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definitions

A type 1 retransmission permutation array of order n (denoted
type-1 RPA(n)) is an n × n array, say A, in which each cell
contains a symbol from the set {1, . . . , n}, such that the following
properties are satisfied:

(i) every row of A contains all n symbols, and

(ii) for 1 ≤ i ≤ n, the i × ⌈n
i
⌉ rectangle in the upper left

hand corner of A contains all n symbols.

• a type 2 array is one in which property (ii) instead holds for
rectangles in the upper right corner of A.

• a type 3 array is one in which property (ii) instead holds for
rectangles in the lower left corner of A.

• a type 4 array is one in which property (ii) instead holds for
rectangles in the lower right corner of A.

• An RPA is latin if every column of A contains all n symbols.



an example

A type-1, 2, 3, 4 LRPA(4):

1 2 3 4

4 3 2 1

2 1 4 3

3 4 1 2

• An r × ⌈n
r
⌉ rectangle is called basic if it does not contain an

r′ × ⌈ n
r′
⌉ rectangle where r′ < r and ⌈n

r
⌉ = ⌈ n

r′
⌉.

• In verifying property (ii), it suffices to consider only basic
rectangles. The basic rectangles that must be verified in the
above example have dimensions 1 × 4, 2 × 2 and 4 × 1.
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an example

A type-1, 2, 3, 4 LRPA(4):
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• In verifying property (ii), it suffices to consider only basic
rectangles. The basic rectangles that must be verified in the
above example have dimensions 1 × 4, 2 × 2 and 4 × 1.



another example

A type-1, 2, 3, 4 LRPA(6):

1 2 3 4 5 6

4 5 6 1 2 3

3 6 5 2 1 4

2 1 4 3 6 5

5 4 1 6 3 2

6 3 2 5 4 1
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another example
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another example

A type-1, 2, 3, 4 LRPA(6):

1 2 3 4 5 6

4 5 6 1 2 3

3 6 5 2 1 4

2 1 4 3 6 5

5 4 1 6 3 2

6 3 2 5 4 1



one more example

A type-1, 2, 3, 4 LRPA(8):

1 2 3 4 5 6 7 8

5 6 7 8 1 2 3 4

8 4 6 2 7 3 5 1

7 3 5 1 8 4 6 2

2 1 4 3 6 5 8 7

6 5 8 7 2 1 4 3

4 8 2 6 3 7 1 5

3 7 1 5 4 8 2 6

This array satisfies two symmetry properties:

• ai,j + ai,n+1−j = n + 1.

• ai,j = π(aj,i), where π = (1)(2 5)(3 8)(4 7)(6).



motivation

• Li, Liu, Tan, Viswanathan, and Yang published a paper
entitled Retransmission 6= repeat: simple retransmission
permutation can resolve overlapping channel collisions (Eighth
ACM Workshop on Hot Topics in Networks, 2009) in which
they utilise type-1, 2 RPA(n) to resolve overlapping channel
collisions.

• Suppose a message is divided into n pieces and broadcast
using n consecutive groups (i.e., sets of carrier frequencies).

• Two such channels may overlap in an arbitrary number j ≤ n

groups.

• a type-1, 2 RPA(n) gives a schedule for rebroadcasting
messages in n “rounds” in such a way that all n pieces of a
message are received in the minimum number of rounds,
regardless of the overlap value, j.



related (?) work

• C.J. Colbourn and K.E. Heinrich. Conflict-free access to
parallel memories, Journal of Parallel and Distributed

Computing 14 (1992), 193–200. In the above paper (and
other related papers), fixed sized, arbitrarily positioned
rectangles in a latin square are required to contain each
symbol at most once.

• R.A. Bailey, P. Cameron and R. Connelly. Sudoku, gerechte
designs, resolutions, affine space, spreads, reguli, and
Hamming codes, American Mathematical Monthly, Volume
115, Number 5, May 2008, pp 383–404. A Sudoku square is a
latin square of order n, where n = m2, such that it can be
partitioned into n square subarrays of side m such that every
one of these subarrays contains all n symbols. They are
examples of gerechte designs which are used in agricultural
experiments.



commentary

• It doesn’t seem possible to construct RPAs by “standard”
design-theoretic approaches such as difference methods, finite
fields, recursive constructions, etc.

• We instead end up employing a variety of ad hoc techniques,
some algorithmically based, some using graph theory, counting
arguments, etc.
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combinatorial problems suffers from a lack of a general theory
– this is sometimes cited as evidence that combinatorics is not
“deep mathematics”.



commentary

• It doesn’t seem possible to construct RPAs by “standard”
design-theoretic approaches such as difference methods, finite
fields, recursive constructions, etc.

• We instead end up employing a variety of ad hoc techniques,
some algorithmically based, some using graph theory, counting
arguments, etc.

• It has long been observed that the study of many
combinatorial problems suffers from a lack of a general theory
– this is sometimes cited as evidence that combinatorics is not
“deep mathematics”.

• However, from the point of someone trying to solve these
problems (e.g., me), the end result seems to be that these
problems are harder to solve due to the lack of applicable
theory. Hmm . . .



main existence results

Table: Existence results for retransmission permutation arrays

type of RPA existence result

type-1 RPA(n) all integers n ≥ 1

type-1, 2 RPA(n) all integers n ≥ 1

type-1, 3 RPA(n) all integers n ≥ 1

type-1, 4 RPA(n) all integers n ≥ 1

type-1, 2, 3, 4 RPA(n) all even integers n ≥ 2

type-1, 2, 3, 4 LRPA(n) even integers n ≤ 16, n = 36

type-1, 2, 3, 4 LRPA(n) odd integers n ≤ 9



constructing a type-1 RPA(7)

Suppose n = 7. The basic rectangles have dimensions 1× 7, 2× 4,
3 × 3, 4 × 2, and 7 × 1.
We begin by filling in the 1 × 7 basic rectangle:

1 2 3 4 5 6 7



constructing a type-1 RPA(7)

Suppose n = 7. The basic rectangles have dimensions 1× 7, 2× 4,
3 × 3, 4 × 2, and 7 × 1.
We begin by filling in the 1 × 7 basic rectangle:

1 2 3 4 5 6 7

Next, we consider the 2 × 4 basic rectangle. We place the symbols
5, 6, 7 in the first three cells of the second row of this rectangle:

1 2 3 4 5 6 7

5 6 7



constructing a type-1 RPA(7) (cont.)

Now we turn to the 3 × 3 basic rectangle, filling in the first cell of
the third row with the symbol 4:

1 2 3 4 5 6 7

5 6 7

4



constructing a type-1 RPA(7) (cont.)

Now we turn to the 3 × 3 basic rectangle, filling in the first cell of
the third row with the symbol 4:

1 2 3 4 5 6 7

5 6 7

4

Next, we look at the 4 × 2 basic rectangle. We have to fill in the
symbols 3 and 7:

1 2 3 4 5 6 7

5 6 7

4 3

7



constructing a type-1 RPA(7) (cont.)

The last basic rectangle has dimensions 7 × 1. It is completed by
filling in the symbols 2, 6 and 3 into the first cells in the last three
rows:

1 2 3 4 5 6 7

5 6 7

4 3

7

2

6

3



constructing a type-1 RPA(7) (cont.)

Finally, we fill in all remaining cells in such a way that each row is
a permutation, for example,

1 2 3 4 5 6 7

5 6 7 1 2 3 4

4 3 1 2 5 6 7

7 1 2 3 4 5 6

2 1 3 4 5 6 7

6 1 2 3 4 5 7

3 1 2 4 5 6 7



first theorem

The process described in the above example always works.
Therefore we have

Theorem
For all integers n ≥ 1, there exists a type-1 RPA(n).



type-1, 2 RPA(n)

• Suppose n is even.

• We consider arrays A = (ai,j) where, for all 1 ≤ i, j ≤ n, it
holds that ai,j + ai,n+1−j = n + 1.

• Suppose we construct a type-1 RPA(n), ensuring that after
the basic rectangles have been filled in, no row contains two
symbols that sum to n + 1 (except for the first row, which is
already a permutation of the n symbols).

• Then we can easily fill in the rest of A to construct a type-1, 2
RPA(n):

1. For every filled cell (i, j), we define ai,n+1−j = n + 1 − ai,j .
2. At this point, no row contains any symbol more than once, so

it is then a simple matter to complete each row to a
permutation of the n symbols.



constructing a type-1, 2 RPA(8)

Suppose n = 8. The basic rectangles have dimensions 1× 8, 2× 4,
3 × 3, 4 × 2, and 8 × 1.
We begin by filling in the 1 × 8 basic rectangle:

1 2 3 4 5 6 7 8



constructing a type-1, 2 RPA(8)

Suppose n = 8. The basic rectangles have dimensions 1× 8, 2× 4,
3 × 3, 4 × 2, and 8 × 1.
We begin by filling in the 1 × 8 basic rectangle:

1 2 3 4 5 6 7 8

Next, we consider the 2 × 4 basic rectangle. We place the symbols
5, 6, 7, 8 in the first four cells of the second row of this rectangle,
noting that no two of these symbols sum to 9:

1 2 3 4 5 6 7 8

5 6 7 8



constructing a type-1, 2 RPA(8) (cont.)

Now we turn to the 3× 3 basic rectangle, filling in the first two cell
of the third row with the symbols 4 and 8 (note that 4 + 8 6= 9):

1 2 3 4 5 6 7 8

5 6 7 8

4 8



constructing a type-1, 2 RPA(8) (cont.)

Now we turn to the 3× 3 basic rectangle, filling in the first two cell
of the third row with the symbols 4 and 8 (note that 4 + 8 6= 9):

1 2 3 4 5 6 7 8

5 6 7 8

4 8

Next, we look at the 4 × 2 basic rectangle. We have to fill in the
symbols 3 and 7 (note that 3 + 7 6= 9):

1 2 3 4 5 6 7 8

5 6 7 8

4 8

3 7



constructing a type-1, 2 RPA(8) (cont.)

The last basic rectangle has dimensions 8 × 1. It is completed by
filling in the symbols 2, 6, 8 and 7 into the first cells in the last four
rows:

1 2 3 4 5 6 7 8

5 6 7 8

4 8

3 7

2

6

8

7



constructing a type-1, 2 RPA(8) (cont.)

Now, we “reflect” each row:

1 2 3 4 5 6 7 8

5 6 7 8 1 2 3 4

4 8 1 5

3 7 2 6

2 7

6 3

8 1

7 2



constructing a type-1, 2 RPA(8) (cont.)

Finally, we fill in all remaining cells in such a way that each row is
a permutation.

1 2 3 4 5 6 7 8

5 6 7 8 1 2 3 4

4 8 2 3 6 7 1 5

3 7 1 4 5 8 2 6

2 1 3 4 5 6 8 7

6 1 2 4 5 7 8 3

8 2 3 4 5 6 7 1

7 1 3 4 5 6 8 2



proving that the method works

• When copying numbers from “red” cells to “green” cells, how
do we ensure that we never have two numbers in a row that
sum to n + 1?

• It is easy to avoid this in practice, but giving a proof is
seemingly much more challenging.

• In the end, we used two different techniques to make the
proof rigourous.

• First, we perform interchanges within rows, to ensure that
there do not exist any two elements in a red cell that sum to
n + 1.

• That this is always possible can be proven using a certain
“alternating path” graph-theoretic argument.



proving that the method works (cont.)

• However, this is not sufficient to complete the proof, because
there may already be filled non-green cells in some row(s)
containing green cells (for example, when the 4 × 2 rectangle
is filled in in the case n = 7.

• We need to ensure that we never place a symbol y from a red
cell into a row that already contains the symbol x = n + 1− y.

• It is important to note that there is at least one completely
empty row available, so there is some flexibility in where these
numbers are placed.

• A complicated counting argument completes the proof (for
details of the proof, see the paper!).



the main lemma

Lemma
Suppose w > bL ≥ · · · ≥ b1 are positive integers and suppose d is

a positive integer. Denote b =
∑L

i=1
bi and suppose that

0 ≤ t ≤ (L + d)w − b.

Suppose B1, . . . , BL are pairwise disjoint sets such that |Bi| = bi

for 1 ≤ i ≤ L. Finally, suppose that |B| = t. Then there exists a

partition

B =

(

L
⋃

i=1

Ci

)

⋃

(

d
⋃

i=1

Di

)

,

where the following properties are satisfied:

1. w ≥ bL + |CL| ≥ bL−1 + |CL−1| ≥ · · · ≥ b1 + |C1| ≥ |D1| ≥
· · · ≥ |Dd|.

2. Ci ∩ Bi = ∅ for 1 ≤ i ≤ L.



second theorem

The above-described technique can be modified to handle the case
where n is odd. So we get the following

Theorem
For all integers n ≥ 1, there exists a type-1, 2 RPA(n).



latin RPAs

• Finding general constructions for LRPAs seems to be quite
difficult.

• In fact, we only have a few small examples at the present time
(no infinite classes are known, even for type-1 LRPA(n)).

• We describe the method we used to construct type-1, 2, 3, 4
LRPA(16) and type-1, 2, 3, 4 LRPA(36), illustrating the
technique by constructing a type-1, 2, 3, 4 LRPA(16).

Lemma
Let n ≥ 2 be even, and suppose there exists an n

2
× n

2
latin square

S with the property that for all i with 2 ≤ i ≤ n
2
, the i × ⌈n

i
⌉

rectangle in the upper left hand corner of S contains each of the

symbols from 1 to n
2

at least twice. Then there exists a

type-1, 2, 3, 4 LRPA(n).



the construction

We construct a type-1, 2, 3, 4 LRPA(n), A, from S in two stages
as follows:

1. Each of the i× ⌈n
i
⌉ rectangles in the upper left hand corner of

S contains each symbol x with 1 ≤ x ≤ n
2

twice. By
considering each such rectangle in turn and using a graph
colouring argument, we can replace appropriately chosen
copies of x by n + 1 − x and construct a new array S′ for
which each of the i × ⌈n

i
⌉ rectangles in the upper left hand

corner contain each of the symbols from 1 to n.

2. Now we let S′ form the top left corner of A, and “reflect” it
by applying the symmetry condition ai,j +ai,n+1−j = n+1, to
fill in the top right corner of A. Finally, we carry out a similar
reflection vertically to fill in the rest of A. The result is an
LRPA that is symmetric under rotation through 180 degrees.



example

We give an example of an 8 × 8 latin square S with the required
properties. Note that the shaded cells are cells that are contained
in basic rectangles in the resulting 16 × 16 latin square.

1 2 3 4 7 8 6 5

2 5 6 7 4 1 3 8

3 6 5 8 1 2 4 7

4 7 8 1 2 3 5 6

7 4 1 2 5 6 8 3

8 1 2 3 6 5 7 4

6 3 4 5 8 7 1 2

5 8 7 6 3 4 2 1



example (cont.)

We now adjust the entries in the top left rectangles so that each
rectangle contains all the numbers from 1 to 16:

1 2 3 4 10 9 11 12

15 5 6 7 13 16 14 8

14 11 12 8 16 2 4 7

13 10 9 16 2 3 5 6

7 4 16 2 5 6 8 3

8 16 2 3 6 5 7 4

6 3 4 5 8 7 1 2

12 9 7 6 3 4 2 1



example (cont.)

Finally, we
“reflect”
the result
to obtain
a type-
1, 2, 3, 4
LRPA(16):

1 2 3 4 10 9 11 12 5 6 8 7 13 14 15 16
15 5 6 7 13 16 14 8 9 3 1 4 10 11 12 2
14 11 12 8 16 2 4 7 10 13 15 1 9 5 6 3
13 10 9 16 2 3 5 6 11 12 14 15 1 8 7 4
7 4 16 2 5 6 8 3 14 9 11 12 15 1 13 10
8 16 2 3 6 5 7 4 13 10 12 11 14 15 1 9
6 3 4 5 8 7 1 2 15 16 10 9 12 13 14 11
12 9 7 6 3 4 2 1 16 15 13 14 11 10 8 5
5 8 10 11 14 15 15 16 1 2 4 3 5 7 9 12
11 14 13 12 9 10 16 15 2 1 7 8 5 4 3 6
9 1 15 14 11 12 10 13 4 7 5 6 3 2 16 8
10 13 1 15 12 11 9 14 3 8 6 5 2 16 4 7
4 7 8 1 15 14 12 11 6 5 3 2 16 9 10 13
3 6 5 9 1 15 13 10 7 4 2 16 8 12 11 14
2 12 11 10 4 1 3 9 8 14 16 13 7 6 5 15
16 15 14 13 7 8 6 5 12 11 9 10 4 3 2 1



thank you for your attention!


