note that 2 Room square of side u
which contains a subsquare (or hole) of side v is equivalent to a frame of type
1¥~®v!. It is also a necessary condition for existence that u and v be odd and that
u > 3v+2 [1]. In an earlier paper [8], it was shown that these necessary conditions
are sufficient if v = 3,5 or 7. By use of the hill-climbing algorithm and with a little

more persistence we can now extend these results.

Theorem 3.7 For v =9,11,13 and 15, there ezists a Room square of side u with
a subsquare of side v (i.e. a frame of type 1“~"v!) if and only if u > 3v + 2.

Proof: For the cases u = 3v + 2, see Theorem 1.1. The following cases are done in
the research report [3]: v = 9,u = 31; v = 11,u = 37,39,41; v = 13,43 < u < 61
(v odd); and v = 15,49 < u < 63 (u odd). All the remaining cases can be found in
8. O

4 Observations on the hill-climbing algorithm

In this section, we present some useful empirical observations concerning the prac-
tical use of the hill-climbing algorithm. We need to first give a general description
of how the hill-climbing algorithm works. For more details, we refer the reader to
(8].

The algorithm proceeds in two stages. The first stage consists of assigning each
pair to a row of the frame. This is invariably very easy to do. The second stage
involves trying to place each pair in a cell of the frame. Since we have already
assigned each pair to a row, the second stage tries to assign each pair to a column
of the frame. Note that we never change the row assigned to a pair in the second
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stage of the algorithm. This second stage is often very difficult, succeeding with
only a small probability.

The assignments of rows or columns to pairs is done by means of suitable heuris-
tics. In stage 2, where we are attempting to assign columns to the pairs, the appli-
cation of a heuristic may lead to one more pair being assigned to a column, or the
number of pairs assigned to columns may remain unchanged. We define the deficit
to be the number of pairs that are not assigned to columns. Of course, if the deficit
reaches zero, then we have succeeded in constructing the frame.

Each application of a heuristic is called an steration of the algorithm. We have
found it useful to define a threshold. If the number of iterations exceeds the thresh-
old, we abandon the search, and start over at the beginning of stage 1. After
considerable experimentation, we have found a suitable threshold for the construc-
tion of frames to be 1200m, where m is the order of the frame. (In contrast, 100m
seems to be a suitable threshold for the construction of Room squares of side m
(8].)

In Tables 1-3, we present the results of numerous computer runs on some in-
teresting classes of frames. We performed 100 runs for each particular frame. This
gave rise to a deficit vector (do,dy,...), where d; denotes the number of runs which
terminated with deficit equal to 1. Also of interest is the average deficit over the
100 runs.

Table 1 concerns frames of type 1°37°. Note that these frames do not exist
for a = 5,6, but exist for all other values of a (Theorem 3.3). Table 2 summarizes
results on frames of type 2°4°~°. These frames were all shown to exist in [8]. Finally,
Table 3 concerns subsquares of size 9 in larger Room squares, i.e. frames of type

Jr=agl,

Table 1: Results of hill-climbing algorithm to construct frames of type 1°37-°

defiat vector
type | do | dy | dy | ds | dg | ds | de | d7 | total | average deficit
i 1| 3(21|128|18] 0| 0| 0| 100 3.34
113 | 0| 1[/14 (34 (3812 1| o] 100 3.49
1235 | 0| 315323212 4| 2| 100 3.55
1" 0| 2|13(36(31|14) 3| O 100 3.52
1*8* 0| 0 1(16(33 32|13 5 100 4.55
1" [16[ o[74[10] o[ o] o o[ 100 1.78

The results that are most easily interpreted are those in Table 3, where we
observe that the deficit decreases monotonically as the order of the frame increases.
It seems reasonable that more flexibility is gained as the order increases, since the
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Table 2: Results of hill-climbing algorithm to construct frames of type 2°4°~¢

deficit vector
type [do | dy [ da | ds|di|ds | de|dr|ds d; | total | average deficit
2° | o| 4[30]41]22| 3| 0| O] O] O] 100 2.90
241 [ 1] 1[11/23|37|{20] 3| 1| 0| 0| 100 3.76
243 0o/l ol of 1|13|25|37(10|10| O 100 5.75
2343 | 0| 0] o 2|14 (39(23|20)] 1| 1 100 5.52
224 o] 0| 0|12|41({30 11| 4| 2| 0| 100 4.60
2145 o o| 2[11(28(38|15| 5| 0| 0| 100 4.69
48 0| 1 3(15(33|26|16| 5| 0| 0| 100 4.49

Table 3: Results of hill-climbing algorithm to construct frames of type 149!

deficit vector
type | do | dy | da | ds | de|ds | ds|dr|ds|ds dyo | total | average deficit
12°9' { 0| O 1| 41223321 7| 9| 2 1 100 5.42
12291 | 0| O 9 (15|29 |21 |17} 5| 2| 2 0| 100 4.55
1491 | 1| 3|16 (31|24 |16 | 4| 3| 1| 1 0| 100 3.66
1691 | 2 /13|18 |25|15|15| 9| 3| 0| O 0| 100 3.37
12891 | 2|14 |22 (29|18|11| 2| 2| 0| O 0| 100 2.98
1991 | 2/21({34(22|14| 4| 2| 0{ 0 O 0| 100 2.45
13291 | 4|20(33(22(13| 8/ 0| 0O} O| O 0] 100 2.44

hole of size 9 will progressively become less significant as a proportion of the whole
array. In a sense, the hole of size 9 can be thought of as 9? = 81 “forbidden cells”
out of the total of u? cells. Perhaps the ratio 81/u? provides some rough measure of
the difficulty of constructing such a frame by means of the hill-climbing algorithm.

It is less easy to explain the results in Tables 1 and 2. It certainly appears that
it is easiest to construct frames where all the holes have the same size. Also, when
one hole is “large” with respect to the order of the frame, this indicates that the
frame might be very difficult to construct (e.g. type 1'3*). However, we really do
not have any adequate explanation as to why a significantly lower average deficit
was observed for type 254! than 2442, for example.

Even though we might be unable to predict the average deficit, the average
deficit seems to be the most useful method of determining how difficult it will be to
construct the frame. It seems that any frame where the average deficit is less than
6.5 has a reasonable chance of being found by the algorithm. As some examples, for
1 < a < 5, the frames of types 4°6°~° 21l had average deficits in the range from 6.0
- 6.5, and all were ultimately found by the algorithm. Most of these frames took a
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long time to find; for example, the frame of type 4462 required 90,500 attempts.
Another possible measure of the difficulty of finding a particular frame is the
proportion of runs where the deficit equals one. As an example of this, we are still
searching for a frame of type 3'5%. After 47,000 attempts, the average deficit is
6.78. However, in these 47,000 runs, the deficit was always at least three. Most of
the frames that we have found included numerous runs where the deficit was one
or two, 80 we are more pessimistic regarding the possibility of finding this frame.
Here are a couple more interesting examples. The frame of type 13415! was
constructed after only 5793 attempts, despite an average deficit of 7.2 (we attribute
this to very good luck). This is the highest average deficit where we have actually
found the frame. On the other hand, we have been unable to construct a frame of
type 1317! after over 200,000 attempts where the average deficit is 8.4. For this

frame, we have had over 30 runs with deficit equal to 1.

5 The spectrum of frames of type 2045

In this section we will prove a PBD-closure result which will, as a corollary, de-
termine most of the spectrum of frames of type 2°4". We begin with some design-

theoretic background.
A pairwise balanced design (or PBD) is a pair (X, A), which satisfies the following

properties:
1. Ais a set of subsets of X (called blocks)

2. every pair of points occurs in & unique block.

(X,A)is a (v,K)-PBD if | X| =v and [4| € K for all A € A. Given a set K
of positive integers, let B(K) denote the set of positive integers v for which there
exists a (v, K)—PBD. The mapping K — B(K) is a closure operation on the set of
subsets of the positive integers; that is, it satisfies the properties:

1. K C B(K)
2. K, C K; = B(K;) € B(K)
3. B(B(K)) = B(K).

The set B(K) is called the PBD-closure of the set K. If K is any set of positive
integers, then K is PBD-closed if B(K) = K.

In [4] it was determined that the set F; = {u : there exists a frame of type t“}
is PBD-closed. If we denote F,; = {u : for every 0 < a < u thereis a frame of type
s°t“~°}, then it is an easy exercise to extend that theorem to the following.

Theorem 5.1 F,; ¢s ¢ PBD-closed set.
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We are interested in studying the set Fa4. We already have from Theorem 3.4
that {6,7,...,14} C Fa4. Let Ko = {6,7,... ,14} and observe that any element in
B(Koy) is necessarily in F; 4. We will spend the remainder of the section determining
2 bound v, such that v € B(Ko) if v > vo. We begin with a technical lemma which

will give us most of the necessary orders.

Lemma 5.2 If there ezists ¢ TD(n,q), such that ¢ € B(K,) and 7T < n <14, then
s € B(Kp) foralls = 8g+ay+6as+Tar+...+14a; where a3 2 0, 0<Yag<n-6
and a; =0 ifi > n.

Proof: Let (X,0,A) be a TD(n,q). We will delete points from this design to
obtain the PBD. Leave six groups unchanged, and from a; groups (for i =1 and for
6 < i < n) delete all but i of the points. In the remaining groups, delete all of the
points. The resulting PBD has blocks with sizes from the set {6,7,...,n,¢} and 50

s € B(K,). O

As a corollary we have the next result. The proof follows easily by picking
appropriate ¢;’s in Lemma 5.2.

Corollary 5.3 If there ezists a TD(n,q) ‘such that ¢ > 15, ¢ € B(Ko) and 11 <
n < 14, then s € B(Ko) for all s such that 6¢ < s < 6q + 14n — 84.

We will now use Lemma 5.2 to show that some small values are in B(Ko)-

Lemma 5.4 If s = 42,43,44,48,49,50,51,54,55,56,57,58, or if 60 < s < 182,
then s € B(Ko).

Proof: All of these values are done by appropriate use of Lemma 5.2. Use a
TD(8,7) to get 42,43,44,48,49,50 € B(K,) using (a1,a,01) = (0,0,0), (1,0,0),
(2,0,0), (0,1,0), (0,0,1) and (1,0,1), respectively. With ¢ =8, usea TD(9,8) to
show that 51 € B(Kop), and also that s € B(Ko) for all 54 < s < 72 (except possibly
for s = 59).

A TD(10,9) yields all orders from 73 to 90. A TD(12,11) covers all values from
91 to 132 and a TD(14,13) takes care of the values from 133 to 182, thus completing

the proof. O

Other small values can also be obtained by deleting points from block designs.
Lemma 5.5 {31,52,53,59,183,184,185} C B(Ko).

Proof: The existence of a (31,6,1)—BIBD (= PG(2,5)) proves that 31 € B(Ko)-
From the (57,8,1)—BIBD (=PG(2,7)) delete either four or five points from an oval
to obtain a (53,{6,7,8})—PBD or a (52,{6,7,8})—PBD, respectively. So we have
that 52,53 € B(Ko).
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To do order 59, begin with the (73,9,1)-BIBD (= PG(2,8)) and delete six
points from a hyperoval and also delete eight points from some exterior line to get
a (59,{6,7,8,9})-PBD. So 59 € B(K)).

The existence of a (183,14,1)-BIBD (= PG(2,13)) implies that 183 € B(K).
To do orders 184 and 185, begin with the (256,16,1)-BIBD (= AG(2,16)) and
proceed as follows. First, delete all the points from two lines of one parallel class.
Then consider a second parallel class. There remain 14 points on each of the 16
lines in this class. Delete all points from two lines of this class, delete eight points
from a third line of this class, and delete either three or four points from a fourth
line of this class. The resulting PBD has either 184 or 185 points and block sizes in
Ko. Hence, 184,185 € B(K,). O

We now construct a long interval of small orders in the next lemma.
Lemma 5.6 s € B(Kj) for 186 < s < 406.

Proof: From Lemma 5.5, 31 € B(K,). Use Corollary 5.3 with ¢ =31 and n = 14
to get that s € B(K),) for all 186 < s < 298. Using the fact that 49 € B(K))
(Lemma 5.4), we apply Corollary 5.3 with ¢ = 49 and n = 14 to get s € B(K,) for
all 294 < s < 406, thus completing the proof. O

We are now in a position to close the spectrum.
Theorem 5.7 If s € {6,7,...,14,31,42,43,44} or if s > 48, then s € B(Ky).

Proof: The cases where s < 406 were dealt with in the previous lemmas. Now
assume that s > 407, and that ¢ € B(Kp) for all ¢ such that 48 < ¢ < s —1.
Write s = 6¢ + k, where 6 < k < 11. Since s > 407, then ¢ > 66 and so there
exists a TD(7,g). Delete ¢ — k points from a group of the TD(7,¢). This yields an
(s,{6,7,8,9,10,11,q})—PBD. Clearly ¢ < s — 1 and so by assumption ¢ € B(Kj).
By Theorem 5.1, we get that s € B(K,). This completes the proof. O

By the fact that F3 4 is PBD-closed and contains the set Ko, we have our main
result.

Theorem 5.8 If s € {6,7,...,14,31,42,43,44} or if s > 48, then there ezists a
frame of type 2°4*~° for all0 < a < s.

As a corollary, note that for all ¢ # 2,6, we can obtain frames of type (2t)°(4t)~*
forall 0 < a < sif s € {6,7,...,14,31,42,43,44} or if s > 48. This follows
immediately from the Inflation Construction. Finally, notice that there is nothing
special about hole sizes 2 and 4. Use of this PBD-closure result can close the
spectrum of any F,, provided the necessary initial cases are done first.
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