
CS 860 Spring 2007 Research Project:

Adaptive Polynomial Multiplication

Daniel S. Roche

August 20, 2007

1 Introduction

Polynomial multiplication is as close to any problem comes to being “classical”
in the field of computer algebra. Elementary arithmetic on polynomials with
coefficients in an arbitrary domain is one of the basic primitives supplied by any
computer algebra or symbolic computation software.

Currently, there are essentially two different representations for polynomials:
dense and sparse. These will be discussed in more detail later, but for now it
suffices to say that in the dense representation, we write down every coefficient,
while the sparse representation omits all zero coefficients.

von zur Gathen and Gerhard point out some similarities between dense poly-
nomial multiplication and sorting, as for both problems the “school method” has
quadratic complexity, while “fast methods” reduce this to superlinear complex-
ity [13]. Based on the tremendous success of adaptive algorithms and analysis
for the sorting problem, an obvious question is whether adaptive algorithms can
also be used for polynomilal multiplication.

We present and analyze a few ideas for adaptive polynomial multiplication
as a first step towards improving polynomial multiplication without actually
reducing the worst-case complexity. The new representations also present a finer
gradient between the sparse and dense polynomial representations currently
known and in use.

After giving a brief overview of past results and some algebraic and nota-
tional preliminaries, we discuss possible approaches for an adaptive analysis and
their relative strenghts and weaknesses. Next, the three main ideas for adap-
tive polynomial multiplication are presented and analyzed. Finally, we discuss
future directions for research and some conclusions.

1

2 Preliminaries

2.1 Notation

Let R be an arbitrary ring, commutative with identity. If f(x) ∈ R[x] has degree
less than n, then we can write

f(x) = c0 + c1x + c2x
2 + · · ·+ cn−1x

n−1 (2.1)

= a1x
e1 + a2x

e2 + · · · asx
es , (2.2)

with e1 < e2 < · · · < es < n and each ai = cei
6= 0.

(2.1) corresponds to the dense representation of f(x) as a vector of coeffi-
cients of length n, and (2.2) corresponds to the sparse representation of f(x) as
a list of pairs of nonzero coefficient and exponent. The integer s is exactly the
number of nonzero terms in f(x); we call this the sparsity of f(x).

Whenever we write lg n, for n ∈ Z+, we mean the number of bits required
to represent n. So lg n = ⌈log2(n + 1)⌉. Of course, lg n ∈ O(log n), so asymp-
totically there is no distinction.

For the remainder, assume f(x), g(x) ∈ R[x] with degrees less than n and
m and sparsities s and t, respectively. These will be the two polynomials to be
multiplied.

2.2 Cost Model

In order to be as general as possible, the complexity of dense polynomial opera-
tions is usually measured in the number of ring operations (+,−,×) in R. This
is more realistic for finite rings, such as the integers mod a word-size prime,
where any single arithmetic operation can be performed in constant time. For
larger rings where the size of the coefficients can be significant, more careful
analysis may be necessary, but we will ignore this issue for now.

Complexity measures should also take into account the “overhead” cost —
the number of word operations needed other than for performing basic arith-
metic operations in R. Algorithms for densely-represented polynomials usually
have running time dominated by the cost of the ring operations, so this is not an
issue (we can safely assume that each ring operation has at least some constant
cost). When dealing with sparse polynomials, however, the size of the coeffi-
cients can be very large, requiring multiple-precision integer arithmetic. So here
the cost will often be given in terms of the number of ring operations and the
number of word operations required.

2.3 Dense Polynomials

The dense representation is perhaps the more obvious one and seems to be the
first one considered and examined by researchers. The “school method” for
addition runs in linear time in the size of the input and is therefore optimal.
However, the obvious method for multiplication requires a quadratic number of

2

multiplications in the coefficient domain, and this is where significant effort and
progress have been made.

For convenience, a common notation is a “multiplication time” function
M(n), which is the complexity of multiplying two polynomials of degrees less
than n. So the “school method” gives M(n) ∈ O(n2).

In 1963, Karatsuba introduced a divide-and-conquer method which reduces
the number of multiplications required by increasing the number of additions,
resulting in a complexity of O(nlog23), or O(n1.59) [6].

An arbitrary-precision integer multiplication method introduced by Schönhage
and Strassen in [9] in 1971 using a change of representation approach with the
discrete Fourier transform (DFT) was later applied to polynomials [8, 2]. Using
the fast Fourier transform algorithm (FFT) from [3] gives M(n) ∈ O(n lg n lg lg n).

A brand-new result for integer multiplication is likely applicable to polyno-
mials and may reduce the complexity to O(n lg n2O(lg∗ n)) [4]. A lower bound
of Ω(n lg n) has been proven in the bounded-coefficient model over C [1], and
it is widely believed that this lower bound holds in general. In fact, the DFT
algorithm has complexity O(n lg n) in many circumstances under certain rings
[13] — for instance when R = C this is always true.

Assuming for the moment that m ≤ n, all the results above can actually be
improved slightly by splitting f(x) into n/m groups and then multiplying each
of these by g(x) and summing the result. So the cost of dense multiplication of
f(x) and g(x) is n

mM(m). Using the DFT algorithm we know this is at worst
O(n lg m lg lg m). Occasionally for simplicity we will the cost as just Θ(n lg m).

2.4 Sparse Polynomials

Addition of two sparse univariate polynomials is essentially equivalent to merg-
ing two sorted lists; a worst-case optimal algorithm gives complexity which is
linear in the size of the input.

For multiplication, the “school method” requires st multiplications in R. And
the number of nonzero terms in the product fg can be as large as st in the worst
case, so this is in fact worst-case optimal.

Most improvements in sparse polynomial multiplication have come in the
number of word operations (i.e. operations with the possibly-large exponents),
as well as the space complexity. The school method uses O(s2t lg n) word op-
erations and O(st) space. In [14], the number of word operations is reduced to
O(st lg s lg n). Finally, using some old results from [5], the space complexity can
be reduced to O(t + r), where r is the sparsity of the product [7].

2.5 Adaptive Approach

The adaptive algorithms studied here are all based on a change of representation,
like the FFT-based dense polynomial multiplication algorithms, and thus will
proceed in three stages, as follows:

Step 1. Convert input polynomials to adaptive representation.

3

Step 2. Perform multiplication in the adaptive representation.

Step 3. Convert back to input representation.

Step two (the actual multiplication) usually just involves slight modifications
and usages of existing algorithms. And the third step is usually trivial and
may actually be combined with the second for efficiency. The most difficult
step is the first one, which involves recognizing the difficulty of the input and
performing the change of representation as fast as possible. Unlike the FFT-
based multiplication algorithms, we do not want this step to be the dominating
one in terms of computational cost. In fact, since in the best (i.e. least difficult)
case it should be possible to multiply two polynomials in linear time, the first
step of the algorithm should run in as close to linear time as possible (and may
in itself be adaptive).

Our first instinct for how to construct the change of representation algorithm
(step 1) may be to define some canonical form for the adaptive representation
which will minimize the cost of the actual multiplication in step 2. Then con-
verting the input polynomials to the adaptive representation can be performed
independently (even in parallel). This is highly advantageous for a few rea-
sons, chief among them the fact that in many (or even most) cases we may not
be performing just a single multiplication operation but a series of arithmetic
operations including many multiplications and additions. So, if there is some
well-defined adaptive representation which depends only on the single polyno-
mial itself, then we can avoid the cost of converting to and from the standard
dense or sparse representations whenever intermediate results are not needed.

Unfortunately, a canonical form which always minimizes the cost of multi-
plication does not exist in general! This is perhaps most easily seen with an
example. Recall that f(x), g(x) ∈ R[x] with degrees less than n,m and sparsities
s, t (respectively). And suppose we have the most primitive adaptive algorithm
which simply chooses either the standard sparse or dense representation.

So, if a canonical form exists, then given n and s, we should be able to choose
the best representation for f(x). For this example, say n = s2. To show this
is impossible, consider first m = s3 and t = s. Then dense multiplication uses
Ω(s3) ring operations, while sparse multiplication only uses O(s2), so the sparse
representation is better. But if instead m = t = s, then dense multiplication
only uses O(s lg s lg lg s) ring operations, while sparse uses Ω(s2), so in this case
the dense representation is better.

This shows that the choice of representation will not be optimal (in general)
unless both arguments are considered. So one way to choose the parameters
for the adaptive representation of input polynomials is to examine both argu-
ments simultaneously and choose the representations that minimize the cost of
that particular multiplication operation. We call this approach the dependent
method.

But, as we have mentioned, there are inherent problems with considering
both operands, most notably when multiple operations are to be performed
in sequence. Furthermore, especially when there are many parameters to the

4

choice of adaptive representation, the time spent to find the optimal adaptive
representation might be more than the time saved, of course negating any benifit.

For the independent method, we choose the adaptive representation sepa-
rately for each input polynomial, therefore defining some sort of “canonical
form”. The analysis for choice of adaptive representation here is usually conser-
vative, in the sense that we may sacrifice some best-case performance in order
to guarantee, say, that the algorithm always performs at least as good as the
standard dense/sparse algorithms. Such sacrifices are in some sense unavoidable
without examining both operands, and of course the alternative, optimizing for
the best case, can result in very bad worst-case complexities.

Some sacrifices in the performance of the actual multiplication algorithm
(step 2) may also be made so that the conversion step (step 1) always runs
fast (i.e. linear time). As mentioned before, when performing just a single
multiplication, it makes no sense to spend more time parsing the input than
the cost would be just to multiply using another method. Perhaps it would
be beneficial to spend more time on step 1 when many operations are to be
performed in sequence; this case has not yet been examined.

3 Dense “Chunks”

The first adaptive representation we consider is perhaps the most elegant. This
is what we call the “chunky” representation, and it corresponds to writing a
polynomial f(x) ∈ R[x] as:

f1(x)xe1 + f2(x)xe2 + · · ·+ fk(x)xek , (3.1)

with each fi(x) ∈ R[x] a dense polynomial with degree less than some integer
di. Specifically, we represent f(x) by a vector of pairs of dense polynomial and
exponent:

〈(f1(x), e1), (f2(x), e2), . . . , (fk(x), ek)〉.
Any reasonable implementation will have each fi(0) 6= 0 and s ≤

∑

di ≤ n.
The elegance of this representation is in the way it provides a very fine gra-

dient between the standard dense and sparse representations. At one extreme,
if k = 1 and e1 = 0, then there is only one dense chunk, f1(x), which is just the
dense representation of f(x). At the other extreme, if k = s and each di = 1,
then each fi(x) = ai (the coefficients in (2.2)), and this corresponds to the
sparse representation of f(x). This duality will be exploited to achieve a good
adaptive algorithm.

3.1 Multiplication (Step 2)

Suppose that, similarly, g(x) is written as a sum of l dense “chunks”
g1(x), g2(x), . . . , gl(x) with degrees less than e1, e2, . . . , el (we are recycling some
notation from earlier). Then multiplication of f(x) and g(x) will look like sparse
multiplication on the outer loop, and dense multiplication in the inner loop.

5

The basic algorithm is to compute the product of each pair of dense coefficient
polynomials fi(x)gj(x) and merge them all together, according to the exponents,
for the final result.

Since the cost of dense multiplication depends on which polynomial has
greater degree, we need to define the relationships between the di’s and ei’s in
order to have a precise complexity analysis of chunky multiplication. So we sort
the dense polynomial coefficients by degree; that is, assume d1 ≤ d2 ≤ · · · ≤ dk

and e1 ≤ e2 ≤ · · · ≤ el. Next, define c1, c2, . . . , cl ∈ {0, 1, . . . , k} to be the
“crossover points” such that dci

≤ ei ≤ dci+1 for all i (with the convention that
d0 = 0. Then the cost is given as follows:

Theorem 1. Multiplication of f(x) and g(x), when written in the chunky rep-
resentation as described above, can be performed with

O





l
∑

j=1





cj
∑

i=1

ej

di
M(di) +

k
∑

i=cj+1

di

ej
M(ej)









ring operations in R.

Proof. We compute each product fi(x)gj(x), for 1 ≤ i ≤ k and 1 ≤ j ≤ l. If
1 ≤ i ≤ cj , then di ≤ dcj

≤ ej , so the cost of computing this dense product is
ej

di
M(di). And when cj + 1 ≤ i ≤ k, di ≥ dcj+1 ≥ ej , so the cost of the dense

product computation is di

ej
M(ej). Merging each product into the result will just

involve (at most) a linear number of additions in R and thus does not affect the
total cost.

It remains to discuss how the products are actually merged into the result,
but we will postpone this discussion until after we see how to parse the input
polynomials into the chunky representation.

3.2 Parsing (Step 1)

First, notice that our algorithm for chunky multiplication can be thought of as
multiplying each chunky term fi(x) of f(x) by the entire polynomial g(x) and
then merging the results. Hence minimizing the cost of multiplying g(x) by an
arbitrary dense polynomial (not chunky) will also minimize the cost of the full
chunky multiplication.

So consider g(x) to have just be one dense chunk with degree less than m.
This means l = 1, so define c = c1, and we have, from Theorem 1, that the cost
of chunky multiplication will be

c
∑

i=1

m

di
M(di) +

k
∑

i=c+1

di

m
M(m). (3.2)

6

With the approximation a
b M(b) ≈ a lg b, (3.2) becomes

c
∑

i=1

m lg di +

k
∑

i=c+1

di lg m

< m
c
∑

i=1

(log2(di + 1) + 1) + lg m
k
∑

i=c+1

di

= mc + m log2

c
∏

i=1

(di + 1) + lg m

k
∑

i=c+1

di (3.3)

Since m is arbitrary and c is essentially a function of m, if we want to
minimize this cost without a-priori knowledge of m, we must minimize the two
terms

∏

(di + 1) and
∑

di.

Theorem 2. Let f(x), g(x), n,m, s, k, d1, . . . , dk be as above. Then the chunky
multiplication is always asymptotically at least as good as both the standard dense
and sparse multiplication methods iff

k
∏

i=1

(di + 1) ∈ O(n) and

k
∑

i=1

di ∈ O(s).

Proof. From the preceding discussion, we can see that the cost of chunky multi-
plication will be less than (3.3) above. First, note that each di must be at least
1; otherwise the corresponding dense “chunk” fi(x) is the zero polynomial and
can just be eliminated. This means that

m log2

c
∏

i=1

(di + 1) ≥ m log2

c
∏

i=1

2 = mc,

and so the second term in (3.3) always dominates the first. Therefore the first
term is asymptotically insignificant and can be safely ignored for our purposes
here.

Now we know the cost of dense multiplication will be

Ω ((max{n log m,m log n}) ,

depending on which of n,m is larger. Given the conditions in the statement of
the proof, and using the fact that

∑

di ≤ n, the cost of chunky multiplication
is

O

(

m log2

c
∏

i=1

(di + 1) + lg m

k
∑

i=c+1

di

)

∈ O

(

m log
k
∏

i=1

(di + 1) + log m
k
∑

i=1

di

)

∈ O (m log n + n log m)

∈ O (max{n log m,m log n}) ,

7

and is therefore asymptotically at least as fast as standard dense multiplication.
Again since each di ≥ 1, log2(di + 1) ≤ di. Therefore

log2

∏

(di + 1) =
∑

log2(di + 1) ≤
∑

di.

Using this fact, and again deriving from (3.3), the cost of chunky multiplication
is asymptotically

O

(

m

c
∑

i=1

di + lg m

k
∑

i=c+1

di

)

∈ O

(

m

k
∑

i=1

di

)

∈ O (ms)

And the cost (in ring operations) of sparse multiplication will be Θ(ms). So
the chunky multiplication will always be asymptotically at least as good as the
standard sparse multiplication.

Two counterexamples will prove the other direction of the biconditional “iff”.
First, suppose

∏

di /∈ O(n); that is, suppose n ∈ o(
∏

di). Then suppose g(x) is
a dense polynomial with degree m > n. This means each di < m, so c = k, and
we can use (3.2) to see that the cost of the chunky multiplication is

k
∑

i=1

m

di
M(di),

while the cost of dense multiplication will be O(m
n M(n)).

Then we just need to follow through the reduction:

n ∈ o

(

k
∏

i=1

(di + 1)

)

log2 n ∈ o

(

k
∑

i=1

log2(di + 1)

)

m

n
M(n) ∈ o

(

k
∑

i=1

m

di
M(di)

)

So the dense multiplication will be asymptotically faster than the chunky mul-
tiplication.

Finally, suppose
∑

di /∈ O(s), so that s ∈ o(
∑

di). And let g(x) be a
constant polynomial, so that m = 1. In this case, c = 0, so the cost of chunky
multiplication is

k
∑

i=1

di

m
M(m) ∈ Θ

(

k
∑

i=1

di

)

.

8

The cost of sparse multiplication will be sm = s. So if s ∈ o(
∑

di), then
the sparse multiplication will always be asymptotically better than the chunky
multiplication.

Theorem 2 gives a condition when the chunky multiplication will always be
superior to other methods, and more importantly indicates a bit more explic-
itly that the two values to minimize in order to minimize the cost of chunky
multiplication are

∏

(di + 1) and
∑

di.
Unfortunately, the conditions of Theorem 2 are not always attainable, for

example when f(x) has approximately
√

n nonzero terms spaced evenly apart.
We will see later how to handle this specific example, but for now we need a
way to convert the input to the chunky representation under any circumstances
— optimal or not — and to perform the conversion in linear time in the size of
the input.

3.2.1 Dense Input

First consider the case when the input is given in the dense representation.
For this case, we definitely want to be competitive with the standard dense
multiplication, so we should work primarily to minimize

∏

(di + 1). It is not
clear how to minimize this value absolutely using only O(n) time, but Algorithm
1 does reasonably well, essentially finding local minima for

∏

(di + 1).
The basic idea of the algorithm is to start with the standard dense repre-

sentation, then break off “chunks” only when doing so will reduce the value of
∏

(di + 1). Then, since we start with
∏

(di + 1) ∈ O(n), we are guaranteed to
maintain this property.

More specifically, the algorithm searches from the low-order to the high-
order coefficients of f(x) for all the “gaps” — that is, runs of zero coefficients.
If the gap is large enough in relation to the dense chunks surrounding it so that
the product

∏

(di + 1) would be reduced, the current chunk is split at the gap
to make two new chunks.

Intuitively, the list L contains information about all previously-seen gaps
which will also be benificial to split at if we split at the current gap. So if the
current gap is sufficiently large to merit a split, all the splits designated by
elements in L are also performed.

Theorem 3. Algorithm 1 runs in O(n) time and always returns a chunky rep-
resentation with

∏

(di + 1) ∈ O(n).

Proof. First we show that L has at most one element after each time step 9 is
executed. So, by way of contradiction, assume L has two elements after step 9 is
executed, say (r1, a1, b1) and (r2, a2, b2). First, from the way the b’s are defined,
we must have a1 < b1 and a2 < b2, and we can see also that ca1

= ca2
= 0 and

cb1 , cb2 6= 0. Then, since b1 ≤ a2, we must in fact have b1 < a2. And for every
ei we always have cei

6= 0, so ei < a1. Finally, at step 9, cj = 0, so b2 < j.
Combining all this gives

ei < a1 < b1 < a2 < b2 < j.

9

Input: f(x) = c0 + c1x + c2x
2 + . . . + cn−1x

n−1 ∈ R[x]
1: e1 ← max{i ∈ Z+ s.t. xi | f(x)}
2: k ← 1, f1(x)← f(x)/xe1

3: i← 1, j ← ei

4: L← empty linked list of triples in N3

5: while j < n do

6: if cj 6= 0 then

7: j ← j + 1
8: else

9: L← L \ {(r, a, b) ∈ L | r < j}
10: b← j + 1
11: while b < n and cb = 0 do

12: b← b + 1
13: r ← ⌊(b− j)/(j − ei)⌋+ b
14: Add (r, j, b) to L
15: if r ≥ n− 1 then

16: while L not empty do

17: Remove (r, a, b) from L with r minimal
18: fi(x)← fi(x) mod xa−ei

19: i← i + 1
20: fi(x)← (f(x)− (f(x) mod xa))/xb

21: ei ← b
22: j ← b
23: return 〈(f1(x), e1), (f2(x), e2), . . . , (fi(x), ei)〉

Algorithm 1: Dense Polynomial to Chunky Conversion

10

From the way the r’s are defined, we know that r1 = ⌊(b1−a1)/(a1−ei)⌋+b1,
and since (r1, a1, b1) remains after step 9, r1 ≥ j. Therefore
b1 − a1 ≥ (j − b1)(a1 − ei). From the inequalities above, a1 − ei ≥ 1 and
j − b1 > b2 − a2. Therefore we have b1 − a1 > b2 − a2.

By identical reasoning, we know that b2 − a2 ≥ (j − b2)(a2 − ei). And again
from the inequalities we know that j− b2 ≥ 1 and a2−ei > b1−a1. This means
that b2 − a2 > b1 − a1.

But this is a contradiction with b1−a1 > b2−a2 from above. So the original
assumption was wrong; namely, L has at most one element after each execution
of step 9.

This means that L will never have more than two elements at any step, and
so each step of the outer while loop runs in constant time. Since j increases at
each iteration, the outer while loop runs at most n times. Therefore the total
complexity is O(n).

To see that the value of
∏

(di + 1) always decreases when we create a new
chunk, let (r, a, b) be any triple removed from L at step 17. Since the triple is
removed, this means that the chunk which contains the coefficients of xa and
xb now has or will have its top coefficient of degree j.

And the bottom coefficient of the current chunk is xei . So now let us consider
the contributions to

∏

(di +1) when we include the gap from xa to xb and when
we do not. If the gap is included, then there is just one term contributed, with
cost j − ei + 1. If we split at the gap, then there are two terms contributed,
with cost (a− ei + 1)(j − b + 1). Then, since j ≤ r, we have

(a− ei + 1)(j − b + 1) = (a− ei)j − (a− ei)b− (b− a) + (j − ei + 1)

≤ (b− a) + (a− ei)b− (a− ei)b− (b− a) + (j − ei + 1)

= j − ei + 1

Thus the value of
∏

(di +1) with the split is bounded above by the cost without
it. Therefore this value only decreases, and since it is in O(n) at the start of
the algorithm,

∏

(di + 1) ∈ O(n) when the algorithm finishes also.

With some minor modifications, Algorithm 1 could simultaneously proceed
from both sides instead of just reading the coefficients from left-to-right. This
would likely give some improvement, as it would relax the lower bounds on the
size of the gaps to make splitting profitable.

3.2.2 Sparse Input

If the input is given in the sparse representation, then the algorithm to parse
f(x) into the chunky representation is more or less the opposite of Algorithm
1. Rather than starting with just one chunk, we start with the most number of
chunks reasonable. That is, we start by recognizing all the “natural” chunks -
runs of nonzero coefficients. Then we use a heuristic measure to decide which
chunks to combine, making sure not to introduce too many zero terms into the
representation.

11

The heuristic measure is defined as follows. Suppose we have two consecutive
dense chunks with degrees less than p1 and p2 and with g zero coefficients
between them. Then combining these into a single dense chunk will result in
the value

∏

(di + 1) being divided by

δ =
(p1 + 1)(p2 + 1)

a + b + g + 1
.

So if δ > 1, then combining the chunks will give a reduction in
∏

(di + 1)
(which is good). However, combining chunks always increases

∑

di, by exactly
g, and we definitely want to account for this in the sparse case. So the heuristic
measure is the g’th root of δ, or δ1/r.

The algorithm also uses a “slack variable” ω, which is really just the constant
in the big-O notation in the invariant

∑

di ∈ O(s). Algorithm 2 gives the full
details.

Input: f(x) = a1x
e1 + · · ·+ asx

es and ω ∈ R+

1: F ← empty linked list of dense polynomial-nonnegative integer pairs
2: H ← max-heap of triples, sorted by the first element of the triple
3: k ← 0, i← 1
4: p1, p2, g ∈ N
5: while i ≤ s do

6: k ← k + 1
7: j ← i + 1
8: while j ≤ s and ej = ej−1 + 1 do

9: j ← j + 1
10: p1 ← p2, p2 ← j − i
11: g ← ei − ei−1

12: Insert (ai + ai+1x + · · ·+ aj−1x
j−1−i, ei) into F

13: if k > 1 and (p1 + 1)(p2 + 1)/(p1 + p2 + g + 1) > 1 then

14: Insert
(

(

(p1 + 1)(p2 + 1)/(p1 + p2 + g + 1)
)1/g

, g, reference to F [k− 1]
)

into H
15: i← j
16: t← 0
17:

(

c, g, (fi(x), ei)
)

← top removed from H
18: while t + g < ωs do

19: t← t + g
20: fi(x)← fi(x) + fi+1(x)xei+1−ei

21: Remove
(

fi+1(x), ei+1

)

from F
22: if H is empty then

23: break

24: else

25:

(

c, g, (fi(x), ei)
)

← top removed from H
26: return F

Algorithm 2: Sparse Polynomial to Chunky Conversion

12

Theorem 4. Algorithm 2 runs in time O(s log n) (the size of the input) and
produces a chunky representation such that

∑

di ∈ O(s).

Proof. The complexity is easily seen to be O(s log s), which is O(s log n), as long
as we always save a pointer to the last two nodes of F in the first while loop.

And every iteration through the second while loop adds the value g to
∑

di,
which is also added to the value t. Since t ≤ ωs is an invariant, and since
∑

di = s after the first while loop, we know that
∑

di ≤ (ω + 1)s ∈ O(s) when
the algorithm terminates.

Algorithm 2 could be improved, perhaps significantly, if we updated values in
the heap affected each time we combine two chunks. Since only the adjacent gaps
will be affected, this would not cause an increase in the asymptotic complexity.
However, it would require a more complicated data structure with more links,
etc., and so we do not examine it carefully here.

3.3 Merging the fi(x)gj(x)’s and Step 3

In [7], an algorithm for sparse polynomial multiplication is given which uses
heaps of pointers into dynamic arrays to avoid intermediate expression swell in
the standard sparse multiplication algorithm. Exactly the same technique can
be used here, so we will not elaborate on the details. Basically, each product
fi(x)gj(x)xei,j is computed in increasing order of the ei,j ’s — that is, the sum
of the powers of x multiplied by fi(x) and gj(x) in f(x) and g(x), respectively.

There is just one extra step, since each computed product is in itself a dense
polynomial. If the ei,j for the current product falls in the middle of the previous
dense chunk, then increase the size of that chunk and add the new product
fi(x)gj(x) into it. Otherwise, create a new chunk with the value fi(x)gj(x).

Unfortunately, this may produce chunky representations which are not op-
timal, so either Algorithm 1 or 2 will have to be run on the output. However,
these should both terminate more quickly than they would if the input were
a dense or sparse polynomial, just identifying the (hopefully) small number of
chunks which need to be combined or split.

If the intermediate result is needed in the standard dense or sparse form,
then we can just initialize space for the result and add each intermediate product
fi(x)gj(x)xei,j into it. This may result in some intermediate expression swell in
the sparse case, but the space complexity is never more than the time complexity.
Using ideas similar to those in [14] may avoid this intermediate expression swell,
but this has not yet been looked at.

4 Equally-Spaced Terms

Next we consider an adaptive representation which is in some sense orthogo-
nal to the chunky representation. This representation will be useful when the
coefficients of the polynomial are not grouped together into dense chunks, but
rather when they are spaced evenly apart.

13

Suppose the exponents of f(x) are all divisible by some integer k. Then we
can write f(x) = a0+a1x

k+a2x
2k+· · · . So if we let f1(x) = a0+a1x+a2x

2+· · · ,
then we have f(x) = f1(x) ◦ (xk) (where the symbol ◦ indicates functional
composition); another way to write this is f(x) = f1(x

k).
The generalization of this idea is the equal-spaced representation, which

corresponds to writing f(x) as

f(x) = f1(x
k)xd + f2(x), (4.1)

with k, d ∈ N, f1(x) dense with degree less than n/k− d, and f2(x) sparse with
degree less than n.

4.1 Equal-Spaced Multiplication (Step 2)

To multiply f(x) by another polynomial in the equal-spaced representation,
g(x) = g1(x

l)xe + g2(x) (as in (4.1)), we simply sum up the four pairwise
products of terms. All these are performed using standard methods except, of
course, for the product f1(x

k)g1(x
l). For this, first notice that, if k and l are

relatively prime, then almost any term in the product can be nonzero. On the
other hand, if k = l or one divides the other, the product will be equal-spaced
as well.

This indicates that the gcd of k and l is very significant. In fact, it is crucial,
but as we shall see, a speedup can be achieved even when k and l are relatively
prime. To multiply f1(x

k) and g1(x
l), we perform a transormation similar to

the process of finding common denominators in the addition of fractions. First
split f1(x

k) as follows:

f1(x
k) = f1,1(x

lcm(k,l)) + xgcd(k,l)f1,2(x
lcm(k,l)) + x2 gcd(k,l)f1,3(x

lcm(k,l)) +

+ · · ·+ xlcm(k,l)−gcd(k,l)f1,lcm(k,l)/ gcd(k,l)−1(x
lcm(k,l)).

Similarly split g(xl) into g1,1, g1,2, Then compute all the pairwise multi-
plications f1,i(x)g1,j(x), and combine them appropriately to compute the total
sum (which will be equal-spaced with right composition factor xgcd(k,l)).

Algorithm 3 gives the details of this method.

Theorem 5. Let f(x), g(x) be as given above with the sparsities of f2(x) and
g2(x) equal to ŝ and t̂, respectively.

Then Algorithm 3 correctly computes the product f(x)g(x) and uses

O

(

n

gcd(k, l)
lg

m

lcm(k, l)
lg lg

m

lcm(k, l)
+

nt̂

k
+

mŝ

l
+ ŝt̂

)

ring operations in R.

Proof. Correctness of the algorithm follows from the preceding discussion.
The degrees of f1(x) and g1(x) must be less than n/k and n/l, respectively.

Then the cost of computing f1(x
k)g2(x)xd + g1(x

l)f2(x)xe + f2(x)g2(x) in step

14

Input: f(x) = f1(x
k)xd + f2(x), g(x) = g1(x

k)xe + g2(x),
with f1(x) = a0 + a1x + a2x

2 + · · · , g1(x) = b0 + b1x + b2x
2 + · · ·

1: r ← gcd(k, l)
2: for i = 0 to l

r − 1 do

3: f1,i(x)← ai + ai+l/rx + ai+2l/rx
2 + · · ·

4: for i = 0 to k
r − 1 do

5: g1,i(x)← bi + bi+k/rx + bi+2k/rx
2 + · · ·

6: h1(x)← 0
7: for i = 0 to l

r − 1 do

8: for j = 0 to k
r − 1 do

9: h1(x)← h1(x) + x(i+j)(f1,i(x)g1,j(x)) ◦ (xkl/r)
10: h2(x)← f1(x

k)g2(x)xd + g1(x
l)f2(x)xe + f2(x)g2(x)

11: return h1(x
r)xd+e + h2(x)

Algorithm 3: Equal-Spaced Polynomial Multiplication

10 by using standard sparse multiplication is O(nt̂
k + mŝ

l + ŝt̂) ring operations,
giving the last three terms in the complexity measure.

The initialization of the polynomials f1,i, g1,i in steps 2–5 just involves copy-
ing coefficient values, and so takes linear time. From the definitions, the degree
of each f1,i is less than n/lcm(k, l), and similarly the degree of each g1,i is less
than m/lcm(k, l). Then, since lcm(k, l) = kl/ gcd(k, l), the total cost of initial-
ization is n/k + m/l. This is just the size of the input polynomials f1(x) and
g1(x), and so therefore this step does not dominate the complexity.

The computation of the product f1,i(x)g1,j(x) in step 9 is performed with
dense multiplication, and so uses O((n/m)M(m/lcm(k, l))) ring operations. Mul-
tiplication by and composition with a power of x take linear time, as does the
addition to the result h1(x). Then, since step 9 is performed kl/ gcd(k, l)2 times,
the total cost (using the DFT multiplication method) is

kln

gcd(k, l)2m

m

lcm(k, l)
lg

m

lcm(k, l)
lg lg

m

lcm(k, l)

=
kln

gcd(k, l)2
gcd(k, l)

kl
lg

m

lcm(k, l)
lg lg

m

lcm(k, l)

=
n

gcd(k, l)
lg

m

lcm(k, l)
lg lg

m

lcm(k, l)
,

which gives the first term in the comlexity measure.

4.2 Converting from Equal-Spaced (Step 3)

Step 3 of the Equal-Spaced adaptive algorithm is extremely simple. Algorithm
3 gives output in the form h1(x

r)xq +h2(x), with h1(x) dense and h2(x) sparse.
To convert from this to either the standard dense or sparse representations

of the result, we just need two loops. First, initialize the result to zero (with
the proper degree specified). Next, for each coefficient ai of xi in h1(x), set the

15

coefficient of xri+q in the result to ai. Then for each coefficient bi with exponent
ei in h2(x), add bi to the coefficient of xei in the result.

This conversion can again be combined with the algorithm of step 2 for
greater efficiency when the result is not merely an intermediate step in a series
of computations. Simply initialize h1(x) in step 6 of Algorithm 3 to use the
same representation as the desired result representation. Then, on step 9, add
the value

x(i+j)r+d+e(f1,i(x)g1,j(x)) ◦ (xkl/r)

to h1(x) instead. Finally, rather than create a new sparse polynomial h2(x) on
step 10, just add this into h1(x), and return just the polynomial h1(x).

4.3 Converting to Equal-Spaced (Step 1)

The only question when converting f(x) to the equal-spaced representation is
how large we should allow ŝ (the sparsity of f2(x)) to be. For this, we will use
the independent method of conversion, and to be conservative we will assume
the worst case — that g(x) is totally dense of degree m.

Theorem 6. If ŝ ∈ O(lg k), the equal-spaced multiplication method is never
asymptotically worse than the standard dense multiplication method.

Proof. Theorem 5 tells us that the worst case for the algorithm (if f(x) is fixed)
will be when g(x) is totally dense. Now we cannot assume that n ≥ m, so we
have two cases.

Case 1: m ≥ n The number of ring operations required for the equal-spaced
method in this case will be O(m lg(n/k) lg lg(n/k) + mŝ). Since ŝ ∈
O(lg k), this is O(m lg n lg lg n), which is the cost of the dense multiplica-
tion method.

Case 2: n ≥ m In this case, the equal-spaced method requires
O(n lg(m/k) lg lg(m/k) + mŝ) ring operations. Then, using the fact that
m ≤ n and the same reduction as before, we have the cost bounded by
O(n lg m lg lg m), which is the cost of dense multiplication.

A similar result comparing the equal-spaced method to the sparse method
is more difficult unless we make some assumptions on the density of f1(x).

Now the question is how to find k. Specifically, if the exponents of the
original polynomial f(x) are e1, e2, . . . , es, define the set S ⊆ Z by

S = {e2 − e1, e3 − e2, . . . , es − es−1}.

Then we want to find

k = max{gcd(T) | T ⊆ S, |T | ≥ n− log k}.

16

Of course, this is a recursive definition, but we can simplify it by the fact
that k ≤ n, so n− log k > n− log n.

Even then, this is a non-trivial problem; in fact it is closely related to the max
factor k-gcd problem, which is provably NP-hard [12]. To solve the problem,
we must make a few assumptions. First, we assume that the size of the input is
at least Ω(n). Of course this is true if f(x) is given in the dense representation,
but not necessarily if it is given as sparse.

The second assumption is a relatively minor one, namely that no subset of S
of size greater than n−√n log n has a gcd which does not divide k. Intuitively,
we need this assumption because otherwise there could be a candidate k which
almost works, and we have no way of determining, in linear time, that it doesn’t.

The idea for the following algorithm is based on how we might compute
gcd(S), by constructing a list with all the elements in S, then repeatedly re-
ducing the length of the list by one half by taking the gcd’s of pairs of elements
in the list (similar to mergesort). Then when the list has only one element
remaining, that number must be equal to gcd(S).

For this algorithm, we instead stop when the size of the list is less than 2
√

n,
performing only about half the number of reduction steps. Then we factor each
number in the list completely, and return the product of all factors of at least√

n − log n numbers in the list, which will equal k if we make the assumption
above.

Input: S ⊆ N and n ∈ N, with |S| < n and ∀s ∈ S, s ≤ n.
1: L← list of numbers in S {elements accessible via L1, L2, . . .}
2: while |L| ≥ 2

√
n do

3: L← 〈gcd(L1, L2), gcd(L3, L4), gcd(L5, L6), . . .〉
4: u← |L|
5: T ← balanced binary tree-backed dictionary {initially empty}
6: for i = 1 to u do

7: Compute the complete prime factorization of Li: pe1

1 pe2

2 pe3

3 · · · .
8: for all p

ej

j do

9: Increase T [pj], T [p2
j], . . . , T [p

ej

j] by 1
10: k ← 1
11: while T not empty do

12: r ← largest key in T
13: if T [r] ≥ u− log n and r ∤ k then

14: k ← rk
15: remove r from T
16: return k

Algorithm 4: Algorithm to find k from the set S of coefficient differences

Theorem 7. Algorithm 4 correctly computes k, given the assumption that every
gcd of at least n−√n log n numbers from S divides k, and provided that |S| and√

n are each greater than log n. Furthermore, the algorithm uses O(n) word
operations and operations on integers less than or equal to n.

17

Proof. First note that |S| < s ≤ n.
Suppose the complete prime factorization of k is pe1

1 pe2

2 pe3

3 . From the defi-
nition of k, there are at most log n elements in S that are not divisible by pei

i ,
for each i. Then since, at any point in the algorithm, each Li is the gcd of a
disjoint subset of S, there are at most log n elements of L that are not divisible
by pei

i .
Now, if |L| < 2

√
n initially, then the first while loop never runs, and so

u = |S| > log n. And since |L| ≥ 2
√

n before the last iteration of the first while
loop, we know that u ≥ √n > log n. So there is always at least one element
remaining in L after step 4 which is divisible by pei

i .
Then at step 10 we know that T [pei

i] ≥ u− log n ≥ 1. Therefore by step 16,
pei

i | k. This means that the real value of k divides the value returned from the
algorithm.

Now suppose the two values are not the same, that is, suppose the true k is
a proper divisor of the number returned from the algorithm. Then there exists
a prime power divisor of the returned value which does not divide the true k,
say pe.

Notice that every key added to T is a prime power. So define the set

P = {pj | T [pj] ≥ u− log n at step 10}.

Since the returned value is a product of keys from T , we know that P has at
least one element. Furthermore, max P will be removed from T and multiplied
into the value k before any other values from P . Then since each element in P
divides max P , no other element in P is multiplied into the result on line 14.

Therefore, since pe divides the returned value, pe|max P . Since T [max P] ≥
u− log n, the value must have been incremented at least u− log n times on line
9. Therefore pe was a divisor of at least u− log n of the Li’s. Since each one of
those was a gcd of at least ⌊n

u⌋ entries from S, this means that pe divides the
gcd of a subset of S with at least n−√n log n entries. So from the condition of
the theorem, pe divides the true value of k.

This is a contradiction, so the original statement must have been false;
namely, the returned k is equal to the true value of k.

For the complexity, first note that each entry in L is always less than or
equal to n, since the gcd of two numbers is never larger than either number.
Then, if we kept taking gcds until |L| = 1, there would be O(|S|) ∈ O(n) nodes
total, and computing each gcd takes constant time, so the total cost would be
O(n); we are stopping early (as soon as |L| < 2

√
n), so the cost will still be

O(n).
To factor each Li at step 7, we can use standard trial division at a cost of

O(
√

n) for each factorization; using a faster factorization algorithm will probably
be better in practice. Then, since u < 2

√
n, the total cost to factor all the Li’s

will be O(n).
Next, notice that since each Li ≤ n, the sum of the exponents in the prime

factorization of Li must be at most log2 n. So we only increment O(log n) values
in T for each Li. This means that |T | ∈ √n log n, and so if we used any balanced

18

binary tree algorithm for T , the total cost of step 9 for all iterations is

O(
√

n log n log(
√

n log n)) ∈ O(
√

n log2 n) ∈ O(n).

Using a hash table for T is likely to give even better results in practice.
Finally, since |T | ∈ O(

√
n log n), the last while loop runs in O(n). Therefore

the complexity of the entire algorithm is O(n).

Once k is determined, the coefficients of f1(x) and f2(x) can be determined
by making one more pass through the input polynomial and testing whether
each exponent is divisible by k. So this gives a complete algorithm for step 1,
at least when the input is given in the dense representation.

If the input is given in the sparse representation, we can still find a k, just
under the relatively heavy restriction that ŝ = 0, by continuing the first while
loop in Algorithm 4 to find the gcd of all of S.

We can also speed up Algorithm 4 with some early termination conditions,
making it adaptive. In the first while loop, stop whenever more than log n
entries in L are equal to 1, or when at least |L| − log n entries in L are equal to
each other. In the former case, return 1, and in the latter, return the common
entry.

5 Coefficients in Sequence

Both of the preceding adaptive approaches require that at least one of the input
polynomials has few nonzero terms in its dense representation. However, there
are some polynomials which are completely dense but which can be multiplied
quickly.

One class of such polynomials is those whose coefficients are in an arithmetic
or a geometric sequence. Recall that these are sequences of the forms

{a + bi}i≥0 and {cdi}i≥0,

respectively. Here, a, b, c, d ∈ R and i ∈ Z+, and the first elements in the
sequences are a and c, respectively.

Specifically, the representation we will use for this approach is to represent
the input polynomial f(x) with the tuple (a, b, c, d, f2(x)), where a, b, c, d ∈ R

are the parameters of an arithmetic and a geometric sequence, as above, and
f2(x) is a sparse polynomial in R[x]. Under this representation, f(x) is defined
as the sum of f2(x) and the following two polynomials:

fa(x) = a + (a + b)x + (a + 2b)x2 + · · ·+ (a + bi)xi + · · · (5.1)

fg(x) = c + cdx + cd2x2 + · · ·+ cdixi + · · · . (5.2)

So the coefficients of f(x) are the sum of an arithmetic and a geometric sequence,
with a few coefficients in f2(x) that did not fit into the sequence sum. Note
that this representation actually captures the coefficients being the sums of
an arbitrary number of arithmetic sequences, since the sum of two arithmetic
sequences is still an arithmetic sequence. However, this property does not hold
for geometric sequences, so that is a limitation of this representation.

19

5.1 Sequential Coefficients Multiplication (Step 2)

Note that, in general, the product of two polynomials whose coefficients come
from an arithmetic or from a geometric sequence will not have coefficients that
form any arithmetic or geometric sequence (or sum of two of them). So it does
not make much sense to produce output in the sequential-coefficients represen-
tation. And, except for very special circumstances, the output will always be
dense, and so it will not be useful to give output in the sparse representation.
Therefore, for this adaptive approach, the output will always be given in the
standard dense representation; hence we ignore step 3.

To see how the algorithm works, let g(x) be an arbitrary dense polynomial
of degree less than m with coefficients g0, g1, g2, . . . , gm−1, so we write g(x) as

g(x) = g0 + g1x + g2x
2 + · · ·+ gm−1x

m−1.

Now first consider fa(x) as in (5.1) above, with degree less than n. Then
the first few coefficients of the product fa(x)g(x) are

ag0, a(g0 + g1) + bg0, a(g0 + g1 + g2) + b(2g0 + g1),

A similar pattern exists for the last few coefficients, which are

. . . , a(gm−2 + gm−1) + b((n− 1)gm−2 + (n− 2)gm−1), agm−1 + b(n− 1)gm−1.

This leads to Algorithm 5 for multiplication by a dense polynomial whose
coefficients form an arithmetic sequence.

Theorem 8. Algorithm 5 gives correct output and uses O(n + m) ring opera-
tions.

Proof. The correctness of the algorithm can be confirmed simply by examining
the coefficients of direct multiplication for the different cases, as we did briefly
above.

For the complexity, we can see first that the number of iterations through
any for loop is exactly n + m − 1. Each line that updates h(x) (lines 6, 11,
15, and 19) is really just setting one coefficient of the result, and so can be
performed in constant time. And each iteration through any for loop uses a
constant number of ring operations.

Therefore the total number of ring operations is O(n + m), and this also
dominates any other word operations performed.

We take a similar approach to develop an algorithm for multiplication when
the coefficients form a geometric sequence. So consider fg(x) as in (5.2) above,
with degree less than n. The first few terms of the product fg(x)g(x) are:

cg0, c(dg0 + g1), c(d
2g0 + dg1 + g2), . . . ,

and the last few terms are:

. . . , c(dn−1gm−2 + dn−2gm−1), cd
n−1gm−1.

20

Input: (a, b, n) ∈ R × R × Z+ representing fa(x) and g(x) dense with degree
less than m

1: h(x)← dense polynomial with degree less than n + m− 1
2: α, β ← 0 ∈ R

3: for i = 0 to min{n− 1,m− 1} do

4: β ← β + α
5: α← α + gi

6: h(x)← h(x) + (aα + bβ)xi

7: if n < m then

8: for i = n to m− 1 do

9: β ← β + α− ngi−n

10: α← α− gi−n + gi

11: h(x)← h(x) + (aα + bβ)xi

12: else if m < n then

13: for i = m to n− 1 do

14: β ← β + α
15: h(x)← h(x) + (aα + bβ)xi

16: for i = max{n,m} to n + m− 2 do

17: β ← β + α− ngi−n

18: α← α− gi−n

19: h(x)← h(x) + (aα + bβ)xi

20: return h(x)

Algorithm 5: Arithmetic Sequence Coefficients Multiplication

Input: (c, d, n) ∈ R×R×N representing fg(x) and g(x) dense with degree less
than m

1: h(x)← dense polynomial with degree less than n + m− 1
2: α← 0 ∈ R

3: for i = 0 to min{n− 1,m− 1} do

4: α← dα + gi

5: h(x)← h(x) + cαxi

6: if n < m then

7: for i = n to m− 1 do

8: α← dα− dngi−n + gi

9: h(x)← h(x) + cαxi

10: else if m < n then

11: for i = m to n− 1 do

12: α← dα
13: h(x)← h(x) + cαxi

14: for i = max{n,m} to n + m− 2 do

15: α← dα− dngi−n

16: h(x)← h(x) + cαxi

17: return h(x)

Algorithm 6: Geometric Sequence Coefficients Multiplication

21

This leads to Algorithm 6 for multiplication by a polynomial whose coeffi-
cients form a geometric sequence. The proof of Theorem 9 is nearly identical to
that of Theorem 8, and so we omit it for the sake of brevity.

Theorem 9. Algorithm 6 gives correct output and uses O(n + m) ring opera-
tions.

Using the preceding two algorithms, it is not too difficult to construct Algo-
rithm 7 for general multiplication of polynomials in the sequential coefficients
representation:

Input: f(x) = fa(x) + fg(x) + f2(x) and g(x) = ga(x) + gg(x) + g2(x) with
degrees less than n and m, respectively.

1: g(x)← ga(x) + gg(x) + g2(x) (dense representation)
2: h(x)← fa(x)g(x) via Algorithm 5
3: h(x)← h(x) + fg(x)g(x) via Algorithm 6
4: h(x)← h(x) + ga(x)f2(x) via Algorithm 5
5: h(x)← h(x) + gg(x)f2(x) via Algorithm 6
6: h(x)← h(x) + f2(x)g2(x) via Sparse Multiplication
7: return h(x)

Algorithm 7: Sequential Coefficients Polynomial Multiplication

Theorem 10. Algorithm 7 produces the product f(x)g(x) using O(n + m + ŝt̂)
ring operations, where ŝ and t̂ are the sparsities of f2(x) and g2(x), respectively.

Proof. Correctness follows from the definitions and Theorems 8 and 9.
Step 1 is just addition, so it uses O(m) ring operations. Steps 2–5 each use

O(n+m) ring operations, by Theorems 8 and 9. And any sparse multiplication
algorithm will use O(ŝt̂) ring operations for step 6.

Therefore the total complexity is O(n + m + ŝt̂) ring operations.

5.2 Recognizing Coefficient Sequences (Step 1)

Suppose we are given a polynomial f(x) to parse into the sequential-coefficients
representation. Since the multiplication will always take at least linear time
in the degree of f(x) (from Theorem 10), we can always convert f(x) into the
dense representation first without taking any (asymptotically) extra time.

Now given a dense f(x) ∈ R[x] with degree less than n, the question is
how large we should allow ŝ — the number of terms that do not fall into the
arithmetic-geometric sequence — to be. The following theorem answers this
question.

Theorem 11. The sequential-coefficients multiplication algorithm will always
be asymptotically at least as fast as standard dense multiplication iff ŝ ∈ O(lg n).

Proof. First, assume ŝ ∈ O(lg n), and suppose we are multiplying by a poly-
nomial g(x) ∈ R[x] with degree m. Standard dense multiplication will use

22

Θ(max{n lg m,m lg n}) ring operations. But we will always have t̂ ≤ m, so
from Theorem 10, the sequential-coefficients multiplication algorithm will only
use O(n + m + ŝm) ring operations, which is O(n + m lg n), which in turn is
O(max{n lg m,m lg n}). So the sequential-coefficients algorithm is never worse
in this case.

For the other direction, suppose ŝ /∈ O(lg n) — that is, lg n ∈ o(ŝ). And let
g(x) be a dense polynomial with degree m − 1 > n whose coefficients are not
in any kind of arithmetic-geometric sequence. Then dense multiplication can
use as few as O(m lg n) ring operations, which is o(m + n + mŝ), the cost of
sequential-coefficients multiplication.

So for some implementation-dependant slack variable ω ∈ R+, we will require
the number of terms in f(x) that do not lie in the arithmetic-geometric sequence
to be at most ω lg n. Now define r to be the length of the longest consecutive run
of coefficients in f(x) that are not in f2(x) — that is, they are in the arithmetic-
geometric sequence. Since the sparsity of f2(x) is at most ω lg n, a pigeon hole
principle-like argument tells us that

r ≥
⌈

n + 1

ω lg n + 1
− 1

⌉

.

Then, since log2 n ∈ o(n), ω lg n ∈ Θ(log n), and r ∈ Θ(n/ log n), there exists a
constant n0 such that whenever n ≥ n0, r > ω lg n.

If n is less than such a n0, then its size can be considered contant, and we
just perform standard dense multiplication. Otherwise we know that, if f(x)
can be parsed into the sequential-coefficients representation with the sparsity of
f2(x) at most ω lg n, then there exists a consecutive run of at least r coefficients
in f(x) that do not appear in f2(x), and furthermore no other consecutive run
of at least r coefficients forms an arithmetic-geometric sequence.

Additionally, we can see that the differences of terms in the arithmetic se-
quence {a + bi}i≥0 will all be b, and the quotients of terms in the geometric
sequence {cdi}i≥0 will all be d. Given that we can perform division in R, Al-
gorithm 8 finds the sequential-coefficients representation of f(x) or determines
that none exists with the sparsity of f2(x) at most ω lg n.

Theorem 12. Algorithm 8 correctly computes the sequential-coefficients rep-
resentation of f(x), if it exists and n ≥ n0. Otherwise, the algorithm outputs
FAIL. At most O(n) ring operations are used in the computation.

Proof. As the algorithm runs, the α’s store differences between coefficients, the
β’s store differences between the α’s, and the γ’s store quotients between the
β’s. If the coefficients are all in the arithmetic-geometric sequence defined by
(a, b, c, d), then we know that each ci = a + bi + cdi. This means that the
differences (i.e. the α’s) will have the form b + c(d − i)di. The differences of
these (i.e. the β’s) will have the form c(d−i)2di. And the quotients of these (i.e.
the γ’s) will all be d. So we have the following easily-verifiable loop invariant
each time the condition of the while loop on line 9 is evaluated, provided the

23

Input: f(x) = c0 + c1x + c2x
2 + · · ·+ cn−1x

n−1 ∈ R[x], ω ∈ R+

1: r ← ⌈(n + 1)/(ω lg n + 1)⌉ − 1
2: if r ≤ ω lg n then

3: return FAIL

4: α0, β0, γ0, α1, β1, γ1 ∈ R

5: i← 4, k ← 1 ∈ N
6: α0 ← c2 − c1, α1 ← c3 − c2

7: β0 ← α0 − (c1 − c0), β1 ← α1 − α0

8: γ1 ← β1/β0

9: while i < n and k < r − 3 do

10: (α0, β0, γ0)← (α1, β1, γ1)
11: α1 ← ci − ci−1

12: β1 ← α1 − α0

13: γ1 ← β1/β0

14: if γ1 = γ0 then

15: k ← k + 1
16: else

17: k ← 1
18: i← i + 1
19: if k < r − 3 then

20: return FAIL

21: d← γ1

22: c← β1/[(d− 1)2di−2]
23: b← α0 − c(d− 1)di−2

24: a← ci−2 − b(i− 2)− cdi−2

25: f2(x)← 0 (dense, degree n− 1)
26: ŝ← 0 ∈ Z+

27: for j = 0 to n− 1 do

28: if cj 6= a + bi + cdi then

29: ŝ← ŝ + 1
30: if ŝ > ω lg n then

31: return FAIL

32: f2(x)← f2(x) + [cj − (a + bi + cdi)]xi

33: return (a, b, c, d, f2(x))

Algorithm 8: Conversion to Sequential-Coefficients Representation

24

coefficients ci−3 through ci are all in the arithmetic-geometric sequence (i.e. not
in f2(x)):

α0 = b + c(d− 1)di−2 α1 = b + c(d− 1)di−1

β0 = c(d− 1)2di−3 β1 = c(d− 1)2di−2

γ1 = d.

So if ci−r+1 through ci are all in the arithmetic-geometric sequence, then
the γ’s will be equal for r − 3 iterations, causing the while loop to terminate
with k = r − 3. The converse is also true — namely, if the γ’s are equal for at
least r−3 iterations, then ci−r+1 through ci are all terms in a single arithmetic-
geometric sequence. If such a sequence exists with all the coefficients of f(x)
except for ω lg n, and n ≥ n0, then this means ci−r+1 through ci lie in the
arithmetic-geometric sequence we are looking for, and so γ1 must equal the
value of parameter d for the sequence.

Then, from the loop invariant, we can see that the values of c, b, a are cor-
rectly computed in steps 22 through 24. So if the sequence exists and f2(x) has
sparsity at most ω lg n, then the if condition on line 28 is true no more than ω lg n
times, and therefore the value of ŝ is never more than ω lg n, so the algorithm
terminates normally on the last line and returns the correct parameters.

Furthermore, if the algorithm terminates on the last line and returns any-
thing other than FAIL, then from the last for loop, we can see clearly that f(x)
must be represented by (a, b, c, d, f2(x)) with the sparsity of f2(x) no more than
ω lg n. Therefore the algorithm always gives the correct output.

For the complexity, clearly the while loop on line 9 and the for loop on line
27 each run at most n times. The bodies of both loops use a constant number of
ring operations, provided we keep one extra local variable for the value of di in
the for loop, and multiply it by d at each iteration rather than recomputing di.
The value di−2 for lines 22 to 24 can be computed by repeated squaring with
O(lg i) ∈ O(lg n) multiplications, and everything else also uses just a constant
number of ring operations. So the total cost is O(n).

For Algorithm 8, as we mentioned earlier, we must be able to perform divi-
sion in R efficiently. If R is a field, this is always possible. In other cases, we
still may be able to perform Euclidian division (i.e. division with remainder),
which is good enough for our purposes here. If division is not possible in R,
then it is easy to modify the algorithm to only identify arithmetic sequences, as
we currently have no other way of identifying geometric sequences.

6 Further Directions

6.1 Implementation

It remains to be seen whether the theoretical improvements we give here bear
any practical fruit. To test this, a careful implementation of the above algo-
rithms is needed. Special care must be given to memory access issues to reduce
overhead from caching, which is not accounted for in the theoretical complexity

25

measures, but which is likely to be very significant in the actual cost of the al-
gorithms, especially since the polynomials for which the above algorithms give
any improvement are likely to have very high degree.

For dense polynomial multiplication, the reference implementation would
almost certainly be NTL [10], which appears to be the most efficient imple-
mentation of fast univariate polynomial arithmetic over a variety of rings and
fields.

For sparse polynomial multiplication, it is not quite so clear what the refer-
ence implementation should be. It seems that practitioners are not very inter-
ested specifically in univariate sparse polynomial multiplication (more on this
below). Every general-purpose computer algebra software program implements
sparse polynomial arithmetic, often by default. However, these programs are
usually not very highly tuned, and it generally isn’t quite fair to compare highly
specialized against general-purpose software. However, add-on packages, such
as the one discussed in [7], could be useful as a reference implementation.

Designing test cases for the adaptive polynomial multiplication algorithms
given above is also problematic. One avenue for exploration would be to specifi-
cally choose polynomials that should be handled well by the adaptive algorithms
(for example, polynomials that actually have dense chunks with large gaps in
between). Another method would be to simply choose random polynomials;
however, it seems unlikely that any of the adaptive algorithms would be faster
in the general case. Very useful would be a class of polynomials that fit one or
more of the adaptive categories well and which are actually used in practice,
but we are not currently aware of any such class at this time.

6.2 Combination of Ideas

Just as the various adaptive algorithms for sorting were combined to give asymp-
totically superior adaptive algorithms, so it seems desirable to have one adaptive
algorithm which somehow captures all three of the ideas we present here. A brief
sketch of such an algorithm is given below.

The representation (and therefore the corresponding algorithms) will be re-
cursive. This may seem inefficient, but in fact the last comprehensive test of
different polynomial representations resulted in the conclusion that a recursive
representation was best [11], so there is some precedent (although in a rather
different arena).

If the input polynomial f(x) is dense, we first perform the sequential-coefficients
conversion to give a sparse polynomial. This sparse polynomial is then parsed
into the chunky representation. Next, each dense chunk is parsed into the
equal-spaced representation. Then each dense polynomial resulting is given to
the sequential-coefficients parsing algorithm, and the recursion continues until
all three adaptive conversion algorithms give no improvement.

If f(x) is given in the sparse representation, we do the same thing, but start
by performing the chunky coversion and moving down recursively from there.

One key advantage to this setup is that the polynomials given to each con-
version algorithm always look the same: the sequential-coefficients and equal-

26

spaced conversion algorithms always get a densely-represented polynomial, and
the chunky conversion algorithm always gets a sparsely-represented polynomial.
This allows us to tune the algorithms more finely, and also avoids some of the
problems that the sequential-coefficients and equal-spaced algorithms had with
sparse input polynomials.

Though seemingly simple on the surface, this combination of ideas is quite
difficult to analyze and clearly define. However, a careful analysis and even
more careful implementation are likely to produce better results than any of the
individual adaptive algorithms gives.

6.3 Multivariate

One of the main advantages in using the sparse representation of polynomials
is that the total (i.e. dense) number of coefficients grows exponentially with
the number of indeterminates of the polynomial. For this reason, it seems that
the primary current use in practice of sparse polynomials is in representing
multivariate polynomials. So in order to have a more useful adaptive algorithm
for polynomial multiplication, we must handle the multivariate case.

For most of the ideas discussed here, it seems that simply imposing an order-
ing on the indeterminates makes the multivariate case relatively straightforward.
However, there are numerous details to work out for this case. And a more pow-
erful adaptive algorithm should be able to give the optimal term ordering for
multiplication, given one, two, or more multiplicands. This is an entirely new
challenge which we have not yet considered.

7 Conclusion

The three main ideas presented here, chunky, equal-spaced, and sequential-
coefficients multiplications, all give substantial theoretical improvements over
both the standard sparse and dense multiplaction algorithms for certain types
of inputs. Furthermore, the worst-case behavior is usually no worse than the
standard algorithms, making these adaptive algorithms asymptotically superior.

We do not yet know what kind of practial improvements can be achieved
with these methods; however, it is clear that there are many classes of uni-
variate polynomials which are in some sense “easier” to multiply. Adaptive
algorithms which take advantage of the structure of the input polynomails seem
very promising in improving these well-studied computational problems which
have such a central importance in computer algebra.

References

[1] Peter Bürgisser and Martin Lotz. Lower bounds on the bounded coefficient
complexity of bilinear maps. J. ACM, 51(3):464–482 (electronic), 2004.

27

[2] David G. Cantor and Erich Kaltofen. On fast multiplication of polynomials
over arbitrary algebras. Acta Inform., 28(7):693–701, 1991.

[3] James W. Cooley and John W. Tukey. An algorithm for the machine
calculation of complex Fourier series. Math. Comp., 19:297–301, 1965.

[4] Martin Fürer. Faster integer multiplication. pages 57–66, 2007.

[5] Stephen C. Johnson. Sparse polynomial arithmetic. SIGSAM Bull.,
8(3):63–71, 1974.

[6] A. Karatsuba and Yu. Ofman. Multiplication of multidigit numbers on
automata. Dokl. Akad. Nauk SSSR, 7:595–596, 1963.

[7] Michael Monagan and Roman Pearce. Polynomial division using dynamic
arrays, heaps, and packed exponent vectors. Preprint; accepted to CASC
2007.

[8] A. Schönhage. Schnelle Multiplikation von Polynomen über Körpern der
Charakteristik 2. Acta Informat., 7(4):395–398, 1976/77.

[9] A. Schönhage and V. Strassen. Schnelle Multiplikation grosser Zahlen.
Computing (Arch. Elektron. Rechnen), 7:281–292, 1971.

[10] Victor Shoup. Ntl: A library for doing number theory. Online,
http://www.shoup.net/ntl/, 2007.

[11] David R. Stoutemeyer. Which polynomial representation is best? In
Proc. 1984 MACSYMA Users’ Conference, pages 221–244, Schenectady,
NY, 1984.

[12] Staal A. Vinterbo. Maximum k-intersection, edge labeled multigraph max
capacity k-path, and max factor k-gcd are all NP-hard. Technical Report
DSG TR 2002/12, Decision Systems Group, Brigham and Women’s Hospi-
tal, 2002.

[13] Joachim von zur Gathen and Jürgen Gerhard. Modern computer algebra.
Cambridge University Press, Cambridge, second edition, 2003.

[14] Thomas Yan. The geobucket data structure for polynomials. J. Symbolic
Comput., 25(3):285–293, 1998.

28

