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In this introduction, we give some basic definitions, establish standard nota-
tion, and present some fundamental “classical” results in combinatorial design

theory.

1 BALANCED INCOMPLETE BLOCK DESIGNS

A balanced incomplete block design (BIBD) with parameters (v,b,r,k,}) is a
pair (X,.A) that satisfies the following properties:

1. X is a set of v elements (called poinis).

2. A is a family of b subsets of X, each of cardinality k (called blocks).
3. Every point occurs in exactly r blocks.

4. Every pair of distinct points occurs in exactly A blocks.

It is generally required that k < v; that is why BIBDs are called incom-
plete block designs. We will use the abbreviation (v, b,r,k,A)-BIBD to denote
a balanced incomplete block design with parameters (v,b,r,k, ). It is easy to
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2 A Brief Introduction to Design Theory

see that the five parameters are not independent; simple counting yields the
following two relations:

vr = bk and Av-1)=rk-1) 1)

Hence, since the other two parameters can then be deduced, it is not un-
common to write a BIBD using the three parameters v, k, and A, that is, as a
(v,k,A)-BIBD.

Suppose (X,A) is a (v,b,r,k,1)-BIBD, where X = {x; : 1<i < v} and A =
{A; : 1< j < b}. The incidence matrix of the BIBD is the v by b matrix M =
(mi;j) defined by

1 if x; €A,
mij = X
0 otherwise.

Then the incidence matrix satisfies the equation MM7T = (r — \)I + AJ,
where I is a v x v identity matrix and J is a v x v matrix of 1’s.

Determining necessary and sufficient conditions for the existence of BIBDs
is one of the central questions in design theory. We will now briefly survey
some necessary and sufficient conditions for existence.

The most basic necessary condition is known as Fisher’s inequality. It states
that a (v,b,r,k,A)-BIBD exists only if b>v (or equivalently, if r > k). A
BIBD with b = v (or equivalently, r = k) is called a symmetric BIBD. Some
further necessary conditions are known for the existence of symmetric BIBDs.
The following result is known as the Bruck-Ryser-Chowla theorem:

Theorem 1.1 (Bruck-Ryser-Chowla Theorem). If a symmetric (v,k,X)-BIBD
exists, then:

1. if v is even, k — X is a perfect square,
2. if v is odd, the Diophantine equation x* = (k — \)y* + (=1)""D/2Az* has
a solution in integers, not all of which are zero.

Let us now turn to sufficient conditions for existence of BIBDs. BIBDs with
k =2 or k = v exist trivially, so we will usually restrict our attention to the
cases where 2 < k < v. A (v,3,1)-BIBD is known as a Steiner triple system and
denoted STS(v). An STS(v) was shown to exist for all v =1 or 3 modulo 6 in
the nineteenth century. In fact, in the cases k = 3, 4, or 5, all designs satisfying
condition 1 exist, with the single exception of the parameter list (15,5,2), for
which a BIBD does not exist. The existence of BIBDs with k = 6 is not yet
resolved. The smallest design in this class whose existence is undetermined has
parameters (46,6,1).

Several specific classes of BIBDs should be mentioned. A symmetric (n? +
n+1,n+ 1,1)-BIBD is called a projective plane of order n. An (n%,n,1)-BIBD
is called an affine plane of order n. It is not difficult to show that an affine
plane of order n exists if and only if a projective plane of order n exists.
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A projective plane of order n exists if n is a prime power. No examples of
projective planes of nonprime power order are known to exist. A projective
plane of order 6 is ruled out by the Bruck-Ryser-Chowla theorem. A recent
computer-aided search by C. Lam showed that a plane of order 10 does not
exist. Thus, the smallest unresolved order is now order 12.

Let g be a prime power, and let d > 2. If we take the lines of PG(d,q),
the d-dimensional projective geometry over GF(q), as blocks, we get a
((g**'—1)/(q — 1),q + 1,1)-BIBD. If we take the lines of AG(d,q), the d-
dimensional affine geometry over GF(q), as blocks, we get a (¢%,q,1)-BIBD.
One further class of BIBDs that comes from geometries are the unitals, having
parameters (¢> + 1,q + 1,1).

A symmetric (4n + 3,2n + 1,n)-BIBD is called a Hadamard design and is
equivalent to a Hadamard matrix of order 4n + 4. Hadamard designs are con-
jectured to exist for all integers n > 0. Despite much study this conjecture is
still open.

A set of blocks in a BIBD that partitions the point set is called a parallel
class. A resolution of a BIBD is a partition of the family of blocks into parallel
classes. Note that a resolution contains exactly r parallel classes. A BIBD
is said to be resolvable if it has at least one resolution. Clearly, a resolvable
BIBD can exist only if £ divides v, in addition to the necessary conditions 1.
We note that any affine plane is resolvable.

Existence of resolvable BIBDs for k = 3 and 4 has been completely deter-
mined; the necessary conditions are sufficient. (A resolvable STS(v) is called
a Kirkman triple system of order v and denoted KTS(v).) The spectrum of re-
solvable (v,5,1)-BIBDs has almost been completed. The necessary condition
v =5 modulo 20 is sufficient with a few possible exceptions, the smallest of
which is v = 45.

Fisher’s inequality can be strengthened in the case of resolvable designs: if
a resolvable (v,k,A)-BIBD exists, then b > v + r — 1. In the case of equality,
the BIBD is said to be affine resolvable. Notice that an affine plane is affine
resolvable.

Suppose that a BIBD has two resolutions, with the property that any par-
allel class from the first resolution and any parallel class from the second
resolution have at most one block in common. Then the two resolutions are
said to be orthogonal. A (v,2,1)-BIBD having two orthogonal resolutions is
equivalent to a Room square of side v — 1.

There are several methods by which new BIBDs can be obtained from old
ones. The complement of a BIBD is obtained by replacing every block by its
complement with respect to the point set. The complement of a (v,b,7,k,A)-
BIBD is a (v,b,b—r,v —k,b—2r + X)-BIBD.

A symmetric BIBD has the property that any two blocks intersect in exactly
A points. Hence, the dual incidence structure obtained by interchanging the
roles of points and blocks is also a BIBD with the same parameters (whence
the term symmetric). Given a symmetric (v,k,A)-BIBD, and given a block A
of this design, delete the block A, and delete all points in A from all other
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blocks. The resulting design is called the residual design and has parameters
(v —k,v — 1,k,k — A, A). If instead we delete the block A and delete all points
not in 4 from all other blocks, we get a design called the derived design. Its
parameters are (k,v — 1,k — L,LA,A—1). Any (v —k,v — 1,k,k — X\, A)-BIBD is
called quasi-residual. It is an interesting question to ask which quasi-residual
BIBD:s are in fact residual. It is known that any quasi-residual BIBD with A =
1 or 2 is residual; but for A = 3, there are examples of quasi-residual BIBDs
that are not residual.

Next, we discuss the idea of subdesigns. Suppose we have a (v,k,A)-BIBD,
and we choose a subset Y of w points. If it happens that every block of the
BIBD contains either exactly k or at most one of the points in Y, then we ob-
tain a (w,k,\)-BIBD by taking those blocks that contain k points from Y. This
BIBD on w points is called a subdesign and is denoted sub-(w,k,A)-BIBD. It
is easy to see that if there is a (v,k,1)-BIBD containing a sub-(w,k,1)-BIBD,
then v > (k — 1)w + 1. (Of course, the parameter lists (v,k,1) and (w,k,1)
must satisfy the necessary conditions 1.) In the cases kK = 3 and k = 4, these
necessary conditions for existence are sufficient.

We mention one further way in which a BIBD can occur “inside” another
BIBD. Suppose we can delete one point from every block of a (v,k,A)-BIBD
in such a way that we are left with a (v,k —1,p)-BIBD. Then the smaller
BIBD is said to be nested in the larger one. Clearly, p = A(k —2)/k. In
the case k = 4, A = 2, one can construct a (v,4,2)-BIBD containing a nested
(v,3,1)-BIBD if and only if v = 1 modulo 6.

In situations where BIBDs do not exist, it is interesting to determine how
“close” to a BIBD one can get. This motivates the ideas of covering and pack-
ing designs. A packing design with parameters (v,k,)) is a pair (X,A) that
satisfies the following properties:

1. X is a set of v elements (called poinis).
2. A is a family of subsets of X, each of cardinality k (called blocks).
3. BEvery pair of distinct points occurs in at most A blocks.

A (v,3,1) packing design is also known as a partial triple system of order v
and is dencted PTS(v). A covering design with parameters (v,k, A) will satisfy
the same conditions, except that every pair of distinct points should occur
in at least A blocks. Usually, it is desired to find a packing designs with the
maximum number of blocks and covering designs with the minimum number
of blocks.

2 t-DESIGNS

In this section, we discuss a generalization of BIBDs. A t-(v,k,A) design is a
pair (X,.A) that satisfies the following properties:

1. X is a set of v elements (called points).
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2. A s a family of subsets of X, each of cardinality k (called blocks).
3. Every ¢-subset of distinct points occurs in exactly A blocks.

A t-(v,k,\) design is also denoted Sx(z,k,v). Observe that a (v,k,\)-BIBD
is equivalent to a 2-(v,k, ) design. A ¢-design is called simple if it contains no
repeated blocks.

By elementary counting, it can be shown that if s < ¢, a #-(v,k, ) design is

also an s-(v,k,p) design, where
v—s
hlas)
' ESRPEY

=\
(=)
Since p must be an integer, this equation yields a necessary condition for
existence of the ¢-design, for any s < . We also observe that if we take all
the blocks of a 7-(v,k,A) design through a point x, and delete x, we get a
(t—1)-(v -1,k —1,]) design.

Much less is known about the existence of 7-(v,k,A) designs with ¢ >3
as compared to BIBDs. For ¢ = 3, there are several infinite families known.
For any prime power g, and for any d > 2, there exists a 3-(¢? + 1,q + 1,1)
design, known as an inversive geometry. When d = 2, these designs are known
as inversive planes. A 3-(v,4,1) design is called a Steiner quadruple system and
is denoted SQS(v). These designs exist for all v =2 or 4 modulo 6.

The major existence result for ¢-designs is Teirlinck’s theorem, proved
in 1987, which guarantees the existence of simple ¢-designs for arbitrarily
large ¢. It should be noted that the A-values of these designs are extremely
large.

Theorem 2.1 (Teirlinck’s Theorem). A t-(v,7 + 1,((¢ + 1)!)**1) design exists
if v>t+1and v=t modulo ((r + 1))**1.

In contrast, for designs with A = 1, examples are known only for # < 5. Con-
struction of a 6-(v,k, 1) design remains one of the outstanding open problem
in the study of ¢-designs.

Even for ¢ = 4 and 5, only a few examples of 7-(v,k,1) designs are known.
The known examples with v < 30 are the following: 4-(11,5,1), 5-(12,6,1), 4-
(23,7,1), 5-(24,8,1), 4-(27,6,1), and 5-(28,7,1). For ¢t = 6 and v < 30, the only
1-(v,k, ) designs known to exist are those having parameters 6-(14,7,4), 6-
(20,9,112), 6-(22,7,8), and 6-(30,7,12).

There is a generalization of Fisher’s inequality to ¢-designs, which is due to
Ray-Chaudhuri and Wilson. If a #-(v,k,A) design exists, where ¢ = 25 is even,
then the number of blocks b > (7).
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3 AUTOMORPHISMS AND ISOMORPHISMS OF DESIGNS

Two (v,k,A)-BIBDs or z-designs are said to be isomorphic if there exists a
bijection of the respective point sets that preserves blocks. An automorphism
of a design is an isomorphism with itself. The set of all automorphisms of a
design forms a group under functional composition, called the automorphism
group.

Some specific types of automorphisms have been studied extensively. An
automorphism of a design on v points consisting of a single cycle of length v
is called a cyclic automorphism. A symmetric BIBD having a cyclic automor-
phism is equivalent to a difference set in the group Z,.

A major result concerning difference sets was proved by Hall and Ryser in
1951.

Theorem 3.1 (Multiplier Theorem). Suppose that there exists a symmetric
(v,k,\)-BIBD having a cyclic automorphism. Suppose that p is a prime such
that p> \, p is relatively prime to v, and p divides k — \. Then the function
x — px is also an automorphism of the BIBD.

It is a long-standing open question as to whether the condition p > A in Theo-
rem 3.1 is really necessary. As an infinite class of difference sets, we mention
the famous result of Singer which proves that the projective plane PG(2,9)
admits a cyclic automorphism.

Nonsymmetric BIBDs with cyclic automorphisms have also been studied
extensively. For example, there is an STS(v) having a cyclic automorphism for
all v =1 or 3 modulo 6, v # 9.

In the cases where BIBDs or z-designs are known to exist, it is often use-
ful to enumerate the nonisomorphic designs with a given parameter set. For
example, the number of nonisomorphic Steiner triple systems of order v have
been enumerated for v < 15. Up to isomorphism, there is a unique design of
order 3, 7, and 9; there are precisely two nonisomorphic designs of order 13,
and 80 of order 15. At that point, an explosion occurs: The number of non-
isomorphic STS(19) exceeds 2,000,000. There is also the asymptotic result of

2
Wilson that the number of nonisomorphic STS(v) is at least (e‘5v)v 1,

A very useful table of parameters of BIBDs with r < 41 has been published
by Mathon and Rosa [9]. This table lists all admissable parameter sets in the
given range, together with existence, enumeration and resolvability results. A
list of parameter sets of 7-designs with v < 30, together with existence results,
has been tabulated by Chee, Colbourn and Kreher [6].

4 PAIRWISE BALANCED DESIGNS

A pairwise balanced design (v,K,))-PBD is an ordered pair (X,.A) where X is
a set (of points) of size v and A is a collection of subsets of X (called blocks)
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with the property that every pair of elements of X occur together in exactly A
blocks and that for every block 4 € A, |4| € K. Note that a (v,k,A)-BIBD is a
special case of a PBD in which the blocks are only permitted to be of one size
k. When A = 1, it is sometimes omitted from the notation, and the design is
called a (v,K)-PBD. A pairwise balanced design with A = 1 is also sometimes
called a finite linear space.

One can observe that the existence of a (v,K)-PBD (with v > 0) implies
that

v =1 modulo a(K) and v(v — 1) = 0 modulo B(K), 2)

where a(K) is the greatest common divisor of the integers {k —1:k € K'}
and B(K) is the greatest common divisor of the integers {k(k —1) : k € K}.
The following theorem of Wilson shows that the above conditions are “asymp-
totically sufficient” for the existence of a (v,K)-PBD:

Theorem 4.1 (Wilson’s Theorem). Given K, there exists a constant cj such
that a (v,K)-PBD exists for all v > ¢, that satisfy the congruences v = 1 modulo
a(K) and v(v — 1) = 0 modulo (K).

As an example suppose that K = {4,7}. Then, a(K)=3 and ((K) =6.
Wilson’s Theorem guarantees the existence of a (v,{4,7})-PBD for all suf-
ficiently large v = 1 modulo 3. It should be noted here that the constant ¢, in
Wilson’s theorem is, in general unspecified. In practice, considerable further
work is usually required to obtain a concrete upper bound on ¢ (e.g., when
K = {4,7}, it can be shown that ¢; = 22).

A concept that plays an important role in the construction of BIBDs is that
of a group divisible design (or GDD). A (K,))-GDD denotes a triple (X, G, A),
where

1. X is a set (of points),

2. G is a partition of X into subsets (called groups),

3. A is a family of subsets of X (called blocks) such that a group and a
block contain at most one common point,

4. every pair of points from distinct groups occurs in exactly A blocks.

If A\=1, a (K,))-GDD is often denoted by K-GDD. The group-type (or
type) of a GDD is the multiset {|G| : G € G}. Usually, an “exponential nota-
tion” is used to describe the type of a GDD: A GDD of type #;'5;2...1;* is
a GDD where there are u; groups of size ; for 1 <i <k. A transversal de-
sign TD(k,n) is a k-GDD of type n* (i.e., one having k groups of size n and
uniform block size k). One other common notation is GD(K,A,M,v), which
denotes a (K,A)-GDD in which |X| = v, and |G| € M for every group G € G.

If all groups G € G have size |G| > 2, then (X,G U A) is a PBD. Also, note
that if G consists of all singleton subsets of X, then (X,.A) is a PBD if and only
if (X,G,A) is a GDD.
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There are numerous recursive constructions for GDDs and PBDs. The fol-
lowing theorem of Wilson gives the flavor of many of these constructions:

Theorem 4.2 (The Fundamental Construction). Let (X,G,A) be a GDD, and
let s be a positive integral weight assigned to each point x € X. Let (Sx : x € X)
be pairwise disjoint sets with |Sy| = s.. With the notation

Sy = st

x€Y

for Y CX, put
X* = Sx and G*={S¢ : GegG}.

Suppose that for each block A € A, a GDD (S4,{Sx : x € A}, B,4) exists and
denote A* = | c 4 Ba. Then (X*,G*, A*) is a GDD.

An extremely important idea in this area is that of closure. Given a set K
of positive integers, let B(K) denote the set of positive integers v for which
there exists a (v,K)-PBD. The mapping K — B(K) is a closure operation on
the set of subsets of the positive integers, as it satisfies the properties

1. K C B(K),
2. If K1 C K>, then B(K;) C B(K>),
3. B(B(K)) = B(K).

The set B(K) is called the closure of the set K. If K is any set of positive
integers, then K is PBD-closed (or closed) if B(K)= K. A consequence of
Theorem 4.1 is that if K is a closed set, then there exists a finite subset J C K
such that K = B(J). This set J is called a generating set for the PBD-closed
set K. If J is a generating set for K and if s € J is such that J\{s} is also a
generating set for K, then s is said to be inessential in K; otherwise, s is said
to be essential. A generating set consisting of essential elements is called a
basis.

Another concept that plays an important role in many recursive construc-
tions is the idea of designs with a “hole,” which are known as incomplete
designs. For PBDs with A = 1, we have the following definition: An incomplete
(v,w,K)-PBD is an ordered triple (X,Y, A) where the following properties are
satisfied:

1. X is a set (of points).

2. Y is a subset of X (called the hole).

3. A s a set of subsets of X (called blocks).

4. |A| € K for every block 4 € A.

5. No block contains two points from the hole.
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6. Every pair of points {x,y}, not both in the hole, occurs in a unique
block.

Of course, holes may be filled in: If an incomplete (v, w,K)-PBD exists and a
(w,K)-PBD exists, then so does a (v,K)-PBD exist.

Just as BIBDs can be generalized to z-designs, so can PBDs be generalized,
to designs called ¢-wise balanced designs or tBDs. Here, we require that every
t-subset of points occurs in exactly A blocks. We will use the notation (v,K,A)-

tBD or Si\(t,K,v).

5 LATIN SQUARES

A Latin square of side n is an n x n array based on some set S of n symbols
with the property that every row and every column contains every symbol ex-
actly once. Obviously, any permutation of the rows, columns or symbols of
a Latin square A results in a Latin square. Two Latin squares 4 and B are
equivalent if it is possible to obtain B from A by some sequence of permuta-
tions on the rows, columns or symbols of A. Otherwise, they are inequivalent.
All Latin squares of order 3 are equivalent, but for every order n > 3, there
exist inequivalent Latin squares of order n. In fact, the maximum number of
inequivalent Latin squares of order n approaches co as n — oo.

A Latin square A is standardized if the first row of A4 is 1,2,...,n. It is
clear that every Latin square is equivalent to a standardized Latin square.
A transversal in a Latin square is a set of n cells, one from each row and
each column, that contain each symbol exactly once. If the main diagonal of
a Latin square of side n is (1,2,...,n), then the Latin square is said to be
idempotent; if it is (a,a,...,a) (for some a € {1,2,...,n}), then it is termed
unipotent. Obviously, an idempotent Latin square has a transversal (the main
diagonal). For every even order n, there exists a Latin square of order » having
no transversals. However, it is an open question as to whether every Latin
square of odd order has a transversal.

A subsquare of order r in a Latin square of order n is a set of r? cells that
comprise the intersection of r rows and r columns and that is itself a Latin
square of order r (on some subset of r symbols). Note that every Latin square
has subsquares of order 0 and order 1.

Two Latin squares 4 = (a;;) and B = (b;;) of order n are said to be orthog-
onal if the n? ordered pairs (a;j, b;j) for 1 <i,j < n are all distinct. Clearly, the
relation of orthogonality is symmetric. A set of Latin squares { A1, Az,..., Ax}
is called a set of k mutually orthogonal Latin squares (MOLS, for short) if
A; and A; are orthogonal for all i,j € {1,...,k} and i # j. It is customary
to denote by N(n) the maximum number of MOLS of order n. For n > 2,
N(n) < n—1; we usually define N(0) = N(1) = oco.

It is known that the existence of n —1 MOLS of order n is equivalent to
the existence of a projective plane of order n (an (n? + n+ 1,n + 1,1)-BIBD).
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It is also easy to show that the existence of a set of k — 2 mutually orthogonal
Latin squares of order n is equivalent to the existence of a transversal design
TD(k,n). Another equivalent formulation of a set of k —2 MOLS of order n
is an orthogonal array OA(n,k). This is a k x n? array of n symbols such that
any two rows contain all n?-ordered pairs of symbols once each.

It is straightforward to show that taking the direct product of orthogonal
Latin squares preserves orthogonality. By this we mean that if A; is orthog-
onal to A and Bj is orthogonal to B, then the direct product A; x By is
orthogonal to A; x B,. It follows that if n = pf’ p5t...p¢r, where the p; are
distinct primes and each e; > 1, then N(n) 2 min{p{' —1:1<i<r}. Many
other lower bounds on N () are known; a table of lower bounds on N (n) for
n < 10,000 has been compiled by Brouwer [5].

The famous result of Chowla, Erdds, and Straus states that N(n) — oo as
n — 0o. Hence, we can define n; = max{s : N(s5) <k}, and ny is finite for
any k. It is known that np = 6, n3 < 10, ng <42, ns <62, and ng < 76. Upper
bounds on 7 have been proven for other values of k, as well.

The transpose of a Latin square A, denoted AT, is the Latin square that re-
sults from A when the role of rows and columns are exchanged (i.e., AT, ) =
A(j,1)). A Latin square is called self-orthogonal if it is orthogonal to its trans-
pose. Self-orthogonal Latin squares exist for all orders n # 2,3,6. More gener-
ally, one can obtain 3! = 6 conjugates of a Latin square by interchanging the
roles of rows, columns and symbols.

A Latin square A of order n is symmetric if A = AT. Two symmetric Latin
squares A and B of order n can obviously never be orthogonal. However, A4
and B are defined to be orthogonal symmetric Latin squares if they are idem-
potent and if for any two elements x and y there exists at most one ordered
pair (i, ) with i < j such that A(j,j) = x and B(i,j) = y. It is easy to see that
symmetric idempotent Latin squares exist only for odd orders. Analogous to
the nonsymmetric case one can define v(n) to be the maximum number of
symmetric orthogonal Latin squares of order n. It is known that v(7) =3,
v(9) = 4, and that v(n) > 5 for all odd n> 11, n # 15.

6 GRAPHS

A graph G is a pair (V(G),E(G)), where V(G) is a finite nonempty set of
elements called vertices and E(G) is a finite set of distinct unordered pairs of
distinct elements of V' (G) called edges. The number of vertices of G is called
the order of G, and will usually be denoted by v, while the number of edges
(sometimes called the size of the graph) will be denoted by €. Often, the edge
{u,v} will be denoted as uv or (u,v).

If e = uv is an edge of G, then u and v are called the two ends of e. The
ends of an edge are said to be incident with the edge, and vice versa. Two
vertices that are incident with a common edge are adjacent as are two edges
that are incident with a common vertex. A set of vertices of which no two
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are adjacent is called an independent set of vertices, while a set of vertices of
which every pair is adjacent is called a cliqgue. A k-clique is a clique with k
vertices.

The degree or valence of a vertex v in G is the number of edges incident
with v and is denoted by d(v). The maximum and minimum degrees of the
vertices in the graph G are denoted A(G) and 6(G), respectively. If all the
vertices of a graph have the same degree, then the graph is called regular. If
each degree is k, then G is called k-regular.

A graph H = (V(H),E(H)) is a subgraph of the graph G = (V' (G),E(G))
if V(H)CV(G)and E(H) C E(G). If V(H) = V(G), then H is called a span-
ning subgraph of G. A k-factor of G is a spanning k-regular subgraph of G.
A one-factor is also called a perfect matching. A partition of the edges of
a k-regular graph into one-factors is called a one-factorization. A one-regular
subgraph is termed a matching. A partition of the edges of a graph into match-
ings is called an edge-coloring of the graph and the set of edges in one of the
matchings is referred to as a color class.

A path of length t—1 in a graph G is a sequence of ¢ distinct vertices
V1V;...0; such that v;v;41 is an edge of G for 1<i<t—1. A graph G is
connected if any two vertices are joined by a path. A cycle or circuit of length
t in a graph G is a sequence of ¢ distinct vertices v1v;...V; such that v;v;41
is an edge of G for 1<i<¢—1 and v, is also an edge of G. A circuit is
called a hamiltonian circuit if its length is equal to v. A free is a connected
graph that contains no cycle as a subgraph.

There are two graphs that are of particular importance in design theory.
The graph K,, is the complete graph on n vertices and is defined by the fact
that every pair of vertices are adjacent. A multipartite graph is one in which
the vertex set can be partitioned into sets (called parts) in such a way that each
edge joins a vertex in two different parts. A bipartite graph is a multipartite
graph with two parts. The complete multipartite graph K,, . ,, is a multipartite
graph where the vertex set is partitioned into s parts having sizes ny,...,ns,
where every vertex is adjacent to every vertex in a different part.

As one example of the connection between graphs and designs, we note
that a (v,k,1)-BIBD is equivalent to an edge-decomposition of K, into k-
cliques and, in particular, that a Steiner triple system of order v is equivalent
to an edge-decomposition of K, into triangles. More generally, a k-GDD of
quite easy to show that a Latin square of order n is equivalent to a one-
factorization of the graph K, , and that a idempotant symmetric Latin square
of side 2n — 1 is equivalent to a one-factorization of the graph K.

There is also considerable interest in finding edge-decompositions of com-
plete graphs into isomorphic subgraphs, such as cycles of a specified length or
paths of a specified length. An edge-decomposition of K, into cycles of length
d is called a d-cycle system of order v.

The generalization of graphs where each edge has a direction assigned to
it is called a directed graph or digraph. If one starts with the undirected graph
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K, and then assigns a direction to each edge, the resulting digraph is called a
fournament on v vertices.

This is only a small sampling of the terms and ideas of graph theory. For
further information on graph theory, the reader is referred to the textbook by
Bondy and Murty [4], for example.

7 REMARKS

Combinatorial design theory is an extremely diverse and active area of dis-
crete mathematics, and this introductory chapter presents only a few of the
basic definitions and concepts. In the last few years, several books devoted
to the subject have been published. Most of the results in this introduction
are proved in one or more of these books. They are Anderson [1], Batten
[2], Beth, Jungnickel and Lenz [3], Hall [7], Hughes and Piper [8], Street and
Street [10], and Wallis [11].
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