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Background
• When she was only 16 years of age, Sarah Flannery won the

EU Young Scientist of the Year Award for 1999.
• Her project consisted of a proposal of a public-key

cryptosystem based on 2 by 2 matrices with entries from Zn,
where n is the product of two distinct primes p and q.

• She named the cryptosystem as the Cayley-Purser algorithm.
• Because this algorithm was faster than the famous RSA

public-key cryptosystem, it garnered an incredible amount of
press coverage in January 1999.

• However, at the time of this press coverage, the algorithm had
not undergone any kind of serious peer review.

• The Cayley-Purser algorithm was shown to be insecure, as
reported by Bruce Schneier in December, 1999.

• Ms Flannery later wrote an interesting book, entitled In Code:
A Mathematical Journey [1], which recounts her experiences
relating to her work on this cryptosystem.
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Press Coverage

• On January 13, 1999, the BBC News published an article
entitled “Teenager’s email code is a cracker.”

This report led to world-wide news coverage.

• “She has also proven that her code is as secure as RSA,” says
Dr. Flannery (her father). “It wouldn’t be worth a hat of
straw if it was not.”

This is a quote from the BBC article. Unfortunately, the
cryptosystem turned out not to be secure.

• “She knows what she’s talking about,” said Ronald Rivest.
“But there’s not enough information to evaluate her work.”
(ZDNet, January 20, 1999.)

Like virtually everything Ron says, this was an eminently
sensible statement.
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Press Coverage (cont.)

• “Who is the authoritative voice which is attesting to this
breakthrough?” asked D. James Bidzos, president of RSA
Data Security (ZDNet, January 20, 1999).

One of the early sceptical voices.

• Bruce Schneier, on Dec. 15, 1999, reported: “Flannery’s
paper, describing the Cayley-Purser algorithm, has been
published on the Internet by an unknown source. It’s
interesting work, but it’s not secure. Flannery herself
publishes a break of the algorithm in an appendix.”

This is the earliest report (of which I am aware) of a publicly
available description of the cryptosystem and its cryptanalysis.
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Cayley-Purser Algorithm: Setup

• Let n = pq, where p and q are large distinct primes.

• GL(2, n) denotes the 2 by 2 invertible matrices with entries
from Zn.

• Let A,C ∈ GL(2, n) be chosen such that AC 6= CA.

• Define B = C−1A−1C.

• Then choose a secret, random positive integer r and let
G = Cr.

The public key consists of A,B,G,n.

The private key consists of C,p, q.
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Cayley-Purser Algorithm: Encryption

Let X ∈ GL(2, n) be the plaintext to be encrypted. The following
computations are performed:

1. choose a secret, random positive integer s

2. compute D = Gs

3. compute E = D−1AD

4. compute K = D−1BD

5. compute Y = KXK

6. the ciphertext is (E,Y ).
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Cayley-Purser Algorithm: Decryption

Let (E,Y ) ∈ GL(2, n)×GL(2, n) be the ciphertext to be
decrypted. The following computations are performed:

1. compute L = C−1EC (note: L = K−1)

2. compute X = LY L

Important observation [1, p. 290]
Any scalar multiple of C can be used in place of C in the
decryption process, because

(µC)−1E(µC) = C−1EC = L. (1)
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Linear Algebra Attack

• This is apparently a new attack.

• We make use of the following two equations involving C:

CB = A−1C (2)

and
CG = GC (3)

• Equation (2) follows from the formula B = C−1A−1C.

• Equation (3) holds because G is a power of C and hence G
and C commute.
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Linear Algebra Attack (cont.)

• Let the private key C be written as

C =

(
a b
c d

)
, (4)

where the unknowns a, b, c, d ∈ Zn.

• Then (2) and (3) each yield four homogeneous linear
equations (in Zn) in the four unknowns a, b, c, d.

• The solution space of (2) is a 2-dimensional subspace of
(Zn)

4, as is the solution space of (3).

• However, when we solve all eight equations simultaneously, we
get precisely the scalar multiples of C (i.e., the solution space
for C is a 1-dimensional subspace of (Zn)

4).
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Toy Example

Suppose p = 193 and q = 149, so n = 28757. Suppose we define

A =

(
16807 19399
7483 18143

)
and

C =

(
2910 1657
5341 24803

)
.

Then

B =

(
11947 1712
4630 14946

)
.

Finally, suppose G = C7; then

G =

(
1438 1433
20759 24068

)
.
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Toy Example (cont.)
The system of linear equation to be solved is

24034 4630 19287 0
1712 27033 0 19287
9570 0 1724 4630
0 9570 1712 4723

0 20759 27324 0
1433 22630 0 27324
7998 0 6127 20759
0 7998 1433 0




a
b
c
d

 =


0
0
0
0

 .

The solution to this system is

(a, b, c, d) = µ(28365, 13928, 25231, 28756),

µ ∈ Zn. It is straightforward to verify that this solution space
indeed consists of all the scalar multiples of C.
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Cayley-Hamilton Attack

• This attack was presented in [1, pp. 290–292].

• The Cayley-Hamilton theorem states that every square matrix
over a commutative ring satisfies its own characteristic
polynomial.

• For 2 by 2 matrices, the characteristic polynomial is quadratic
and it follows that any power of G can can be expressed as a
linear combination of G and I2.

• C is a power of G, so C = αI2 + βG, for scalars α and β.

• Since we only have to determine C up to a scalar multiple, we
can WLOG take β = 1, and write C = αI2 +G.
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Cayley-Hamilton Attack (cont.)

• Suppose we substitute this expression for C into (2).

• Then we obtain

(αI2 +G)B = A−1(αI2 +G).

• Rearranging, we have

α(B −A−1) = A−1G−GB.

• If we compute the two matrices B −A−1 and A−1G−GB,
we can compare any two corresponding nonzero entries of
these two matrices to determine α.
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Toy Example
We use the same parameters as in the previous example. First we
compute

B −A−1 =
(

24034 20999
14200 4723

)
.

and

A−1G−GB =

(
17977 4614
25427 10780

)
.

From this, we see that

28534(B −A−1) = A−1G−GB.
Hence, α = 28534 and

28534I2 +G =

(
1215 1433
20759 23845

)
should be a multiple of C. In fact, it can be verified that(

1215 1433
20759 23845

)
= 5485C.
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Slavin’s Public-Key Cryptosystem

Keith Slavin patented a modified version of Cayley-Purser in 2008.

Cayley-Purser Slavin

setup B = C−1A−1C B = CAC
G = Cr G = Cr

encryption D = Gs D = Gs

E = D−1AD E = DAD
K = D−1BD K = DBD
Y = KXK Y = eK(X)

the ciphertext is (E,Y ) the ciphertext is (E,Y )

decryption K−1 = C−1EC K = CEC
X = K−1Y K−1 X = dK(Y )

In Slavin’s cryptosystem, it does not suffice to compute a scalar
multiple of C to determine K.
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An Attack

Slavin makes the following observation in his patent [2].

Lemma 1
Define M = BGB−1 and N = AGA−1. Then M = CNC−1.

• By using the linear algebra attack or the Cayley-Hamilton
attack, it is possible to compute a scalar multiple C ′ of the
unknown matrix C.

• Thus we can write C = µC ′ for some unknown value
µ ∈ Zn

∗.

• From the equation B = CAC, we obtain B = µ2C ′AC ′.

• Since C ′ is a known matrix, we can compute the value of µ2.

• It is infeasible to compute µ, but it doesn’t matter!

• From the equation K = CEC, we obtain K = µ2C ′EC ′, so
we can compute K and then decrypt the ciphertext (E,Y ).
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Thank You For Your Attention!
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