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Wireless Sensor Networks

• sensor nodes have limited computation and communication
capabilities

• a network of 1000 – 10000 sensor nodes is distributed in a
random way in a possibly hostile physical environment

• the sensor nodes operate unattended for extended periods of
time

• the sensor nodes have no external power supply, so they
should consume as little battery power as possible

• usually, the sensor nodes communicate using secret key
cryptography

• a set of secret keys is installed in each node, before the sensor
nodes are deployed, using a suitable key predistribution
scheme (or KPS)

• nodes may be stolen by an adversary (this is called node
compromise)



Two Trivial Schemes

1. If every node is given the same secret master key, then
memory costs are low. However, this situation is unsuitable
because the compromise of a single node would render the
network completely insecure.

2. For every pair of nodes, there could be a secret pairwise key
given only to these two nodes. This scheme would have
optimal resilience to node compromise, but memory costs
would be prohibitively expensive for large networks because
every node would have to store n− 1 keys, where n is the
number of nodes in the WSN.



Eschenauer-Gligor and Related Schemes

• In 2002, Eschenauer and Gligor [2] proposed a probabilistic
approach to key predistribution for sensor networks. For a
suitable value of k, every node is assigned a random k-subset
of keys chosen from a given pool of secret keys.

• In 2003, Chan, Perrig and Song [1] suggested that two nodes
should compute a pairwise key only if they share at least η
common keys, where the integer η ≥ 1 is a pre-specified
intersection threshold. Such a pair of nodes is termed a link.

• Suppose that Ui and Uj have exactly ` ≥ η common keys, say
keya1 , . . . ,keya` , where a1 < a2 < · · · < a`. Then they can
each compute the same pairwise secret key,

Ki,j = h(keya1 ‖ . . . ‖ keya` ‖ i ‖ j),

using a key derivation function h that is constructed from a
secure public hash function, e.g., SHA-1.
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Multihop Paths (cont.)

C

D

E

B has keys k2, k4, k6
A has keys k1, k3, k5

D has keys k2, k6, k7
E has keys k3, k6, k7

A B

C has keys k1, k3, k7
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Attack Model

• The most studied adversarial model in WSNs is random node
compromise [2].

• An adversary compromises a fixed number of randomly chosen
nodes in the network and extracts the keys stored in them.

• Any links involving the compromised nodes are broken.

• However, this can also cause other links to be broken that do
not directly involve the compromised nodes.

• A link formed by two nodes A1, A2, where |A1 ∩A2| ≥ η, will
be broken if a node B 6∈ {A1, A2} is compromised, provided
that A1 ∩A2 ⊆ B.

• If s nodes, say B1, . . . , Bs, are compromised, then a link
A1, A2 will be broken whenever

A1 ∩A2 ⊆
s⋃
i=1

Bi.



Important Metrics

Storage requirements

The number of keys stored in each node, which is
denoted by k, should be relatively small (e.g., at
most 100).

Network connectivity

The probability that a randomly chosen pair of nodes
can compute a common key is denoted by Pr1. Pr1
should be fairly large (e.g., at least 0.6).

Network resilience

Resilience against node compromise is commonly
measured by computing the probability that a random
link is broken by the compromise of a single node not
in the link. We denote this probability by fail (high
resilience corresponds to a small value for fail).

Remark: As η is increased, Pr1 and fail both decrease.



Deterministic Schemes

• In 2004, deterministic KPS were proposed independently by
Camtepe and Yener; by Lee and Stinson; and by Wei and Wu.

• A suitable combinatorial design is chosen, and each block is
assigned to a node in the WSN (the design and the
correspondence of nodes to blocks is public).

• The points in the block are the indices of the keys given to
the corresponding node.

• Probabilistic schemes are analyzed using random graph
theory, and desirable properties hold with high probability.

• Deterministic schemes can be proven to have desirable
properties, and they have more efficient algorithms for
shared-key discovery than probabilistic schemes.



Some Proposals for Deterministic Schemes

Projective planes Çamtepe and Yener 2004; Lee and Stinson
2004; Chakrabarti and Seberry 2006.

Generalised quadrangles Çamtepe and Yener 2004.

Configurations Lee and Stinson 2005.

Transversal designs t = 2 Lee and Stinson 2005; Chakrabarti and
Seberry 2006.

Transversal designs t = 3, η = 2 Lee and Stinson 2005.

Partially balanced incomplete block designs Ruj and Roy 2007.

Spherical geometries Dong, Pei and Wang 2008.

Orthogonal arrays Dong, Pei and Wang 2008; Xu, Chen and
Wang 2008.

Reed Solomon codes Ruj and Roy 2008.

Mutually orthogonal latin squares Xu, Chen and Wang 2008.

Rational normal curves in projective spaces Pei, Dong, and
Rong 2010.



Comments

• There is considerable duplication of schemes in the above list.

• TDs, OAs, Reed-Solomon codes and MOLS are all essentially
the same thing.

• Formulas are developed from scratch in every new proposal for
a KPS.

• Perhaps a general, unified approach is warranted.

• Therefore we define a general class of designs that have nice
block intersection properties.

• This allows the derivation of general formulas for desired
metrics.



Partially Balanced t-designs

• Let v, k, t be positive integers and let λi be positive integers,
for 0 ≤ i ≤ t− 1.

• A t-(v, k, λ0, . . . , λt−1)-partially balanced t-design (or PBtD)
is a pair (X,A) that satisfies the following properties:

1. A is a set of k-subsets of X (elements of X are called points
and members of A are called blocks).

2. There are exactly λ0 blocks.
3. For 1 ≤ i ≤ t− 1, every i-subset of points occurs in either 0 or

λi blocks.
4. For t ≤ i ≤ k, every i-subset of points occurs in either 0 or 1

blocks.

• The number of blocks (λ0) is also denoted by b.

• WLOG, every point occurs in at least one block, so every
point occurs in exactly r = λ1 blocks.



Examples

• A t-(v, k, 1)-design is a t-(v, k, λ0, . . . , λt−1)-PBtD where

λi =

(
v−i
t−i
)(

k−i
t−i
)

for 0 ≤ i ≤ t− 1.

• A t-(v, k, λ)-design with λ > 1 is not necessarily a PBtD. For
example, a 2-(v, 3, 2)-design is a PBtD if and only if it is a
simple design (i.e., a design having no repeated blocks).

• An (s, t)-generalized quadrangle is a
2-((st+ 1)(s+ 1), s+ 1, λ0, λ1)-PBtD where

λ0 = (st+ 1)(t+ 1) and λ1 = t+ 1.



More Examples

• A TD(t, k, n) is a t-(kn, k, λ0, . . . , λt−1)-PBtD where

λi = nt−i

for 0 ≤ i ≤ t− 1.

• [4] For a prime power q, the irreducible conics in PG(2, q)
yield a 5-(q2 + q + 1, q + 1, λ0, . . . , λ4)-PBtD where

λ0 = q5 − q2,
λ1 = q4 − q2,
λ2 = q3 − q2,
λ3 = q2 − 2q + 1, and
λ4 = q − 2.



Block Intersection Properties of PBtDs

Theorem
Suppose there exists a t-(v, k, λ0, . . . , λt−1)-PBtD. then for any
block B and for any C ⊆ B with |C| = i ≤ t− 1, it holds that

|{A ∈ A : A ∩B = C}| = µ′(i),

where

µ′(t− i) =
i−1∑
j=0

(−i)j
(
k − t+ i

j

)
(λt−i+j − 1).

Remark: For a transversal design (or orthogonal array) with λ = 1,
this is essentially the weight enumerator of the corresponding MDS
code.



From PBtD to KPS
• For an integer i such that η ≤ i ≤ t− 1, an i-link is a set of

two blocks {A1, A2} such that |A1 ∩A2| = i.
• Let Li denote the total number of i-links and let

L =

t−1∑
i=η

Li.

• Let αi denote the number of i-links that contain a fixed block
A, and let

α =

t−1∑
i=η

αi.

• A breaks a link {A1, A2} if A 6= A1, A2 and A1 ∩A2 ⊆ A.
• Let βi denote the number of i-links that a fixed block A

breaks, and let

β =

t−1∑
i=η

βi.



Formulas

Using the λi and µ′(i) values, we can obtain formalas for αi, βi
and Li. Then we can compute fail and Pr1.

• αi =
(
k

i

)
µ′(i).

• βi = µ′(i)

(
λi
2
− 1

)(
k

i

)
.

• Li =
bαi
2

and L =
bα

2
.

• fail =
β

L− α
.

• Pr1 =
α

b− 1
.



Sample Results

scheme Pr1 fail

TD, t = 2
k

n+ 1

n− 2

n2 − 2

TD, t = 3, η = 2
k(k − 1)

2(n2 + n+ 1)

n− 2

n3 − 2

TD, t = 3, η = 1
k(2n− k + 3)

2(n2 + n+ 1)

2n3 + (4− 2k)n2 + (k − 5)n+ 2k − 6

(2n− k + 3)(n3 − 2)

inv. plane, η = 1
n3 + 3n2 − 2

2(n3 + n− 1)

3n2 + 2n− 4

n4 + 3n3 + 2n2 + 2n− 4

inv. plane, η = 2
n3 + n2

2(n3 + n− 1)

1

n2 + n+ 2



Asymptotic Results (1)

• We want Pr1 to be large, but at the same time, we want fail
to be small.

• Given a TD(t, k, n), suppose we fix k = cn and we consider
the ratio ρ = Pr1/fail as n→∞.

• The result has the form dnj where d is a constant depending
on c.

• This provides a convenient single data point to compare
different schemes.

• We also consider k = n+ 1 and k = n as special cases and
compare them to schemes based on inversive planes (for
t = 3) and normal rational curves (for t = 5).



Asymptotic Results (2)

scheme Pr1 fail ρ

TD(3, k, n), η = 2, k = cn
c2

2

1

n2
c2n2

2

TD(3, k, n), η = 2, k = n+ 1
1

2

1

n2
n2

2

inversive plane, η = 2
1

2

1

n2
n2

2

TD(3, k, n), η = 1, k = cn, c < 1
c(2− c)

2

2(1− c)
(2− c)n

c(2− c)2n
4(1− c)

TD(3, k, n), η = 1, k = n
1

2

5

n2
n2

10

TD(3, k, n), η = 1, k = n+ 1
1

2

3

n2
n2

6

inversive plane, η = 1
1

2

3

n2
n2

6



Asymptotic Results (3)

Some interesting observations:

1. TD schemes with t = 3 and k = n+ 1 have the same
asymptotic behaviour as schemes constructed from inversive
planes.

2. Similarly, TD schemes with t = 5 and k = n+ 1 have the
same asymptotic behaviour as schemes constructed from
normal rational curves (see the next slide).

3. For TD schemes with η = t− 2, when we set k = cn, the
value of ρ contains a factor of (1− c) in the denominator. If
we set k = n or k = n+ 1 in these TDs, then the value of ρ
increases by a factor of O(n).

4. In general, ρ increases as η increases.



Asymptotic Results (4)
Asymptotic values of metrics for TD(5, n+ 1, n) and NRC-PBtD
(t = 5):

η Pr1 fail ρ

1
5

8

8

15n

75n

64

2
7

24

6

7n2
49n2

144

3
1

24

13

n4
n4

312

4
1

24

1

n4
n4

24
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thank you for your attention!


