Appendix D Review of Computer Networks

In this appendix we discuss computer networking concepts relevant to distributed database systems. We omit most of the details of the technological and technical issues in favor of discussing the main concepts.

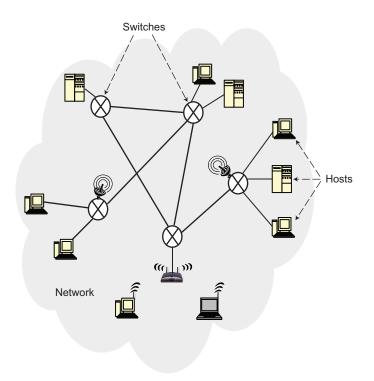


Fig. D.1: A Computer Network

D Review of Computer Networks

We define a computer network as an interconnected collection of autonomous computers that are capable of exchanging information among themselves (Figure D.1). The keywords in this definition are *interconnected* and *autonomous*. We want the computers to be autonomous so that each computer can execute programs on its own. We also want the computers to be interconnected so that they are capable of exchanging information. Computers on a network are referred to as *nodes*, *hosts*, *end* systems, or sites. Note that sometimes the terms host and end system are used to refer simply to the equipment, whereas *site* is reserved for the equipment as well as the software that runs on it. Similarly, node is generally used as a generic reference to the computers or to the switches in a network. They form one of the fundamental hardware components of a network. The other fundamental component is special purpose devices and links that form the communication path that interconnects the nodes. As depicted in Figure D.1, the hosts are connected to the network through switches (represented as circles with an X in them)¹, which are special-purpose equipment that *route* messages through the network. Some of the hosts may be connected to the switches directly (using fiber optic, coaxial cable or copper wire) and some via wireless base stations. The switches are connected to each other by communication links that may be fiber optics, coaxial cable, satellite links, microwave connections, etc.

The most widely used computer network these days is the Internet. It is hard to define the Internet since the term is used to mean different things, but perhaps the best definition is that it is a network of networks (Figure D.2). Each of these networks is referred to as an *intranet* to highlight the fact that they are "internal" to an organization. An intranet, then, consists of a set of links and routers (shown as "R" in Figure D.2) administered by a single administrative entity or by its delegates. For instance, the routers and links at a university constitute a single administrative domain. Such domains may be located within a single geographical area (such as the university network mentioned above), or, as in the case of large enterprises or Internet Service Provider (ISP) networks, span multiple geographical areas. Each intranet is connected to some others by means of links provisioned from ISPs. These links are typically high-speed, long-distance duplex data transmission media (we will define these terms shortly), such as a fiber-optic cable, or a satellite link. These links make up what is called the Internet backbone. Each intranet has a router interface that connects it to the backbone, as shown in Figure D.2. Thus, each link connects an intranet router to an ISP's router. ISP's routers are connected by similar links to routers of other ISPs. This allows servers and clients within an intranet to communicate with servers and clients in other intranets.

D-2

¹ Note that the terms "switch" and "router" are sometimes used interchangeably (even within the same text). However, other times they are used to mean slightly different things: switch refers to the devices inside a network whereas router refers to one that is at the edge of a network connecting it to the backbone. We use them interchangeably as in Figures D.1 and D.2.

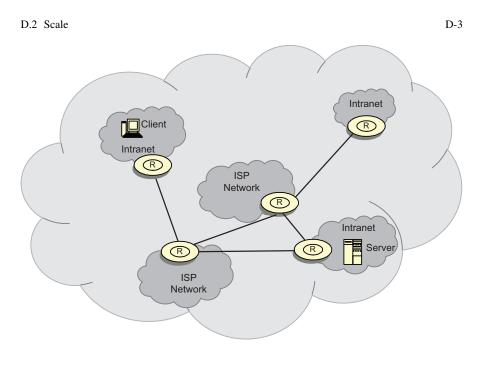


Fig. D.2: Internet

D.1 Types of Networks

There are various criteria by which computer networks can be classified. One criterion is the geographic distribution (also called *scale* [Tanenbaum, 2003]), a second criterion is the *interconnection structure* of nodes (also called *topology*), and the third is the mode of transmission.

D.2 Scale

In terms of geographic distribution, networks are classified as wide area networks, metropolitan area networks and local area networks. The distinctions among these are somewhat blurred, but in the following, we give some general guidelines that identify each of these networks. The primary distinction among them are probably in terms of propagation delay, administrative control, and the protocols that are used in managing them.

A wide area network (WAN) is one where the link distance between any two nodes is relatively long – minimum distance that is typically mentioned is approximately 20 kilometers (km) and can go as large as thousands of kilometers. Use of switches allow the aggregation of communication over wider areas such as this. Owing to the distances that need to be traveled, long delays are involved in wide area data transmission. For example, via satellite, there is a minimum delay of half a second for data to be transmitted from the source to the destination and acknowledged. This is because the speed with which signals can be transmitted is limited to the speed of light, and the distances that need to be spanned are great (about 31,000 km from an earth station to a satellite).

WANs are typically characterized by the heterogeneity of the transmission media, the computers, and the user community involved. Early WANs had a limited capacity of less than a few megabits-per-second (Mbps). However, most of the current ones are broadband WANs that provide much higher capacities². These individual channels are aggregated into the backbone links that have much higher capacity. These networks can carry multiple data streams with varying characteristics (e.g., data as well as audio/video streams), the possibility of negotiating for a level of quality of service (QoS) and reserving network resources sufficient to fulfill this level of QoS.

Local area networks (LANs) are typically limited in geographic scope. They provide higher capacity communication over inexpensive transmission media. Higher capacity and shorter distances between hosts result in very short delays. Furthermore, the better controlled environments in which the communication links are laid out (within buildings, for example) reduce the noise and interference, and the heterogeneity among the computers that are connected is easier to manage, and a common transmission medium is used.

Metropolitan area networks (MANs) are in between LANs and WANs in scale and cover a city or a portion of it.

D.3 Topology

As the name indicates, interconnection structure or topology refers to the way nodes on a network are interconnected. The network in Figure D.1 is what is called an *irregular* network, where the interconnections between nodes do not follow any pattern. It is possible to find a node that is connected to only one other node, as well as nodes that have connections to a number of nodes. Internet is a typical irregular network.

Another popular topology is the bus, where all the computers are connected to a common channel (Figure D.3). This type of network is primarily used in LANs. The link control is typically performed using *carrier sense medium access with collision detection* (CSMA/CD) protocol. The CSMA/CD bus control mechanism can best be described as a "listen before and while you transmit" scheme. The fundamental point is that each host listens continuously to what occurs on the bus. When a message transmission is detected, the host checks if the message is addressed to it, and takes the appropriate action. If it wants to transmit, it waits until it detects no more activity on the bus and then places its message on the network and continues to listen to bus activity. If it detects another transmission while it is transmitting a message itself,

² We refrain from quantifying many of these metrics since technology evolves fast and the values change along with the technology.

D.3 Topology

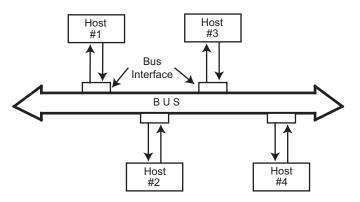


Fig. D.3: Bus Network

then there has been a "collision." In such a case, and when the collision is detected, the transmitting hosts abort the transmission, each waits a random amount of time, and then each retransmits the message. The basic CSMA/CD scheme is used in the Ethernet local area network³.

Other common alternatives are star, ring, bus, and mesh networks.

- *Star* networks connect all the hosts to a central node that coordinates the transmission on the network. Thus if two hosts want to communicate, they have to go through the central node. Since there is a separate link between the central node and each of the others, there is a negotiation between the hosts and the central node when they wish to communicate.
- *Ring* networks interconnect the hosts in the form of a loop. This type of network was originally proposed for LANs, but their use in these networks has nearly stopped. They are now primarily used in MANs (e.g., SONET rings). In their current incarnation, data transmission around the ring is usually bidirectional (original rings were unidirectional), with each station (actually the interface to which each station is connected) serving as an active repeater that receives a message, checks the address, copies the message if it is addressed to that station, and retransmits it.

Control of communication in ring type networks is generally controlled by means of a *control token*. In the simplest type of token ring networks, a token, which has one bit pattern to indicate that the network is free and a different bit pattern to indicate that it is in use, is circulated around the network. Any site wanting to transmit a message waits for the token. When it arrives, the site checks the token's bit pattern to see if the network is free or in use. If it is free,

³ In most current implementations of Ethernet, multiple busses are linked via one or more switches (called *switched hubs*) for expanded coverage and to better control the load on each bus segment. In these systems, individual computers can directly be connected to the switch as well. These are known as switched Ethernet.

the site changes the bit pattern to indicate that the network is in use and then places the messages on the ring. The message circulates around the ring and returns to the sender which changes the bit pattern to free and sends the token to the next computer down the line.

• *Complete* (or *mesh*) interconnection is one where each node is interconnected to every other node. Such an interconnection structure obviously provides more reliability and the possibility of better performance than that of the structures noted previously. However, it is also the costliest. For example, a complete connection of 10,000 computers would require approximately (10,000)² links.⁴

D.4 Communication Schemes

In terms of the physical communication schemes employed, networks can be either *point-to-point* (also called *unicast*) networks, or *broadcast* (sometimes also called *multi-point*) networks.

In point-to-point networks, there are one or more (direct or indirect) links between each pair of nodes. The communication is always between two nodes and the receiver and sender are identified by their addresses that are included in the message header. Data transmission from the sender to the receiver follows one of the possibly many links between them, some of which may involve visiting other intermediate nodes. An intermediate node checks the destination address in the message header and if it is not addressed to it, passes it along to the next intermediate node. This is the process of *switching* or *routing*. The selection of the links via which messages are sent is determined by usually elaborate routing algorithms that are beyond our scope. We discuss the details of switching in Section D.5.

The fundamental transmission media for point-to-point networks are twisted pair, coaxial or fiber optic cables. Each of these media have different capacities with twisted pair having the lowest and fiber optic the highest.

In broadcast networks, there is a common communication channel that is utilized by all the nodes in the network. Messages are transmitted over this common channel and received by all the nodes. Each node checks the receiver address and if the message is not addressed to it, ignores it.

A special case of broadcasting is *multicasting* where the message is sent to a subset of the nodes in the network. The receiver address is somehow encoded to indicate which nodes are the recipients.

Broadcast networks are generally radio or satellite-based. In case of satellite transmission, each site beams its transmission to a satellite which then beams it back at a different frequency. Every site on the network listens to the receiving frequency and has to disregard the message if it is not addressed to that site.

Microwave transmission is another mode of data communication and it can be over satellite or terrestrial. Terrestrial microwave links used to form a major portion of

⁴ The general form of the equation is n(n-1)/2, where n is the number of nodes on the network.

most countries' telephone networks although many of these have since been converted to fiber optic. In addition to the public carriers, some companies make use of private terrestrial microwave links. In fact, major metropolitan cities face the problem of microwave interference among privately owned and public carrier links. A very early example that is usually identified as having pioneered the use of satellite microwave transmission is ALOHA [Abramson, 1973].

Satellite and microwave networks are examples of wireless networks. These types of wireless networks are commonly referred to as *wireless broadband* networks. Another type of wireless network is one that is based on *cellular* networks. A cellular network control station is responsible for a geographic area called a *cell* and coordinates the communication from mobile hosts in their cell. These control stations may be linked to a "wireline" backbone network and thereby provide access from/to mobile hosts to other mobile hosts or stationary hosts on the wireline network.

A third type of wireless network with which most of us may be more familiar are *wireless LANs* (commonly referred to as Wi-LAN or WiLan). In this case a number of "base stations" are connected to a wireline network and serve as connection points for mobile hosts (similar to control stations in cellular networks).

A final word on broadcasting topologies is that they have the advantage that it is easier to check for errors and to send messages to more than one site than to do so in point-to-point topologies. On the other hand, since everybody listens in, broadcast networks are not as secure as point-to-point networks.

D.5 Data Communication Concepts

What we refer to as data communication is the set of technologies that enable two hosts to communicate. We are not going to be too detailed in this discussion, since, at the distributed DBMS level, we can assume that the technology exists to move bits between hosts. We, instead, focus on a few important issues that are relevant to understanding delay and routing concepts.

As indicated earlier hosts are connected by *links*, each of which can carry one or more *channels*. Link is a physical entity whereas channel is a logical one. Communication links can carry signals either in digital form or in analog form. Telephone lines, for example, can carry data in analog form between the home and the central office – the rest of the telephone network is now digital and even the home-to-central office link is becoming digital with voice-over-IP (VoIP) technology. Each communication channel has a *capacity*, which can be defined as the amount of information that can be transmitted over the channel in a given time unit. This capacity is commonly referred to as the *bandwidth* of the channel. In analog transmission channels, the bandwidth is defined as the difference (in hertz) between the lowest and highest frequencies that can be transmitted over the channel per second. In digital links, *bandwidth* refers (less formally and with abuse of terminology) to the number of bits that can be transmitted per second (bps).

With respect to delays in getting the user's work done, the bandwidth of a transmission channel is a significant factor, but it is not necessarily the only ones. The other factor in the transmission time is the software employed. There are usually overhead costs involved in data transmission due to the redundancies within the message itself, necessary for error detection and correction. Furthermore, the network software adds headers and trailers to any message, for example, to specify the destination or to check for errors in the entire message. All of these activities contribute to delays in transmitting data. The actual rate at which data are transmitted across the network is known as the *data transfer rate* and this rate is usually less than the actual bandwidth of the transmission channel. The software issues, that generally are referred as *network protocols*, are discussed in the next section.

In computer-to-computer communication, data are usually transmitted in *packets*, as we mentioned earlier. Usually, upper limits on frame sizes are established for each network and each contains data as well as some control information, such as the destination and source addresses, block error check codes, and so on (Figure D.4). If a message that is to be sent from a source node to a destination node cannot fit one frame, it is split over a number of frames. This is be discussed further in Section D.6.

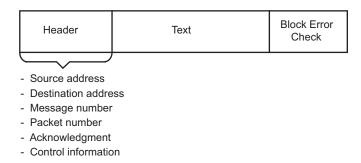


Fig. D.4: Typical Frame Format

There are various possible forms of switching/routing that can occur in point-topoint networks. It is possible to establish a connection such that a dedicated channel exists between the sender and the receiver. This is called *circuit switching* and is commonly used in traditional telephone connections. When a subscriber dials the number of another subscriber, a circuit is established between the two phones by means of various switches. The circuit is maintained during the period of conversation and is broken when one side hangs up. Similar setup is possible in computer networks.

Another form of switching used in computer communication is *packet switching*, where a message is broken up into packets and each packet transmitted individually. In our discussion of the TCP/IP protocol earlier, we referred to messages being transmitted; in fact the TCP protocol (or any other transport layer protocol) takes each application package and breaks it up into fixed sized packets. Therefore, each application message may be sent to the destination as multiple packets.

D-8

D.6 Communication Protocols

Packets for the same message may travel independently of each other and may, in fact, take different routes. The result of routing packets along possibly different links in the network is that they may arrive at the destination out-of-order. Thus the transport layer software at the destination site should be able to sort them into their original order to reconstruct the message. Consequently, it is the individual packages that are routed through the network, which may result in packets reaching the destination at different times and even out of order. The transport layer protocol at the destination is responsible for collating and ordering the packets and generating the application message properly.

The advantages of packet switching are many. First, packet-switching networks provide higher link utilization since each link is not dedicated to a pair of communicating equipment and can be shared by many. This is especially useful in computer communication due to its bursty nature – there is a burst of transmission and then some break before another burst of transmission starts. The link can be used for other transmission when it is idle. Another reason is that packetizing may permit the parallel transmission of data. There is usually no requirement that various packets belonging to the same message travel the same route through the network. In such a case, they may be sent in parallel via different routes to improve the total data transmission time. As mentioned above, the result of routing frames this way is that their in-order delivery cannot be guaranteed.

On the other hand, circuit switching provides a dedicated channel between the receiver and the sender. If there is a sizable amount of data to be transmitted between the two or if the channel sharing in packet switched networks introduces too much delay or delay variance, or packet loss (which are important in multimedia applications), then the dedicated channel facilitates this significantly. Therefore, schemes similar to circuit switching (i.e., reservation-based schemes) have gained favor in the broadband networks that support applications such as multimedia with very high data transmission loads.

D.6 Communication Protocols

Establishing a physical connection between two hosts is not sufficient for them to communicate. Error-free, reliable and efficient communication between hosts requires the implementation of elaborate software systems that are generally called *protocols*. Network protocols are "layered" in that network functionality is divided into layers, each layer performing a well-defined function relying on the services provided by the layer below it and providing a service to the layer above. A protocol defines the services that are performed at one layer. The resulting layered protocol set is referred to as a *protocol stack* or *protocol suite*.

There are different protocol stacks for different types of networks; however, for communication over the Internet, the standard one is what is referred to as TCP/IP that stands for "Transport Control Protocol/Internet Protocol". We focus primarily on TCP/IP in this section as well as some of the common LAN protocols.

D Review of Computer Networks

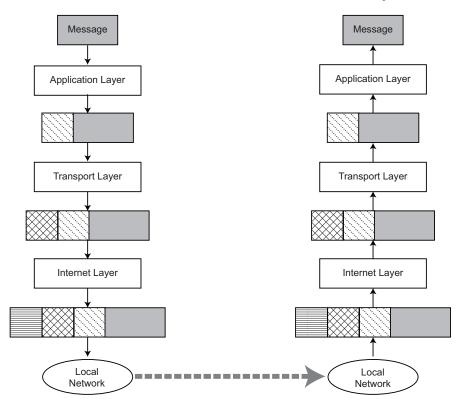


Fig. D.5: Message Transmission using TCP/IP

Before we get into the specifics of the TCP/IP protocol stack, let us first discuss how a message from a process on host C in Figure D.2 is transmitted to a process on server S, assuming both hosts implement the TCP/IP protocol. The process is depicted in Figure D.5.

The appropriate application layer protocol takes the message from the process on host C and creates an application layer message by adding some application layer header information (oblique hatched part in Figure D.5) details of which are not important for us. The application message is handed over to the TCP protocol, which repeats the process by adding its own header information. TCP header includes the necessary information to facilitate the provision of TCP services we discuss shortly. The Internet layer takes the TCP message that is generated and forms an Internet message as we also discuss below. This message is now physically transmitted from host C to its router using the protocol of its own network, then through a series of routers to the router of the network that contains server S, where the process is reversed until the original message is recovered and handed over to the appropriate process on S. The TCP protocols at hosts C and S communicate to ensure the end-to-end guarantees that we discussed.

D-10

D.7 TCP/IP Protocol Stack

What is referred to as TCP/IP is in fact a family of protocols, commonly referred to as the *protocol stack*. It consists of two sets of protocols, one set at the *transport layer* and the other at the *network (Internet) layer* (Figure D.6).

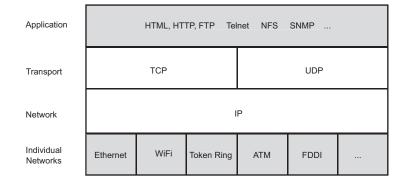


Fig. D.6: TCP/IP Protocol

The transport layer defines the types of services that the network provides to applications. The protocols at this layer address issues such as data loss (can the application tolerate losing some of the data during transmission?), bandwidth (some applications have minimum bandwidth requirements while others can be more elastic in their requirements), and timing (what type of delay can the applications tolerate?). For example, a file transfer application can not tolerate any data loss, can be flexible in its bandwidth use (it will work whether the connection is high capacity or low capacity, although the performance may differ), and it does not have strict timing requirements (although we may not like a file transfer to take a few days, it would still work). In contrast, a real-time audio/video transmission application can tolerate a limited amount of data loss (this may cause some jitter and other problems, but the communication will still be "understandable"), has minimum bandwidth requirement (5-128 Kbps for audio and 5 Kbps-20 Mbps for video), and is time sensitive (audio and video data need to be synchronized).

To deal with these varying requirements (at least with some of them), at the transport layer, two protocols are provided: TCP and UDP. TCP is connectionoriented, meaning that prior setup is required between the sender and the receiver before actual message transmission can start; it provides reliable transmission between the sender and the receiver by ensuring that the messages are received correctly at the receiver (referred to as "end-to-end reliability"); ensures flow control so that the sender does not overwhelm the receiver if the receiver process is not able to keep up with the incoming messages, and ensures congestion control so that the sender is throttled when network is overloaded. Note that TCP does not address the timing and minimum bandwidth guarantees, leaving these to the application layer.

UDP, on the other hand, is a connectionless service that does not provide the reliability, flow control and congestion control guarantees that TCP provides. Nor does it establish a connection between the sender and receiver beforehand. Thus, each message is transmitted hoping that it will get to the destination, but no end-to-end guarantees are provided. Thus, UDP has significantly lower overhead than TCP, and is preferred by applications that would prefer to deal with these requirements themselves, rather than having the network protocol handle them.

The network layer implements the Internet Protocol (IP) that provides the facility to "package" a message in a standard Internet message format for transmission across the network. Each Internet message can be up to 64KB long and consists of a header that contains, among other things, the IP addresses of the sender and the receiver machines (the numbers such as 129.97.79.58 that you may have seen attached to your own machines), and the message body itself. The message format of each network that makes up the Internet can be different, but each of these messages are encoded into an Internet message by the Internet Protocol before they are transmitted⁵.

The importance of TCP/IP is the following. Each of the intranets that are part of the Internet can use its own preferred protocol, so the computers on that network implement that particular protocol (e.g., the token ring mechanism and the CSMA/CS technique described above are examples of these types of protocols). However, if they are to connect to the Internet, they need to be able to communicate using TCP/IP, which are implemented on top of these specific network protocols (Figure D.6).

D.8 Other Protocol Layers

Let us now briefly consider the other two layers depicted in Figure D.6. Although these are not part of the TCP/IP protocol stack, they are necessary to be able to build distributed applications. These make up the top and the bottom layers of the protocol stack.

The Application Protocol layer provides the specifications that distributed applications have to follow. For example, if one is building a Web application, then the documents that will be posted on the Web have to be written according to the HTML protocol (note that HTML is not a networking protocol, but a document encoding protocol) and the communication between the client browser and the Web server has to follow the HTTP protocol. Similar protocols are defined at this layer for other applications as indicated in the figure.

The bottom layer represents the specific network that may be used. Each of those networks have their own message formats and protocols and they provide the mechanisms for data transmission within those networks.

⁵ Today, many of the Intranets also use TCP/IP, in which case IP encapsulation may not be necessary.

D.8 Other Protocol Layers

The standardization for LANs is spearheaded by the Institute of Electrical and Electronics Engineers (IEEE), specifically their Committee No. 802; hence the standard that has been developed is known as the IEEE 802 Standard. The three layers of the IEEE 802 local area network standard are the physical layer, the medium access control layer, and the logical link control layer.

The physical layer deals with physical data transmission issues such as signaling. Medium access control layer defines protocols that control who can have access to the transmission medium and when. Logical link control layer implements protocols that ensure reliable packet transmission between two adjacent computers (not end-to-end). In most LANs, the TCP and IP layer protocols are implemented on top of these three layers, enabling each computer to be able to directly communicate on the Internet.

To enable it to cover a variety of LAN architectures, the 802 local area network standard is actually a number of standards rather than a single one. Originally, it was specified to support three mechanisms at the medium access control level: the CSMA/CD mechanism, token ring, and token access mechanism for bus networks.