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Definitions

• A Steiner triple system of order v, or STS(v), is a pair
(X,B), where X is a set of v points and B is a set of
3-subsets of X (called blocks), such that every pair of points
occur in exactly one block.

• An STS(v) contains exactly v(v − 1)/6 blocks, and an
STS(v) exists if and only if v ≡ 1, 3 mod 6.

• For an STS(v), (X,B), we ask if there is a permutation (or
sequencing) of the points in X so that no three consecutive
points in the sequencing comprise a block in B.

• That is, can we find a sequencing [x1 x2 · · · xv] of X such
that {xi, xi+1, xi+2} 6∈ B for all i, 1 ≤ i ≤ v − 2?

• Such a sequencing will be termed a 3-good sequencing for the
given STS(v).

2 / 17



Definitions (cont.)

• More generally, we could ask if there is a sequencing of the
points such that no ` consecutive points in the sequencing
contain a block in B.

• Such a sequencing will be termed `-good for the given
STS(v).

• As an example, consider the STS(7), (X,B), where X = Z7

and
B = {013, 124, 235, 346, 450, 451, 562}.

• The sequencing
[0 1 2 3 4 5 6]

is easily seen to be 3-good.

• However, it is not 4-good, as the block 013 is contained in the
first four points of the sequencing.

• Notation: For any two points x, y ∈ X, define third(x, y) = z
if and only if {x, y, z} ∈ B.
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Main Results

• We have proven that

1. every STS(v) with v > 3 has a 3-good sequencing, and
2. every STS(v) with v > 72 has a 4-good sequencing.

• In this talk, we will give two proofs of 1. We also sketch a
proof of 2, which is considerably more complicated.

• We conjecture that, for any integer ` ≥ 3, there is an integer
n(`) such that any STS(v) with v > n(`) has an `-good
sequencing.

Update: I think I can now prove this conjecture.

4 / 17



A Counting Argument

• Let (X,B) be an STS(v) on points X = {1, . . . , v}, where
v > 3.

• For a sequencing π = [x1 x2 · · · xv] of X, and for any i,
1 ≤ i ≤ v − 2, define π to be i-forbidden if

{xi, xi+1, xi+2} ∈ B.

• Let forbidden(i) denote the set of i-forbidden sequencings.

• Also, define a sequencing to be forbidden if it is i-forbidden
for at least one value of i and let forbidden denote the set of
forbidden sequencings.

• Clearly, a sequencing is 3-good if and only if it is not
forbidden.
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A Counting Argument (cont.)

• Clearly,

forbidden =

v−2⋃
i=1

forbidden(i).

• For any two points, xi and xi+1,

{xi, xi+1, xi+2} ∈ B ⇔ xi+2 = third(xi, xi+1).

• Therefore, for any i, it holds that |forbidden(i)| = v!/(v − 2).

• From the union bound,

|forbidden| ≤
v−2∑
i=1

|forbidden(i)| = (v − 2)× v!

(v − 2)
= v!

• Equality would be obtained if and only if the sets forbidden(i),
1 ≤ i ≤ v − 2, are pairwise disjoint.

• But this is impossible (consider any two intersecting blocks).

6 / 17



Greedy Algorithm

• We want to construct a 3-good sequencing [x1 x2 · · · xv].
• Start by choosing any two distinct values for x1 and x2.

• Then consider any i such that 3 ≤ i ≤ v − 1.

• Clearly we must have xi 6∈ {x1, . . . , xi−1}.
• Also, xi 6= third(xi−2, xi−1).

• So there are at most i values for xi that are ruled out.

• Since i ≤ v − 1, there is at least one value for xi that does
not violate the required conditions.

• So we can choose x1, x2, . . . , xv−1 so that [x1 x2 · · · xv−1] is
a partial 3-good sequencing.
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Greedy Algorithm (cont.)

• After choosing x1, x2, . . . , xv−1 as described above, there is
only one unused value remaining for xv.

• But this might not result in a 3-good sequencing, if it
happens that {xv−2, xv−1, xv} ∈ B.

• In this case, consider swapping x1 and xv.

• x1 6= third(xv−2, xv−1), so the last three points are now OK.

• But if we are unlucky, xv = third(x2, x3).

• Suppose we had previously chosen x5 such that
{x2, x3, x5} ∈ B, i.e., x5 = third(x2, x3).

• It is easy to check that this is an allowable choice for x5,
because x1 6= third(x2, x3) and x4 6= third(x2, x3).

• If x5 = third(x2, x3), then xv 6= third(x2, x3) provided v > 5.
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Greedy Algorithm (summary)

1. Choose a block {b, c, e} ∈ B, let a 6= b, c, e and let
d 6= a, b, c, e.

2. Define x1 = a, x2 = b, x3 = c, x4 = d and x5 = e.

3. For i = 6 to v − 1 define xi to be any element of X that is
distinct from the values x1, . . . , xi−1 and third(xi−2, xi−1).

4. Define xv to be the unique value that is distinct from
x1, . . . , xv−1.

5. If {xv−2, xv−1, xv} ∈ B then swap x1 and xv.

6. Return ([x1 x2 · · · xv]).
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Greedy Algorithm for 4-good Sequencings

• Now we consider how to construct a 4-good sequencing
[x1 x2 · · · xv].

• When we choose a value for xi, it must be distinct from
x1, . . . , xi−1, of course.

• It is also required that

xi 6= third(xi−3, xi−2), third(xi−3, xi−1) or third(xi−2, xi−1).

• Thus we can define x1, x2, . . . , xv−3 in such a way that
[x1 x2 · · · xv−3] is a partial 4-good sequencing.

• Denote the three remaining values by α1, α2, α3.
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Greedy Algorithm for 4-good Sequencings (cont.)
• By relabelling α1, α2, α3 if necessary, it is possible to ensure

that the only possible blocks contained in four consecutive
points in

[x1 x2 · · · xv−4 xv−3 α1 α2 α3]

involve α1.
• There are in fact seven possible 3-subsets contained in four

consecutive points of the above sequencing that could
conceivably be a block in the STS:

{xv−5, xv−4, α1} {xv−5, xv−3, α1} {xv−4, xv−3, α1}
{xv−4, α1, α2} {xv−3, α1, α2} {xv−3, α1, α3}

{α1, α2, α3}
• There are therefore at most seven “bad” choices for xv−2, and

hence one of x1, . . . , x8 must be a good choice.
• Suppose we swap α1 with a good xi, where 1 ≤ i ≤ 8, which

we denote by xκ.
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Greedy Algorithm for 4-good Sequencings (cont.)

• After we replace xκ by α1, we need to make sure that there is
no block contained in any four consecutive points in
x1, x2, x3, . . . , x11.

• Thus, we require that

α1 6∈ Z = {third(xi, xj) : 1 ≤ i < j ≤ 11, |i− j| ≤ 3}.

• There are at most 10 + 9 + 8 = 27 points in the set Z:

third(x1, x2), . . . , third(x10, x11),
third(x1, x3), . . . , third(x9, x11),
third(x1, x4), . . . , third(x8, x11)

• Suppose we ensure that all elements in Z have been used as
an xi-value with i ≤ v − 6.

• Then α1 6∈ Z and we can swap it in for xκ.
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Greedy Algorithm for 4-good Sequencings (cont.)

• It turns out that we can fit all the elements of Z into
{x1, . . . , x66} without any problems arising.

• Define
Y = Z \ {x1, . . . , x11}.

and denote the points in Y as y1, . . . , ym, where m ≤ 27.

• We can define {x12, . . . , x2m+12} so the following holds:

x12 x13 y1 x15 y2 x17 y3 x19 · · ·
x2m+7 ym−2 x2m+9 ym−1 x2m+11 ym

• These 2m+ 12 ≤ 66 points should not overlap the last six
points, so we require v ≥ 72.
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Motivation and Related Problems

• A sequenceable STS(v) is an STS(v) in which the points can
be ordered (i.e., sequenced) so that no t consecutive points
can be partitioned into t/3 blocks, for any t ≡ 0 mod 3, t < v.

• Brian Alspach gave a talk entitled Strongly Sequenceable
Groups at the 2018 Kliakhandler Conference held at MTU.

• In this talk, among other things, the notion of sequencing
diffuse posets was introduced and the following research
problem was posed:

“Given a triple system of order n with λ = 1, define a
poset P by letting its elements be the triples and any
union of disjoint triples. This poset is not diffuse in
general, but it is certainly possible that P is
sequenceable.”
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Motivation and Related Problems (cont.)

• One possible relaxation of the definition of sequenceable
STS(v) would be to require a sequencing of the points so that
no t consecutive points can be partitioned into t/3 blocks, for
any t ≡ 0 mod 3 such that t ≤ w, where w < v is some
specified integer.

• Such an STS(v) could be termed w-semi-sequenceable.

• A 3-semi-sequenceable STS(v) has a sequencing of the points
so that no three consecutive points form a block. This is
identical to a 3-good sequencing.

• There is a connection between w-semi-sequenceable STS(v)
and STS(v) having `-good sequencings.
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Theorem

Theorem 1
An STS(v) having a (2u+ 1)-good sequencing is
3u-semi-sequenceable.

Proof.
Suppose there are 3u consecutive points, say x1, . . . , x3u, in a
sequencing π, that can be partitioned into u blocks of the STS(v),
say B1, . . . , Bu. For 1 ≤ j ≤ u, let

mlo(j) = min{i : xi ∈ Bj} and mhi(j) = max{i : xi ∈ Bj}.

Clearly there is a block Bj such that mlo(j) ≥ u. It also holds that
mhi(j) ≤ 3u. Therefore Bj ⊆ {xu, . . . , x3u}, which means that
the sequencing π is not (2u+ 1)-good.
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Thank You For Your Attention!
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