Combinatorial techniques for repairing shares in threshold schemes

Douglas R. Stinson

David R. Cheriton School of Computer Science
University of Waterloo

Combinatorics 2018
Arco, Italy, June 4, 2018
Secret Sharing

• Various types of shared control schemes depend on a cryptographic primitive called a \((t, n)\)-threshold scheme.
• Let \(t\) and \(n\) be positive integers, where \(t \leq n\).
• The value \(t\) is the threshold.
• There is a trusted authority, denoted dealer, and \(n\) users, denoted \(U_1, \ldots, U_n\).
• The dealer has a secret value \(K \in \mathcal{K}\), called a secret or a key, where \(\mathcal{K}\) is a specified finite set.
Secret Sharing

- The dealer uses a **share generation algorithm** to split K into n shares, denoted s_1, \ldots, s_n.
- Each share $s_i \in S$, where S is a specified finite share set.
- For every i, $1 \leq i \leq n$, the share s_i is transmitted by the dealer to user U_i using a secure channel.
- The following two properties should hold:
 1. a **reconstruction algorithm** can be used to reconstruct the secret, given any t of the n shares,
 2. no $t - 1$ shares reveal any information as to the value of the secret.
An \((n, n)\)-Threshold Scheme

- Suppose \(K \in \mathbb{Z}_m\) is the secret.
- Let \(s_1, \ldots, s_{n-1}\) be chosen independently and uniformly at random from \(\mathbb{Z}_m\).
- Let
 \[
 s_n = K - \sum_{i=1}^{n-1} s_i \mod m.
 \]
- \(s_1, \ldots, s_n\) are shares of an \((n, n)\)-threshold scheme:
 1. the secret is reconstructed using the formula
 \[
 K = \sum_{i=1}^{n} s_i \mod m,
 \]
 and
 2. given all the shares except \(s_j\), \(K\) could take on any value, depending on the value of the “missing” share, \(s_j\).
In 1979, Shamir showed how to construct a \((t, n)\)-threshold scheme based on polynomial interpolation over \(\mathbb{Z}_p\), where \(p\) is prime.

This is really a Reed-Solomon code in disguise.

Let \(p \geq n + 1\) be a prime.

Let \(\mathcal{K} = \mathcal{S} = \mathbb{Z}_p\).

In an initialization phase, \(x_1, x_2, \ldots, x_n\) are defined to be \(n\) distinct non-zero elements of \(\mathbb{Z}_p\).

The dealer gives \(x_i\) to \(U_i\), for all \(i, 1 \leq i \leq n\).

The \(x_i\)’s are public information.
Share Generation

Protocol: Shamir threshold scheme share generation

Input: A secret $K \in \mathbb{Z}_p$.

1. The dealer chooses a_1, \ldots, a_{t-1} independently and uniformly at random from \mathbb{Z}_p.

2. The dealer defines

$$ a(x) = K + \sum_{j=1}^{t-1} a_j x^j $$

(note that $a(x) \in \mathbb{Z}_p[x]$ is a random polynomial of degree at most $t - 1$, such that the constant term is the secret, K).

3. For $1 \leq i \leq n$, the dealer constructs the share $s_i = a(x_i)$ and gives it to U_i using a secure channel.
Reconstruction

- Suppose t users, say U_{i_1}, \ldots, U_{i_t}, want to determine K.
- They know that $s_{i_j} = a(x_{i_j})$, $1 \leq j \leq t$.
- Since $a(x)$ is a polynomial of degree at most $t - 1$, they can determine $a(x)$ by **Lagrange interpolation**; then $K = a(0)$.
- The **Lagrange interpolation formula** is as follows:

$$a(x) = \sum_{j=1}^{t} s_{i_j} \prod_{1 \leq k \leq t, k \neq j} \frac{x - x_{i_k}}{x_{i_j} - x_{i_k}}.$$

- set $x = 0$; then

$$K = \sum_{j=1}^{t} s_{i_j} \prod_{1 \leq k \leq t, k \neq j} \frac{-x_{i_k}}{x_{i_j} - x_{i_k}}$$

$$= \sum_{j=1}^{t} s_{i_j} \prod_{1 \leq k \leq t, k \neq j} \frac{x_{i_k}}{x_{i_k} - x_{i_j}}.$$
Protocol: Shamir scheme secret reconstruction

Input: $x_{i_1}, \ldots, x_{i_t}, s_{i_1}, \ldots, s_{i_t}$

1. For $1 \leq j \leq t$, define the Lagrange coefficients

$$b_j = \prod_{1 \leq k \leq t, k \neq j} \frac{x_{i_k}}{x_{i_k} - x_{i_j}}.$$

Note: the b_j's do not depend on the shares, so they can be precomputed (for a given subset of t users).

2. Compute

$$K = \sum_{j=1}^{t} b_j s_{i_j}.$$
Example

- Suppose that $p = 17$, $t = 3$, and $n = 5$; and the public x-co-ordinates are $x_i = i$, $1 \leq i \leq 5$.

- Suppose that the users U_1, U_3, U_5 wish to compute K, given their shares 8, 10 and 11, respectively.

- The following computations are performed:

 $b_1 = \frac{x_3x_5}{(x_3 - x_1)(x_5 - x_1)} \mod 17$

 $= 3 \times 5 \times (2)^{-1} \times (4)^{-1} \mod 17$

 $= 4$,

 $b_2 = 3$, and

 $b_3 = 11$

 $K = 4 \times 8 + 3 \times 10 + 11 \times 11 \mod 17 = 13$.
Security of the Shamir Scheme

- Suppose \(t - 1\) users, say \(U_{i_1}, \ldots, U_{i_{t-1}}\), want to determine \(K\).
- They know that \(s_{i,j} = a(x_{i,j})\), \(1 \leq j \leq t - 1\).
- Let \(K_0\) be arbitrary.
- By **Lagrange interpolation**, there is a unique polynomial \(a_0(x)\) such that
 \[
 s_{i,j} = a_0(x_{i,j})
 \]
 for \(1 \leq j \leq t - 1\) and such that
 \[
 K_0 = a_0(0).
 \]
- Hence **no value of** \(K\) **can be ruled out**, given the shares held by \(t - 1\) users.
Security of the Shamir Scheme (cont.)

- With a bit more work, we can show that the Shamir scheme satisfies a property analogous to perfect secrecy.
- We assume an arbitrary but fixed a priori probability distribution on \mathcal{K}.
- Given any set of $\tau \leq t - 1$ or fewer shares, say $s_{i,j}$, $j = 1, \ldots, \tau$, and given any $K_0 \in \mathcal{K}$, it is possible to show that

$$\text{Prob}[K = K_0 | s_{i_1}, \ldots, s_{i_\tau}] = \text{Prob}[K = K_0].$$
Repairability

• Suppose that a user U_ℓ (in a (t, n)-threshold scheme, say) loses their share.

• The goal is to find a secure protocol, involving U_ℓ and a subset of the other users, that allows the missing share s_ℓ to be reconstructed.

• We are considering a setting where the dealer is no longer present in the scheme after the initial setup.

• We will assume secure pairwise channels linking pairs of users.

• Three techniques for repairing shares:
 1. the enrollment scheme (Nojoumian [3])
 2. secure regenerating codes (Shah, Rashmi and Kumar [4])
 3. combinatorial schemes (Stinson and Wei [5])

• For a survey of these techniques, see Laing and Stinson [2].
A \((t, n, d)\)-repairable threshold scheme, which we abbreviate to \((t, n, d)\)-RTS, is a protocol that operates in two phases:

1. In the message exchange phase, a certain subset of \(d\) users (not including \(P_\ell\)) exchange messages among themselves. The integer \(d\) is called the repairing degree. We will only consider protocols where each user sends at most one message to any other user, and every message is sent at the same time.

2. In the repairing phase, these same \(d\) users each send a message to \(P_\ell\). The messages received by \(P_\ell\) allow \(P_\ell\)'s share to be reconstructed. Some of the protocols we study only require a repairing phase.

We note that \(d \geq t\) is an obvious necessary condition for the existence of such a scheme. (WHY?)
• The *Enrollment Protocol* is a \((t, n, t)\)-\textbf{RTS} that is based on a \((t, n)\)-\textbf{Shamir threshold scheme}.

• Suppose that users \(U_1, \ldots, U_t\) want to repair the share for user \(U_\ell\), where \(\ell > t\).

• The share for \(P_\ell\) is \(s_\ell = a(\ell)\).

• From the \textbf{Lagrange Interpolation Formula}, setting \(x = x_\ell\), the share \(s_\ell\) can be expressed as

\[
s_\ell = \sum_{i=1}^{t} b_i s_i,
\]

where the \(b_i\)'s are public Lagrange coefficients.
Enrollment Protocol (cont.)

Message-exchange phase

1. For all $1 \leq i \leq t$, user U_i splits the “secret” b_is_i into t shares using a (t,t)-threshold scheme:

$$b_is_i = \sum_{j=1}^{t} \delta_{j,i}.$$

2. Then, for all i,j, user U_i transmits $\delta_{j,i}$ to user U_j.

Repairing phase

1. For all j, user U_j transmits σ_j to user U_ℓ, where

$$\sigma_j = \sum_{i=1}^{t} \delta_{j,i}.$$

2. Finally, user U_ℓ computes their share s_ℓ using the formula

$$s_\ell = \sum_{j=1}^{t} \sigma_j.$$
It is convenient to consider the following share-exchange matrix:

\[E = \begin{pmatrix}
\delta_{1,1} & \delta_{2,1} & \cdots & \delta_{t,1} \\
\delta_{1,2} & \delta_{2,2} & \cdots & \delta_{t,2} \\
\vdots & \vdots & \ddots & \vdots \\
\delta_{1,t} & \delta_{2,t} & \cdots & \delta_{t,t}
\end{pmatrix}. \]

- The sum of the entries in the \(i \)th row of \(E \) is equal to \(b_i s_i \).
- The sum of the entries in the \(j \)th column of \(E \) is equal to \(\sigma_j \).
- The sum of all the entries in \(E \) is equal to \(s_\ell \).
- \(U_\ell \) is given the \(t \) column sums, so \(U_\ell \) can compute \(s_\ell \).
Comments and Properties of the Enrollment Protocol

- The basic technique goes back to early studies on secure multiparty computation from the 1980s.
- We have universal repairability: any set of t users can repair any other share.
- The protocol is secure against honest-but-curious coalitions of size $t - 1$.
- The number of messages sent during the protocol, namely t^2, is quadratic in t, which could be considered a drawback of the scheme.
- An improved version is described in [2], in which user U_i does not send a message to user U_j if $j > i$. This modification is still secure, and it achieves optimal communication complexity $t(t + 1)/2$.
A \((2, 5, 3)\)-RTS based on a Regenerating Code (Example)

- There are five components to a message: \(K_1, \ldots, K_5\).
- Three components are random and the other two components comprise the secret.
- There are \(n = 5\) users.
- **Share Generation**: Each user is given a share consisting of three components, where each component is a certain linear combination of the \(K_i\)’s.
- Any user \(U_j\) can repair their share with information provided by any \(d = 3\) other “helper” users.
- The shares belonging to any \(t = 2\) users yield a system of linear equations that can be solved to obtain the entire message \(K_1, \ldots, K_5\).
- Thus they can obtain the secret.
- It can also be proven that no \(t - 1 = 1\) user can compute any information about the secret.
Combinatorial RTS

- As an example, we construct a \((2, 12, 3)\)-RTS.
- Start with a \((9, 3, 1)\)-BIBD (an affine plane of order 3), which has 12 blocks. This is the distribution design.
- We associate a block of the design with each user:

 \[
 \begin{align*}
 U_1 & \leftarrow \{1, 2, 3\} & U_2 & \leftarrow \{4, 5, 6\} & U_3 & \leftarrow \{7, 8, 9\} \\
 U_4 & \leftarrow \{1, 4, 7\} & U_5 & \leftarrow \{2, 5, 8\} & U_6 & \leftarrow \{3, 6, 9\} \\
 U_7 & \leftarrow \{1, 5, 9\} & U_8 & \leftarrow \{2, 6, 7\} & U_9 & \leftarrow \{3, 4, 8\} \\
 U_{10} & \leftarrow \{1, 6, 8\} & U_{11} & \leftarrow \{2, 4, 9\} & U_{12} & \leftarrow \{3, 5, 7\}
 \end{align*}
 \]

- Each user gets three shares from a \((5, 9)\)-threshold scheme (the base scheme), as specified by the associated block.
- Each share in the resulting RTS consists of three subshares.
- Any two blocks of the distribution design contain at least five points, whereas one block contains only three points.
- Therefore two users can reconstruct the secret, but one user cannot (since the base scheme has threshold 5).
Repairability (Example)

- When a user wants to repair their share, they contact **three other users** who have the relevant subshares.
- For example, \(U_1 \) could contact \(U_4 \) to obtain subshare \#1, \(U_8 \) to obtain subshare \#2 and \(U_{12} \) to obtain subshare \#3:

\[
\begin{align*}
U_1 & \leftarrow \{1, 2, 3\} & U_2 & \leftarrow \{4, 5, 6\} & U_3 & \leftarrow \{7, 8, 9\} \\
U_4 & \leftarrow \{1, 4, 7\} & U_5 & \leftarrow \{2, 5, 8\} & U_6 & \leftarrow \{3, 6, 9\} \\
U_7 & \leftarrow \{1, 5, 9\} & U_8 & \leftarrow \{2, 6, 7\} & U_9 & \leftarrow \{3, 4, 8\} \\
U_{10} & \leftarrow \{1, 6, 8\} & U_{11} & \leftarrow \{2, 4, 9\} & U_{12} & \leftarrow \{3, 5, 7\}
\end{align*}
\]

- We do not need to use all twelve blocks in the distribution design; for repairability, it suffices to have a subset of blocks such that each point is a **contained in at least two blocks**.
- We can take the **first six blocks**, along with any subset of the **last six blocks**, to construct a \((2, m, 3)\)-RTS for any \(m \in \{6, \ldots, 12\} \).
Required Properties of a Distribution Design

1. In order to be able to construct a threshold scheme with threshold t, the distribution design must satisfy the property that the number of points in the union of any t blocks is greater than the number of points in the union of any $t-1$ blocks.

Remark: This property implies that the distribution design is a t-cover free family.

2. In order to provide repairability for a variable number of users, we need to identify a small basic repairing set, which is a set of blocks in the design such that every point is contained in at least two of these blocks.

Remark: Taking two parallel classes from a resolvable design will yield a basic repairing set of minimum possible size.
Lemma 1

The union of any \(t - 1 \) blocks (lines) in a projective plane of order \(q \) contain at most \(q(t - 1) + 1 \) points.

Proof.
Denote the \(t - 1 \) lines by \(A_0, \ldots, A_{t-2} \). Each \(A_i \) (\(i \geq 1 \)) contains a point in \(A_0 \), so

\[
\left| \bigcup_{i=0}^{t-2} A_i \right| \leq q + 1 + (t - 2)q = q(t - 1) + 1.
\]

Remark: Equality occurs if and only if the \(t - 1 \) lines all contain a common point.
Lemma 2

For $t \leq q + 1$, the union of any t lines in a projective plane of order q contain at least $t(q + 1 - (t - 1)/2)$ points.

Proof.

Denote the t lines by A_0, \ldots, A_{t-1}. Each A_i contains $q + 1 - i$ points that are not in $\bigcup_{h=0}^{i-1} A_h$. It follows that

$$\left| \bigcup_{i=0}^{t-1} A_i \right| \geq \sum_{i=0}^{t-1} (q + 1 - i) = t(q + 1) - \frac{t(t - 1)}{2}.$$

Remark: Equality occurs if and only if no three of the t lines are collinear, so they form the dual of a t-arc.
Example

- Consider a projective plane of order 5.
- One block contains 6 points.
- Two blocks contain 11 points.
- Three blocks contain at least 15 and at most 16 points.
- Four blocks contain at least 18 and at most 21 points.
- Five blocks contain at least 20 points.
- We can accommodate thresholds 2 (since $6 < 11$), 3 (since $11 < 15$) and 4 (since $16 < 18$), but not 5 (since $21 \geq 20$).
Basic Repairing Sets in Projective Planes

- Recall that a basic repairing set is a subset of blocks (lines) that contains **every point at least twice**.

- In the context of a projective plane, this is precisely the dual of a **2-blocking set** (see, e.g., Ball and Blokhuis [1]).

- A simple construction: Choose any three noncollinear points x, y and z of the projective plane, and take all the lines that contain at least one of these points. This yields a basic repairing set of size $3q$.

- Another construction: Suppose that q is a square of a prime power. Start with two disjoint Baer subplanes in $\text{PG}(2, q)$ and take all the lines that contain a line from either of these two subplanes. This yields a basic repairing set of size $2(q + \sqrt{q} + 1)$, which is an improvement asymptotically over the previous construction.
Ramp Schemes

- A basic property of a \((t, n)\)-threshold scheme is that \(|K| \leq |S|\).
- In the Shamir threshold scheme, we have \(|K| = |S|\).
- A weaker security property allows for larger secrets to be accommodated using the same size shares.
- In a \((t_1, t_2, n)\)-ramp scheme, any \(t_2\) shares permit reconstruction of the secret, but no information about the secret is revealed by any \(t_1\) shares.
- If \(t_1 = t_2 - 1\) we have a threshold scheme.
- In a \((t_1, t_2, n)\)-ramp scheme, it holds that \(|K| \leq |S|^{t_2 - t_1} \).
Construction of Ramp Schemes

A straightforward modification of the Shamir threshold scheme permits the construction of ramp schemes where this bound is met with equality.

Protocol: Shamir ramp scheme share generation

Input: A secret $K \in (\mathbb{Z}_p)^{t_2-t_1}$, say $K = (a_0, \ldots, a_{t_2-t_1-1})$.

1. The dealer chooses $a_{t_2-t_1}, \ldots, a_{t_2-1}$ independently and uniformly at random from \mathbb{Z}_p.

2. The dealer defines

$$a(x) = \sum_{j=0}^{t_2-1} a_j x^j$$

3. For $1 \leq i \leq n$, the dealer constructs the share $s_i = a(x_i)$ and gives it to U_i using a secure channel.
Ramp Schemes and Distribution Designs

• Suppose \(\ell_1 < \ell_2 \) and our distribution design satisfies the following two properties:
 • the union of any \(t - 1 \) blocks contains at most \(\ell_1 \) points
 • the union of any \(t \) blocks contains at least \(\ell_2 \) points

• Then we can share a secret using a base scheme which is an \((\ell_1, \ell_2, m)\)-ramp scheme, where \(m \) is the number of points in the distribution design.

• Previously, we were using an \((\ell_2, m)\)-threshold scheme.

• Using a ramp scheme allows the secret to be \(\ell_2 - \ell_1 \) times larger than before.
Example

- Consider a projective plane of order 5. As we already noted:
 - One block contains 6 points.
 - Two blocks contain 11 points.
 - Three blocks contain at least 15 and at most 16 points.
 - Four blocks contain at least 18 points.

- Therefore
 - for $t = 2$, we can take $\ell_1 = 6$, $\ell_2 = 11$, so $\ell_2 - \ell_1 = 5$.
 - for $t = 3$, we can take $\ell_1 = 11$, $\ell_2 = 15$, so $\ell_2 - \ell_1 = 4$.
 - for $t = 4$, we can take $\ell_1 = 16$, $\ell_2 = 18$, so $\ell_2 - \ell_1 = 2$.
Communication Complexity of Combinatorial RTS

- The **communication complexity** of an RTS is defined to be the **total number of bits transmitted in the protocol divided by the number of bits in the secret**.
- There are a total of d subshares transmitted to the user whose share is being repaired, where d is the block size of the distribution design.
- The size of the secret is $\ell_2 - \ell_1$ times the size of a subshare.
- Therefore, the communication complexity is

$$\frac{d}{\ell_2 - \ell_1}.$$

- In the projective plane examples from the previous slide, we have $d = 6$. The communication complexity is **6/5** when $t = 2$; **3/2** when $t = 3$; and **3** when $t = 4$.
References

Thank You For Your Attention!