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Costas array definition

An n × n Costas array consists of n dots in an n × n array such
that:

I The dots form a permutation (there is exactly one dot in each
row and each column).

I The n(n − 1) difference vectors are distinct.

Costas arrays were introduced by J.P. Costas in 1975. They have
applications in the design of sonar systems, and to radar,
synchronisation and alignment systems.

More recently, there have been some interesting cryptographic
applications of Costas arrays in the design of key predistribution
schemes for wireless sensor networks in grids.



A Costas array of order 9



Costas latin squares

I Two Costas arrays of order n are disjoint if there is no cell in
which both arrays have a dot.

I Here are four disjoint Costas arrays of order 4:

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

I n disjoint Costas arrays of side n yield a Costas latin square of
order n, denoted CLS(n).

I Here is a CLS(4) constructed from the four disjoint Costas
arrays of order 4:

1 3 4 2
3 1 2 4
2 4 3 1
4 2 1 3



An infinite class of Costas latin squares

I A singly periodic Costas array of order n is a Costas array of
order n in which every cyclic rotation modulo n is also a
Costas array of order n.

I If there exists a singly periodic Costas array of side n, then
there exists a CLS(n).

I The following is the well known Welch construction for Costas
arrays. Let p be prime and let α be a primitive element in the
field Fp. Let n = p − 1. A Costas array of order n is obtained
by placing a dot in cell (i , j) if and only if i = αj , for
1 ≤ j ≤ n and 1 ≤ j ≤ n.

I It is known that Costas arrays constructed via the Welch
construction are singly periodic. So we have the following

Theorem
There exists a CLS(p − 1) for any prime p.



A Costas latin square of order 6
Take p = 7, n = 6, and α = 3 is a primitive element of F7. The
Costas array of order 6 produced from the Welch construction is
the following:

•
•

•
•

•
•

The resulting CLS(6) is as follows:

1 2 3 4 5 6
5 6 1 2 3 4
6 1 2 3 4 5
2 3 4 5 6 1
4 5 6 1 2 3
3 4 5 6 1 2



43
5 disjoint Costas arrays of order 5

A Costas latin square of order 5 does not exist. However, there
exist four disjoint Costas arrays of order 5, and a fifth Costas array
containing three dots disjoint from the other four arrays:

1 2 3 4 5
3 5 4 1 2
4 3 2 5 1

4 1, 5 2 3
2, 5 1 3 4



Numerical results and a conjecture

Let D(n) denote the maximum number of disjoint Costas arrays of
order n.

n 1 2 3 4 5 6 7 8 9 10

D(n) 1 2 2 4 4 6 6 8 8 10

n 11 12 13 14 15 16 17 18 19 20

D(n) 10 12 ≤ 12 ≤ 13 16 18

n 21 22 23 24 25 26 27 28 29 30

D(n) 11 22 9 8 5 6 8

The data above suggests the following

Conjecture

There does not exist a CLS(n) for any odd n ≥ 3.



Near Costas arrays

An n× n near Costas array consists of n− 1 dots in an n× n array
such that:

I There is at most one dot in each row and each column.

I The (n − 1)(n − 2) difference vectors are distinct.

Let Dnear (n) denote the maximum number of near Costas arrays of
order n. Observe that Dnear (n) ≤ n + 1.

The following example shows that Dnear (6) = 7:

6 1 7 4 2 3

5 6 3 1 7

7 2 1 5 3 4

3 5 4 1 6 2

4 6 5 2 7 1

2 4 3 7 5 6



The Golomb construction

The Golomb construction for Costas arrays is as follows:

I Let α and β be primitive elements in Fq.

I Let n = q − 2. For 1 ≤ i ≤ n, 1 ≤ j ≤ n, place a dot in cell
(i , j) of an n by n array if and only if αi + βj = 1.

I The resulting array, which we denote by G (α, β), is a Costas
array.

Theorem
Suppose that q ≡ 3 mod 4 is a prime power and suppose that
p = (q − 1)/2 is an odd prime. Then Dnear (2p − 1) ≥ p − 1.



Proof sketch
Fq has φ(2p) = p − 1 primitive roots, say α1, . . . , αp−1. It can be
shown that the p − 1 arrays G (α1, αi ) (1 ≤ i ≤ p − 1) all contain
a common dot in position (i , p), where α1

i = 2. On removing this
dot, we obtain p − 1 disjoint near-Costas arrays of order 2p − 1.

As an example, let q = 11, so n = 9 and p = 5. The four primitive
elements modulo 11 are 2, 8, 7 and 6. We present the
superposition of G (2, 2), G (2, 8), G (2, 7), G (2, 6). The common
dot is in position (1, 5).

•
8 2 6 7

2 8 7 6
7 6 2 8
2 7 8 6

6 7 8 2
7 2 6 8
8 6 2 7

6 8 7 2



Definition of a honeycomb array
Honeycomb Array of radius r = 3 (n = 7) / Equivalence class: A
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Honeycomb arrays were introduced by Golomb and Taylor in 1984:
A honeycomb array with n dots is a set of n dots in the hexagonal
grid such that

I (The hexagonal permutation property) In each of the three
natural directions, the dots occupy exactly n consecutive
‘rows’ of the grid. (One dot per row.)

I (The distinct differences property) The n(n − 1) difference
vectors are distinct.



A honeycomb array with 9 dots
Honeycomb Array of radius r = 4 (n = 9) / Equivalence class: A
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A honeycomb array with 27 dots
Honeycomb Array of radius r = 13 (n = 27) / Equivalence class: A
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A honeycomb array with 45 dotsHoneycomb Array of radius r = 22 (n = 45) / Equivalence class: A
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The shape of a honeycomb array

For each direction i , let Ri be the set of rows occupied by dots.
Let R = R1 ∩ R2 ∩ R3. What does R look like?
Golomb and Taylor (1984) observed that all examples they knew
had R equal to a Lee sphere of radius r :

Honeycomb Array of radius r = 3 (n = 7) / Equivalence class: B
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Such an array has 2r + 1 dots. We call it a honeycomb array of
radius r .



Other shapes that could be possible

For example, the tricentred Lee sphere and triangle are not ruled
out by the definition:



Honeycomb arrays are Costas arrays

In the Costas array resulting from a honeycomb array, there are n
consecutive SW–NE diagonals, each of which contains exactly one
dot.



All honeycomb arrays are of radius r

Theorem (Blackburn, Paterson, Panoui, Stinson)

Any honeycomb array is a honeycomb array of radius r for some r .
Consequently, any honeycomb array has an odd number of dots.

Proof. A honeycomb array on n dots must look like this:

i

n

n

(n−1)−i

Figure 4: The region Si(n)

tricentred Lee spheres of radius r. Also note that the regions Si(n) as i
varies are precisely the possible intersections of an n× n square region with
n adjacent standard diagonals, where each diagonal intersects the n×n square
non-trivially.

In the lemma below, by a ‘region of the form X’, we mean a region that
is a translation of X in the square grid.

Lemma 3 Let π be a hexagonal permutation with n dots, and let ξ(π) be the
image of π in the square grid. Then the dots in ξ(π) are all contained in a
region of the form Si(n) for some i in the range 0 ≤ i ≤ n− 1.

Proof: Let R be the set of squares that share a row with a dot of ξ(π).
Similarly, let C and D be the sets squares sharing respectively a column or
a standard diagonal with a dot of ξ(π). The dots in ξ(π) are contained in
R ∩ C ∩D.

Since π is a hexagonal permutation, R consists of n adjacent rows and
C consists of n adjacent columns. Hence R ∩ C is an n × n square region.
(Since there is exactly one dot in each row and column of the square R ∩C,
the dots in ξ(π) correspond to a permutation; this justifies the terminology
‘hexagonal permutation’.)

Now, D consists of n adjacent standard diagonals; each diagonal contains
a dot in ξ(π), and so each diagonal intersects R ∩ C non-trivially. Hence
R ∩ C ∩D is a region of the form Si(n), as required. �

5

where (WLOG) i ≤ n−1
2 . We need to show i = n−1

2 .



All honeycomb arrays are of radius r

i
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Figure 6: A triangular board covering π

theorem, using linear programming techniques [6]. See Bell and Stevens [3]
for a survey of similar combinatorial problems.

4 Honeycomb arrays

We begin this section with a proof of Theorem 1. We then describe our
searches for honeycomb arrays. We end the section by describing some av-
enues for further work.
Proof of Theorem 1: Let π be a hexagonal permutation with n dots. By
Lemma 3, the dots of ξ(π) are contained in a region of the form Si(n) where
0 ≤ i ≤ n − 1. When i = (n − 1)/2 (so n is odd and ξ−1(Si(n)) is a Lee
sphere) the theorem follows. Suppose, for a contradiction, that i 6= (n−1)/2.

By reflecting π in a horizontal row in the hexagonal grid, we produce
a hexagonal permutation π′ such that ξ(π′) is contained in a region of the
form S(n−1)−i(n). By replacing π by π′ if necessary, we may assume that
i < (n− 1)/2.

Consider the triangular board of width n+ i in Figure 6 containing Si(n).
Since no two dots in ξ(π) lie in the same row, column or standard diagonal,
the dots in ξ(π) correspond to n non-attacking brooks in this triangular
board. But this contradicts Theorem 4, since

2(n+ i) + 1

3
<

2n+ (n− 1) + 1

3
= n.

7

A honeycomb array on n dots implies the existence of n
non-attacking brooks on a triangular board of width w = n + i ,
where a brook is a chess piece that can move up–down, left–right
or SW–NE.



All honeycomb arrays are of radius r

Theorem (Nivasch, Lev (’05); Vanderlind, Guy, Larson (’02))

The maximum number of non-attacking brooks on a triangular
board of width w is

⌊
2w+1

3

⌋
.

Remark: Blackburn, Paterson and Stinson have a new proof of this
bound on non-attacking brooks, which uses linear programming
techniques.

To complete the proof, observe that the inequalities

n ≤
⌊

2(n + i) + 1

3

⌋
and i <

n − 1

2

lead to a contradiction. Therefore, i = n−1
2 , as required. This also

implies that n is odd.

Remark: We haven’t used the distinct differences property of
honeycomb arrays.



The size of honeycomb arrays

Golomb and Taylor (1984) asked whether there exist honeycomb
arrays of arbitrary size. They conjectured yes; however:

Theorem (Blackburn, Etzion, Martin, Paterson)

There are no honeycomb arrays with n dots when n ≥ 1289.

Remark: The proof only uses the distinct differences property of
the honeycomb array.



The number of honeycomb arrays

There are 12 honeycomb arrays known; the largest has 45 dots.Honeycomb Array of radius r = 7 (n = 15) / Equivalence class: A
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All but one of these examples has a 6-fold symmetry! (The sole
exception is an array on 7 dots.)

Conjecture (S.R. Blackburn)

There are exactly 12 honeycomb arrays.
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