Nonincident Points and Blocks in Designs

Douglas R. Stinson

David R. Cheriton School of Computer Science University of Waterloo

SIAM Conference on Discrete Mathematics June 18-21, 2012 Dalhousie University Halifax, Nova Scotia

The problem (projective plane version)

- Suppose Π = (X, L) is a projective plane of order q, where X is the set of points and L is the set of lines in Π.
- For Y ⊆ X and M ⊆ L, we say that (Y, M) is a nonincident set of points and lines if y ∉ M for every y ∈ Y and every M ∈ M.
- Define *f*(Π) to be the maximum integer *s* such that there exists a nonincident set of *s* points and *s* lines in Π.
- Equivalently, $f(\Pi)$ is the size of the largest square submatrix of zeroes in the incidence matrix of Π .

An example

 $f(\mathsf{PG}(2,4)) \ge 6:$

3	6	7	12	14	10	13	14	19	0	17	20	0	5	7
4	7	8	13	15	11	14	15	20	1	18	0	1	6	8
5	8	9	14	16	12	15	16	0	2	19	1	2	7	9
6	9	10	15	17	13	16	17	1	3	20	2	3	8	10
7	10	11	16	18	14	17	18	2	4	0	3	4	9	11
8	11	12	17	19	15	18	19	3	5	1	4	5	10	12
9	12	13	18	20	16	19	20	4	6	2	5	6	11	13

 $Y = \{0, 2, 3, 6, 17, 19\}.$

The six lines containing green points are disjoint from Y.

A bound

Theorem

For any set Y of s points in a projective plane $\Pi = (X, \mathcal{L})$ of order q, the number of lines disjoint from Y is at most

$$\frac{q^3 + q^2 + q - qs}{q + s}.$$

Proof

- For a subset Y ⊆ X of s points, let B consist of the nonempty intersections of the lines in L with the set Y.
- Denote $b = |\mathcal{B}|$.
- We have the following equations:

$$\sum_{B \in \mathcal{B}} 1 = b$$

$$\sum_{B \in \mathcal{B}} |B| = (q+1)s$$

$$\sum_{B \in \mathcal{B}} {|B| \choose 2} = {s \choose 2}.$$

• From the above equations, it follows that

$$\sum_{B \in \mathcal{B}} |B|^2 = s(q+s).$$

Proof (cont.)

- Define $\beta = (q+s)/(q+1)$ and compute as follows:

$$0 \leq \sum_{B \in \mathcal{B}} (|B| - \beta)^2$$

= $s(q+s) - 2\beta(q+1)s + \beta^2 b$,

It follows that

$$b \geq \frac{s(2\beta(q+1) - (q+s))}{\beta^2}$$
$$= \frac{(q+1)^2s}{q+s}.$$

• Therefore, the number of lines disjoint from Y is at most

$$q^{2} + q + 1 - \frac{(q+1)^{2}s}{q+s} = \frac{q^{3} + q^{2} + q - qs}{q+s}$$

Characterization of equality

- A maximal (s, β)-arc in a projective plane of order q is a set Y of s points such that every line meets Y in 0 or β points.
- It is well-known that a maximal (s,β) -arc has $s=1+(q+1)(\beta-1)$ and the number of lines that intersect the maximal arc is precisely

$$\frac{s(q+1)}{\beta} = \frac{s(q+1)^2}{q+s}.$$

Corollary

Let Y be a set of s points in a projective plane of order q. Then the number of lines disjoint from Y is equal to $(q^3 + q^2 + q - qs)/(q + s)$ if and only if Y is a maximal (s, β) -arc, where $s = (q + 1)(\beta - 1) + 1$.

Solution to the projective plane problem

Setting $(q^3+q^2+q-qs)/(q+s)=s$ and solving for s, we obtain the following result.

Theorem

For any projective plane Π of order q, it holds that $f(\Pi) \leq 1 + (q+1)(\sqrt{q}-1).$

- Denniston proved that there is a maximal $(s,2^u)\text{-arc}$ in $\mathsf{PG}(2,2^v)$ whenever 0 < u < v.
- Suppose $q = 2^v$ where v is even, and take u = v/2. There is a Denniston maximal (s, β) -arc, where $q = 2^v$, $\beta = \sqrt{q}$ and $s = 1 + (q+1)(\sqrt{q} 1)$.

Theorem

If q is an even power of 2, then $f(PG(2,q)) = 1 + (q+1)(\sqrt{q}-1)$.

Related work

- De Winter, Schillewaert and Verstraete (preprint, 2012) independently obtained the same results using similar methods.
- Our main theorem can also be derived from powerful results to Haemers (1995) based on eigenvalue interlacing techniques.
- Haemers proved that if there exists a nonincident set of s points and t blocks in a $(v,b,r,k,\lambda)\text{-BIBD},$ then

$$st \le \frac{(r-\lambda)(v-s)(b-t)}{kr}.$$
(1)

• The obvious generalization of our bound to BIBDs yields

$$t \le b - \frac{r^2 s}{r + \lambda(s - 1)}.$$
(2)

• The two bounds (1) and (2) are equivalent for BIBDs.

The analogous problem for Steiner triple systems

- A Steiner triple system of order v (or STS(v)), is a pair (X, B), where X is the set of v points and B is a set of b = v(v 1)/6 blocks, such that each block contains three points and every pair of points occurs in a unique block.
- It is well-known that v ≡ 1, 3 mod 6 is a necessary and sufficient condition for the existence of an STS(v).
- Define f(v) to be the maximum integer s such that there exists a nonincident set of s points and s blocks in some STS(v).
- As an example, consider an STS(9) that is a subdesign of an STS(21). There are 12 blocks in the subdesign and 12 points not in the subdesign.
- This implies that $f(21) \ge 12$.

A bound

We summarise the main results:

Theorem

For any set Y of s points in an STS(v), the number of blocks disjoint from Y is at most

$$\frac{1}{3}\binom{v-s}{2} = \frac{(v-s)(v-s-1)}{6}$$

Corollary

Suppose that (X, \mathcal{B}) is an STS(v), $Y \subset X$ and |Y| = s. Then the number of blocks in \mathcal{B} disjoint from Y is equal to (v-s)(v-s-1)/6 if and only if $(X \setminus Y, \mathcal{B}_Y)$ is a sub-STS(v-s) of (X, \mathcal{B}) , where \mathcal{B}_Y denotes the blocks in \mathcal{B} that are disjoint from Y.

Upper bound on f(v)

Setting s = (v - s)(v - s - 1)/6 and solving for s, we obtain the following upper bound:

Theorem

For any positive integer $v \equiv 1, 3 \mod 6$, it holds that

$$f(v) \le \frac{2v + 5 - \sqrt{24v + 25}}{2}.$$

Meeting the bound

In order for f(v) to attain the upper bound, we require an STS(v) containing a sub-STS(v - s), where $s = (2v + 5 - \sqrt{24v + 25})/2$.

Theorem (Doyen-Wilson Theorem)

There exists an STS(v) containing a sub-STS(w) if and only if $v \ge 2w + 1$, $v, w \equiv 1, 3 \mod 6$.

Therefore, it suffices to determine the positive integers v such that the following conditions are satisfied:

- **1.** $v \equiv 1, 3 \mod 6$
- **2.** $s = (2v + 5 \sqrt{24v + 25})/2$ is an integer
- 3. $v s \equiv 1, 3 \mod 6$, and
- **4.** $v \ge 2(v-s) + 1$.

The optimal solutions

Theorem

Suppose $v \equiv 1, 3 \mod 6$ is a positive integer. Then

$$f(v) = \frac{2v + 5 - \sqrt{24v + 25}}{2}$$

if and only if $v = 216z^2 + 42z + 1$, $216z^2 + 186z + 39$, $216z^2 + 138z + 21$ or $216z^2 + 282z + 91$, where z is a non-negative integer.

The three smallest cases where f(v) attains its optimal value are when v = 21, s = 12; v = 39, s = 26; and v = 91, s = 70.

References

- [1] S. De Winter, J. Schillewaert and J. Verstraete. Large incidence-free geometries. Preprint (2012).
- [2] W.H. Haemers. Interlacing eigenvalues and graphs. *Linear Algebra and Its Applications* **227–228** (1995), 593–616.
- [3] D.R. Stinson. A problem concerning nonincident points and lines in projective planes. ArXiv report 1109/1573, http://arxiv.org/abs/1109.1573 (2011).
- [4] D.R. Stinson. A problem concerning nonincident points and blocks in Steiner triple systems. ArXiv report 1109/3847, http://arxiv.org/abs/1109.3847 (2011).

Thank you for your attention!