
Literature Review:

Adaptive Polynomial Multiplication

Daniel S. Roche

November 27, 2007

While output-sensitive algorithms have gained a
fair amount of popularity in the computer alge-
bra community, adaptive algorithms whose difficulty
measure is something more subtle than the size of the
input or output seem to be less common. Rather, dif-
ferent representations of structures (e.g. polynomials,
matrices) are studied which may take advantage of
some difficulty measure.

In this spirit, I plan to investigate adaptive algo-
rithms for perhaps the most classical and well-studied
area in computer algebra, polynomial multiplication.
This is mostly an attempt to unify and provide a finer
gradient between the two commonly-used polynomial
representations and multiplication algorithms. As
such, I will first present the commonly-used model
and assumptions, then discuss various techniques and
progress on multiplying dense and sparse polynomi-
als, and finally present an overview of some ideas for
an adaptive approach.

1 Polynomial Representation

Let R be an arbitrary ring (commutative with iden-
tity), n a natural number, and f(x) ∈ R[x] a poly-
nomial of degree n − 1. To be as general as possible,
we will count ring operations (+,−,×) for time com-
plexity and ring elements for space complexity. This
model is more accurate for rings with finite character-
istic, such as the integers mod a prime, rather than
rings of characteristic 0 such as the integers or the
complex numbers.

There are two obvious (and of course related) ways
to write down f(x):

f(x) = f0 + f1x + f2x
2 + · · · + fn−1x

n−1

= a1x
e1 + a2x

e2 + · · · + atx
et ,

where a1, . . . , at 6= 0 and e1 < e2 < · · · < et = n − 1.
The first equation corresponds to the dense rep-

resentation by a vector of coefficients of length n:
〈f0, f1, . . . , fn−1〉, size Θ(n).

The second equation corresponds to sparse repre-
sentation by a vector of nonzero coefficient-exponent
pairs: 〈(a1, e1), (a2, e2), . . . , (at, et)〉, size Ω(log n +
t log t), O(t log n). We call t the “sparsity” of f .

For the remainder, let g(x) ∈ R[x] of degree m− 1,

such that g(x) =
∑m−1

i=0 gix
i =

∑s

i=1 bix
di as before.

And let h(x) = f(x)g(x) with sparsity r.

2 Dense Multiplication

von zur Gathen and Gerhard point out in [14] the
similarities between dense polynomial multiplication
and comparison-model sorting. For both, the näıve
or “school” method has O(n2) complexity, whereas
asymptotically fast algorithms can improve this to
O(n log n) (or close to it). Of course, this is also part
of the motivation to investigate adaptive algorithms
for this problem.

Despite the similarities, polynomial multiplication
does seem to be a little more difficult than sorting.
The asymptotically fast algorithms are significantly
more complicated than, say, Mergesort, and a lower
bound of Ω(n log n) for an arbitrary ring is still not
known despite numerous attempts. However, in a

1

rather restricted model of an algebraic circuit over
C with bounded coefficients, it has been proven that
Ω(n log n) ring operations are needed [2].

To easier explain the algorithms, we will initially
assume that f(x) and g(x) have the same degree —
that is, deg f = deg g = n − 1.

2.1 Karatsuba’s Method [8]

This is a divide-and-conquer technique, based on
the fact that addition is fast. It is very similar to
to Strassen’s matrix multiplication algorithm (which
would come a few years later), and was the first al-
gorithm to break the O(n2) barrier.

The basic idea is to split each of the input polyno-
mials into halves, and then use some clever manipu-
lation and the fact that dense polynomial addition is
cheap (i.e. linear time) to gain a slight improvement.

Let k = ⌊n
2
⌋ and write f(x) = F1(x) + F2(x)xk,

g(x) = G1(x) + G2(x)xk (where F1, F2, G1, G2 all
have degree less than ⌈n

2
⌉). Then we can write

h = F1G1 + F2G2x
2k +

+ [(F1 + F2)(G1 + G2) − F1G1 − F2G2]x
k

So multiplication of two polynomials with degree
less than n is reduced to three multiplications of
polynomials with degree less than ⌈n

2
⌉ (and six ad-

ditions/subtractions). Solving the recurrence gives
asymptotic cost O(nlog

2
3) = O(n1.59).

2.2 Fast Fourier Transform Method

This is the asymptotically fastest method currently
known for dense multiplication. It was first proposed
as an integer multiplication method by Schönhage
and Strassen in [13]. The algorithm was first ex-
tended to work on polynomials over some rings [12],
and then to arbitrary rings [3]. The approach is still
divide-and-conquer, and is based on a change of rep-
resentation.

The Discrete Fourier Transform (DFT) is a math-
ematical mapping from R[x] → R

n, given a primitive
nth root of unity ω ∈ R, which is defined by

DFTω(f) =
(

f(1), f(ω), f(ω2), . . . , f(ωn−1)
)

.

That is, the DFT maps a polynomial of degree
less than n to the values of that polynomial at the n
points 1, ω, ω2, . . . , ωn−1. We know that this map is
also invertible since there is exactly one polynomial of
degree less than n which will pass through the given
evaluation points (all the ωi’s are distinct because
ω is an nth root of unity). And in fact, the inverse
transform can be performed with another DFT by
dividing all values by n and then applying the DFT
with primitive nth root ω−1.

The FFT is a famous divide-and-conquer algorithm
which can perform the DFT with just O(n log n) ring
operations [4]. The only trouble is if our base ring R

does not contain a primitive nth root of unity, but in
this case we can create and adjoin a “virtual” root
for an extra O(log log n) cost per ring operation.

Then, since h(ωi) = f(ωi)g(ωi), we can compute
the DFT of the result h(x) via pointwise multiplica-
tion of the vectors DFTω(f) and DFTω(g). Finally,
we convert back to the dense representation of h(x)
via an inverse DFT.

So each conversion step costs O(n log n log log n)
and the multiplication step (not the dominating step)
is O(n). Therefore the total worst-case cost using this
method is O(n log n log log n).

2.3 “Multiplication Time”
and other operations

A convenent unifying notation is a “multiplication
time” of dense polynomials. This is a function M(n),
defined as the time to multiply two dense polynomials
of degree less than n. We will assume that M(n) is
Ω(n log n) and O(n2).

Suppose deg g = m < n. Then we can partition the
coefficients of f into n/m polynomials each of degree
less than m, multiply each of these by g, and sum
them, to obtain complexity O(n

m
M(m)) for comput-

ing f(x) · g(x).

After asymptotically fast methods for multiplying
polynomials had been discovered, much effort was put
into reducing other polynomial problems to multipli-
cation. Some examples of such reductions are sum-
marized in the following table:

2

Operation Complexity
Euclidian Division: f = qg + r O(M(n))
Evaluation/Interpolation O(M(n) log n)
gcd(f(x), g(x)) O(M(n) log n)
Change of basis: f(x) =

∑

cig
i O(M(n) log n

m
)

3 Sparse Multiplication

We now turn to sparse multiplication algorithms.
These have a shorter history, and results are less spec-
tacular, no doubt due to the fact that the worst-case
output size is quadratic in the size of the input (as
opposed to linear for the dense case).

3.1 Standard Algorithms

Recall that the sparsities of f, g, h are t, s, r, respec-
tively, and assume s ≤ t. Notice that each pair of
terms from f and g could form a distinct term in the
product h (if all the exponent sums ei + dj are dis-
tinct). So r could be as large as ts — this is why the
worst-case output size could be quadratic for sparse
polynomials.

All the following methods use Θ(ts) ring operations
and thus are worst-case optimal in that respect.

School method Compute bi · g for 1 ≤ i ≤ t, and
merge each product into the result, one by one. Suc-
cessive merges cost t, 2t, 3t, . . . , st, and each compari-
son costs O(log n) word operations (we must account
for this because the exponents of sparse polynomials
can be multiple-precision integers). This gives a total
cost of O(s2t log n) word operations and O(st) space.

Geobuckets [15] Instead of merging the big’s one-
by-one, recursively pairwise-merge them in a manner
similar to Mergesort so that each merge is between
two polynomials with roughly the same number of
terms (in the worst case). This reduces the total cost
to O(st log s log n) word operations and O(st) space.

Heaps [6, 10] Some brand-new results build on
an older, forgotten paper from the 1970’s. Here, the
result is stored dynamically in an array of heaps so

that each term in the product is not computed un-
til needeed. This therefore gives an output-sensitive
measure on the space complexity. Using a number of
little tricks, the complexity becomes O(st log s log n)
word operations (again), but just O(t + r) space.

3.2 Output Sensitivity

If r ≪ st, the heaps algorithm gives a significant re-
duction in space usage. In order to also reduce the
time complexity in terms of ring and word operations,
we can use a result from [1, 7] which gives an algo-
rithm for sparse interpolation. This is similar to the
DFT algorithm above for dense polynomials, with the
differences being that we only need Θ(r) evaluation
points to recover h, and we never have to create any
“virtual” roots. Unfortunately, this method is much
slower, and uses O(r1.87 +rt log n) ring and word op-
erations. And even this is a bit of a cheat, since it
requires a fast logarithm operation in the base field,
which we know for many fields (e.g. integers mod a
large prime) is in fact intractable.

3.3 Uses and Results

The sparse representation is especially useful in deal-
ing with multivariate polynomials, as the total num-
ber of terms (i.e. dense size) grows exponentially
with the number of indeterminates. Sparse univari-
ate polynomials are often called “supersparse” or “la-
cunary” in the literature (these two names are ac-
tually a bit of a battle between Erich Kaltofen and
H. W. Lenstra, Jr.).

Note that the size of the sparse representation can
be exponentially smaller than the dense size. This
raises important and interesting questions regarding
the complexity of operations with sparse polynomials.
For example, factoring and computing GCD are prov-
ably NP-hard [11], but interpolation and root-finding
can be done in polynomial time [1, 5, 9]. The attempt
to completely partition sparse polynomial operations
in this way is a significant area of current active re-
search, and many important questions remain open,
such as a divisibility test for sparse polynomials.

3

4 Adaptive Multiplication

The goal is an algorithm (or algorithms) which adapts
to the difficulty of the input polynomials, but which is
still never worse than the asymptotically best meth-
ods for dense or sparse multiplication.

The basic approach will be first to define carefully
a standard representation form that captures more
finely the difficulty of the input and always guaran-
tees performance at least as good as the standard
sparse and dense multiplication methods. Multiply-
ing in this new representation will likely be relatively
simple and use existing tools; the challenge will be to
construct linear-time algorithms to convert between
the new representation and the existing dense and
sparse ones to give a complete and useful adaptive
algorithm.

The basic premise for most of this is that the com-
plexity of dense methods grows much more slowly
(superlinear vs. quadratic) than sparse ones, so com-
bining dense methods with sparse representations can
be advantageous. Some ideas for the change of rep-
resentation:

4.1 Dense “chunks”

Suppose the input polynomials have few nonzero
terms, and that most of those terms seem to be
bunched together into clusters, or “chunks”. Then
we might represent the polynomial similarly to the
sparse representation, but where each nonzero coeffi-
cient is instead a nonzero dense polynomial.

Then multiplication would follow the scheme of
standard sparse multiplication on the outside to com-
bine terms, and the pairwise products of terms could
be computed via fast dense methods.

If f and g are each written as the sum of t dense
polynomials of degree less than d, then the complex-
ity of multiplication is reduced to O(t2M(d) log n) vs.
O(M(n)) for dense or O(t2d2 log n) for sparse.

4.2 Equal Spacing

Suppose all the ei’s (the powers of the nonzero terms
of f) are divisible by an integer k > 1. So we can

write f(x) = F (xk), where F is a dense polynomial
of degree n

k
. Similarly, write g(x) = G(xl).

Then multiplication can be performed in time

O

(

kl

gcd(k, l)2
M

(

n

lcm(k, l)

))

,

compared to O(M(n)) for dense or O(n2/(kl) log n)
for sparse.

4.3 Coefficients in Sequence

Perhaps f(x) does not have many coefficients which
are 0, but most of its coefficients form some arith-
metic or geometric sequence (αi)i≥0. Then we can

write f(x) =
∑n

i=0 αix
i + f̂(x), where f̂(x) is sparse

with (say) t′ nonzero terms.

To multiply by another polynomial g(x), first com-
pute g(x)

∑n

i=0 αix
i in linear time, then add the re-

sult to f̂(x)g(x) using whatever method is most ap-
propriate.

4.4 Combination of ideas

Using a combination of the above ideas can result
in a multiplication time that is an order of magni-
tude faster than the asymptotically dense and sparse
methods for many classes of input.

For example, suppose deg g = deg f = n = k3 for
some positive integer k, and suppose f and g both
have roughly the same form: they can be written as
a sum of approximately log k polynomials of degree
k2, each of which has coefficients all equal to each
other and whose powers are all divisible by k. So we
can write

f(x) =

log k
∑

i=1

Fix
ei , Fi = α(

k
∑

j=0

xj) ◦ (xk).

Dense multiplication will cost M(k3), or
Ω(k3 log k). Sparse multiplication will cost
Ω(k2(log k)3). But the adaptive multiplication
will cost just O(k(log k)3).

4

References

[1] Michael Ben-Or and Prasoon Tiwari. A deter-
ministic algorithm for sparse multivariate poly-
nomial interpolation. In STOC ’88: Proceed-
ings of the twentieth annual ACM symposium on
Theory of computing, pages 301–309, New York,
NY, USA, 1988. ACM Press.

[2] Peter Bürgisser and Martin Lotz. Lower bounds
on the bounded coefficient complexity of bilinear
maps. J. ACM, 51(3):464–482 (electronic), 2004.

[3] David G. Cantor and Erich Kaltofen. On fast
multiplication of polynomials over arbitrary al-
gebras. Acta Inform., 28(7):693–701, 1991.

[4] James W. Cooley and John W. Tukey. An al-
gorithm for the machine calculation of complex
Fourier series. Math. Comp., 19:297–301, 1965.

[5] Felipe Cucker, Pascal Koiran, and Steve Smale.
A polynomial time algorithm for Diophantine
equations in one variable. J. Symbolic Comput.,
27(1):21–29, 1999.

[6] Stephen C. Johnson. Sparse polynomial arith-
metic. SIGSAM Bull., 8(3):63–71, 1974.

[7] Erich Kaltofen and Wen-shin Lee. Early ter-
mination in sparse interpolation algorithms. J.
Symbolic Comput., 36(3-4):365–400, 2003. Inter-
national Symposium on Symbolic and Algebraic
Computation (ISSAC’2002) (Lille).

[8] A. Karatsuba and Yu. Ofman. Multiplication of
multidigit numbers on automata. Dokl. Akad.
Nauk SSSR, 7:595–596, 1963.

[9] H. W. Lenstra, Jr. Finding small degree factors
of lacunary polynomials. In Number theory in
progress, Vol. 1 (Zakopane-Kościelisko, 1997),
pages 267–276. de Gruyter, Berlin, 1999.

[10] Michael Monagan and Roman Pearce. Polyno-
mial division using dynamic arrays, heaps, and
packed exponent vectors. Preprint; accepted to
CASC 2007.

[11] David A. Plaisted. New NP-hard and NP-
complete polynomial and integer divisibility
problems. Theoret. Comput. Sci., 31(1-2):125–
138, 1984.

[12] A. Schönhage. Schnelle Multiplikation von Poly-
nomen über Körpern der Charakteristik 2. Acta
Informat., 7(4):395–398, 1976/77.

[13] A. Schönhage and V. Strassen. Schnelle Multip-
likation grosser Zahlen. Computing (Arch. Elek-
tron. Rechnen), 7:281–292, 1971.

[14] Joachim von zur Gathen and Jürgen Gerhard.
Modern computer algebra. Cambridge University
Press, Cambridge, second edition, 2003.

[15] Thomas Yan. The geobucket data structure for
polynomials. J. Symbolic Comput., 25(3):285–
293, 1998.

5

