
Appendix C
Transaction Processing Fundamentals

In Appendix B our focus was on retrieve-only (or read-only) queries that read data
from a database. We have not yet considered what happens if, for example, two queries
attempt to update the same data item, or if a system failure occurs during execution
of a query. For retrieve-only queries, neither of these conditions is a problem. One
can have two queries reading the value of the same data item concurrently. Similarly,
a read-only query can simply be restarted after a system failure is handled. On the
other hand, it is not difficult to see that for update queries, these conditions can
have disastrous effects on the database. We cannot, for example, simply restart the
execution of an update query following a system failure since certain data item values
may already have been updated prior to the failure and should not be updated again
when the query is restarted. Otherwise, the database would contain incorrect data.
The fundamental point here is that there is no notion of “consistent execution” or

“reliable computation” associated with the concept of a query. That is the focus of this
Appendix that focuses on the concept of a transaction as the basic unit for consistent
and reliable computation.
The concept of a transaction is used in database systems as a basic unit of consistent

and reliable computing. Thus queries are executed as transactions once their execution
strategies are determined and they are translated into primitive database operations.
At this point, we are using the terms consistent and reliable quite informally. Due
to their importance in our discussion, we need to define them more precisely. We
differentiate between database consistency and transaction consistency.
A database is in a consistent state if it obeys all of the consistency (integrity)

constraints defined over it (see Chapter 3). State changes occur due to modifications,
insertions, and deletions (together called updates). Of course, we want to ensure
that the database never enters an inconsistent state. Note that the database can
be (and usually is) temporarily inconsistent during the execution of a transaction.
The important point is that the database should be consistent when the transaction
terminates (Figure C.1).
Transaction consistency, on the other hand, refers to the actions of concurrent

transactions. We would like the database to remain in a consistent state even if there

C-1

C-2 C Transaction Processing Fundamentals

Begin
Transaction T

End
Transaction T

Execution of transaction T

Database in a
consistent state

Database in a
consistent state

Database may be temporarily in an
inconsistent state during execution

Fig. C.1: A Transaction Model

are a number of user requests that are concurrently accessing (reading or updating)
the database.
Reliability refers to both the resiliency of a system to various types of failures and

its capability to recover from them. A resilient system is tolerant of system failures
and can continue to provide services even when failures occur. A recoverable DBMS
is one that can get to a consistent state (by moving back to a previous consistent state
or forward to a new consistent state) following various types of failures.
Transaction management deals with the problems of always keeping the database

in a consistent state even when concurrent accesses and failures occur.

C.1 Definition of a Transaction

Gray [1981] indicates that the transaction concept has its roots in contract law. He
states, “In making a contract, two or more parties negotiate for a while and then make
a deal. The deal is made binding by the joint signature of a document or by some
other act (as simple as a handshake or a nod). If the parties are rather suspicious of
one another or just want to be safe, they appoint an intermediary (usually called an
escrow officer) to coordinate the commitment of the transaction.” The nice aspect of
this historical perspective is that it does indeed encompass some of the fundamental
properties of a transaction (atomicity and durability) as the term is used in database
systems. It also serves to indicate the differences between a transaction and a query.
As indicated before, a transaction is a unit of consistent and reliable computation.

Thus, intuitively, a transaction takes a database, performs an action on it, and generates
a new version of the database, causing a state transition. This is similar to what a
query does, except that if the database was consistent before the execution of the
transaction, we can now guarantee that it will be consistent at the end of its execution
regardless of the fact that (1) the transaction may have been executed concurrently
with others, and (2) failures may have occurred during its execution.

C.1 Definition of a Transaction C-3

In general, a transaction is considered to be made up of a sequence of read and
write operations on the database, together with computation steps. In that sense, a
transaction may be thought of as a program with embedded database access queries
[Papadimitriou, 1986]. Another definition of a transaction is that it is a single execution
of a program [Ullman, 1988]. A single query can also be thought of as a program
that can be posed as a transaction.

Example C.1. Consider the following SQL query for increasing by 10% the budget
of the CAD/CAM project:

UPDATE PROJ
SET BUDGET = BUDGET*1.1
WHERE PNAME= "CAD/CAM"

This query can be specified, using the embedded SQL notation, as a transaction
by giving it a name (e.g., BUDGET_UPDATE) and declaring it as follows:

begin_transaction BUDGET_UPDATE
begin
EXEC SQL UPDATE PROJ

SET BUDGET = BUDGET*1.1
WHERE PNAME= ‘‘CAD/CAM’’

end

♦

The Begin_transaction and end statements delimit a transaction. Note that the
use of delimiters is not enforced in every DBMS. If delimiters are not specified, a
DBMS may simply treat as a transaction the entire program that performs a database
access.

Example C.2. In our discussion of transaction management concepts, we will use an
airline reservation system example. The real-life implementation of this application
almost always makes use of the transaction concept. Let us assume that there is
a FLIGHT relation that records the data about each flight, a CUST relation for the
customers who book flights, and an FC relation indicating which customers are on
what flights. Let us also assume that the relation definitions are as follows (where the
underlined attributes constitute the keys):

FLIGHT(FNO, FDATE, SRC, DEST, STSOLD, CAP)
CUST(CNAME, ADDR, BAL)
FC(FNO, FDATE, CNAME, SPECIAL)

The definition of the attributes in this database schema are as follows: FNO is the
flight number, FDATE denotes the flight date, SRC and DEST indicate the source and
destination for the flight, STSOLD indicates the number of seats that have been sold
on that flight, CAP denotes the passenger capacity on the flight, CNAME indicates the
customer name whose address is stored in ADDR and whose account balance is in
BAL, and SPECIAL corresponds to any SPECIAL requests that the customer may have
for a booking.

C-4 C Transaction Processing Fundamentals

Let us consider a simplified version of a typical reservation application, where a
travel agent enters the flight number, the date, and a customer name, and asks for a
reservation. The transaction to perform this function can be implemented as follows,
where database accesses are specified in embedded SQL notation:

begin_transaction Reservation
begin
input(flight_no , fdate, customer_name)
EXEC SQL UPDATE FLIGHT

SET STSOLD = STSOLD + 1
WHERE FNO = flight_no
AND FDATE = fdate;

EXEC SQL INSERT
INTO FC(FNO,FDATE,CNAME,SPECIAL)
VALUES (flight_no , fdate,customer_name , null};

output("reservation completed")
end

Let us explain this example. First a point about notation. Even though we use
embedded SQL, we do not follow its syntax very strictly. The lowercase terms are
the program variables; the uppercase terms denote database relations and attributes
as well as the SQL statements. Numeric constants are used as they are, whereas
character constants are enclosed in quotes. Keywords of the host language are written
in boldface, and null is a keyword for the null string.
The first thing that the transaction does [line (1)], is to input the flight number,

the date, and the customer name. Line (2) updates the number of sold seats on the
requested flight by one. Line (3) inserts a tuple into the FC relation. Here we assume
that the customer is an old one, so it is not necessary to have an insertion into the
CUST relation, creating a record for the client. The keyword null in line (3) indicates
that the customer has no SPECIAL requests on this flight. Finally, line (4) reports the
result of the transaction to the agent’s terminal. ♦

C.1.1 Termination Conditions of Transactions

The reservation transaction of Example C.2 has an implicit assumption about its
termination. It assumes that there will always be a free seat and does not take into
consideration the fact that the transaction may fail due to lack of seats. This is
an unrealistic assumption that brings up the issue of termination possibilities of
transactions.
A transaction always terminates, even when there are failures as we will see in

Section C.6. If the transaction can complete its task successfully, we say that the
transaction commits. If, on the other hand, a transaction stops without completing its
task, we say that it aborts. Transactions may abort for a number of reasons, which
are discussed later. In our example, a transaction aborts itself because of a condition
that would prevent it from completing its task successfully. Additionally, the DBMS

C.1 Definition of a Transaction C-5

may abort a transaction due to, for example, deadlocks or other conditions. When a
transaction is aborted, its execution is stopped and all of its already executed actions
are undone by returning the database to the state before their execution. This is also
known as rollback.
The importance of commit is twofold. The commit command signals to the DBMS

that the effects of that transaction should now be reflected in the database, thereby
making it visible to other transactions that may access the same data items. Second,
the point at which a transaction is committed is a “point of no return.” The results of
the committed transaction are now permanently stored in the database and cannot be
undone. The implementation of the commit command is discussed in Section C.6.

Example C.3. Let us return to our reservation system example. One thing we did not
consider is that there may not be any free seats available on the desired flight. To
cover this possibility, the reservation transaction needs to be revised as follows:

begin_transaction Reservation
begin
input(flight_no , fdate, customer_name)
EXEC SQL SELECT STSOLD, CAP

INTO temp1, temp2
FROM FLIGHT
WHERE FNO = flight_no
AND FDATE = fdate;

If temp1 = temp2 then
begin

output("no free seats");
Abort

end
else begin

EXEC SQL UPDATE FLIGHT
SET STSOLD = STSOLD + 1
WHERE FNO = flight_no
AND FDATE = fdate;

EXEC SQL INSERT
INTO FC(FNO,FDATE,CNAME,SPECIAL)
VALUES (flight_no , fdate,customer_name , null);

Commit;
output("reservation completed");
end

end_if
end

In this version the first SQL statement gets the STSOLD and CAP into the two
variables temp1 and temp2. These two values are then compared to determine if any
seats are available. The transaction either aborts if there are no free seats, or updates
the STSOLD value and inserts a new tuple into the FC relation to represent the seat
that was sold. ♦

C-6 C Transaction Processing Fundamentals

Several things are important in this example. One is, obviously, the fact that if no
free seats are available, the transaction is aborted1. The second is the ordering of the
output to the user with respect to the abort and commit commands. Transactions can
be aborted either due to application logic, as is the case here, or due to deadlocks
or system failures. If the transaction is aborted, the user can be notified before the
DBMS is instructed to abort it. However, in case of commit, the user notification
has to follow the successful servicing (by the DBMS) of the commit command, for
reliability reasons. These are discussed further in Sections C.2.4 and C.6.

C.1.2 Characterization of Transactions

Observe in the preceding examples that transactions read and write some data. This
has been used as the basis for characterizing a transaction. The data items that a
transaction reads are said to constitute its read set (RS). Similarly, the data items that
a transaction writes are said to constitute its write set (WS). The read set and write set
of a transaction need not be mutually exclusive. The union of the read set and write
set of a transaction constitutes its base set (𝐵𝑆 = 𝑅𝑆 ∪𝑊𝑆).

Example C.4. Considering the reservation transaction as specified in Example C.3
and the insert to be a number of write operations, the above-mentioned sets are
defined as follows:

𝑅𝑆[Reservation] = {FLIGHT.STSOLD, FLIGHT.CAP}
𝑊𝑆[Reservation] = {FLIGHT.STSOLD, FC.FNO, FC.FDATE,

FC.CNAME, FC.SPECIAL}
𝐵𝑆[Reservation] = {FLIGHT.STSOLD, FLIGHT.CAP,

FC.FNO, FC.FDATE, FC.CNAME, FC.SPECIAL}

Note that it may be appropriate to include FLIGHT.FNO and FLIGHT.FDATE in the
read set of Reservation since they are accessed during execution of the SQL query.
We omit them to simplify the example. ♦

We have characterized transactions only on the basis of their read and write
operations, without considering the insertion and deletion operations. We therefore
base our discussion of transaction management concepts on static databases that do
not grow or shrink. This simplification is made in the interest of simplicity. Dynamic
databases have to deal with the problem of phantoms, which can be explained using
the following example. Consider that transaction 𝑇1, during its execution, searches
the FC table for the names of customers who have ordered a SPECIAL meal. It gets
a set of CNAME for customers who satisfy the search criteria. While 𝑇1 is executing,
transaction𝑇2 inserts new tuples into FCwith the SPECIALmeal request, and commits.
If 𝑇1 were to re-issue the same search query later in its execution, it will get back a

1 We will be kind to the airlines and assume that they never overbook. Thus our reservation
transaction does not need to check for that condition.

C.1 Definition of a Transaction C-7

set of CNAME that is different than the original set it had retrieved. Thus, “phantom”
tuples have appeared in the database. We do not discuss phantoms any further in this
book; the topic is discussed at length in many textbooks.
We should also point out that the read and write operations to which we refer

are abstract operations that do not have one-to-one correspondence to physical I/O
primitives. One read in our characterization may translate into a number of primitive
read operations to access the index structures and the physical data pages. The reader
should treat each read and write as a language primitive rather than as an operating
system primitive.

C.1.3 Formalization of the Transaction Concept

By now, the meaning of a transaction should be intuitively clear. To reason about
transactions and about the correctness of the management algorithms, it is necessary
to define the concept formally. We denote by𝑂𝑖 𝑗 (𝑥) some operation 𝑂 𝑗 of transaction
𝑇𝑖 that operates on a database entity 𝑥. Following the conventions adopted in the
preceding section, 𝑂𝑖 𝑗 ∈ {read, write}. Operations are assumed to be atomic (i.e.,
each is executed as an indivisible unit). We let 𝑂𝑆𝑖 denote the set of all operations in
𝑇𝑖 (i.e., 𝑂𝑆𝑖 =

⋃
𝑗 𝑂𝑖 𝑗). We denote by 𝑁𝑖 the termination condition for 𝑇𝑖 , where 𝑁𝑖

∈ {abort, commit}2.
With this terminology we can define a transaction 𝑇𝑖 as a partial ordering over

its operations and the termination condition. A partial order 𝑃 = {Σ, ≺} defines an
ordering among the elements of Σ (called the domain) according to an irreflexive and
transitive binary relation ≺ defined over Σ. In our case Σ consists of the operations
and termination condition of a transaction, whereas ≺ indicates the execution order
of†these operations (which we will read as “precedes in execution order”). Formally,
then, a transaction 𝑇𝑖 is a partial order 𝑇𝑖 = {Σ𝑖 , ≺𝑖}, where

1. Σ𝑖 = 𝑂𝑆𝑖 ∪ {𝑁𝑖}.
2. For any two operations 𝑂𝑖 𝑗 , 𝑂𝑖𝑘 ∈ 𝑂𝑆𝑖 , if 𝑂𝑖 𝑗 = {𝑅(𝑥)or𝑊 (𝑥)} and

𝑂𝑖𝑘 = 𝑊 (𝑥) for any data item 𝑥, then either 𝑂𝑖 𝑗 ≺𝑖 𝑂𝑖𝑘 or 𝑂𝑖𝑘 ≺𝑖 𝑂𝑖 𝑗 .
3. ∀𝑂𝑖 𝑗 ∈ 𝑂𝑆𝑖 , 𝑂𝑖 𝑗 ≺𝑖 𝑁𝑖 .

The first condition formally defines the domain as the set of read and write
operations that make up the transaction, plus the termination condition, which may be
either commit or abort. The second condition specifies the ordering relation between
the conflicting read and write operations of the transaction, while the final condition
indicates that the termination condition always follows all other operations.
There are two important points about this definition. First, the ordering relation

≺ is given and the definition does not attempt to construct it. The ordering relation

2 From now on, we use the abbreviations 𝑅, 𝑊 , 𝐴 and 𝐶 for the Read, Write, Abort, and Commit
operations, respectively.

C-8 C Transaction Processing Fundamentals

is actually application dependent. Second, condition two indicates that the ordering
between conflicting operations has to exist within ≺. Two operations, 𝑂𝑖(𝑥) and
𝑂 𝑗 (𝑥), are said to be in conflict if 𝑂𝑖 = Write or 𝑂 𝑗 = Write (i.e., at least one of them
is a Write and they access the same data item).

Example C.5. Consider a simple transaction 𝑇 that consists of the following steps:

Read(𝑥)
Read(𝑦)
𝑥 ← 𝑥 + 𝑦
Write(𝑥)
Commit

The specification of this transaction according to the formal notation that we have
introduced is as follows:

Σ = {𝑅(𝑥), 𝑅(𝑦),𝑊 (𝑥), 𝐶}
≺ = {(𝑅(𝑥),𝑊 (𝑥)), (𝑅(𝑦),𝑊 (𝑥)), (𝑊 (𝑥), 𝐶), (𝑅(𝑥), 𝐶), (𝑅(𝑦), 𝐶)}

where (𝑂𝑖 , 𝑂 𝑗) as an element of the ≺ relation indicates that 𝑂𝑖 ≺ 𝑂 𝑗 . ♦

Notice that the ordering relation specifies the relative ordering of all operations
with respect to the termination condition. This is due to the third condition of
transaction definition. Also note that we do not specify the ordering between every
pair of operations. That is why it is a partial order.

Example C.6. The reservation transaction developed in Example C.3 is more complex.
Notice that there are two possible termination conditions, depending on the availability
of seats. It might first seem that this is a contradiction of the definition of a transaction,
which indicates that there can be only one termination condition. However, remember
that a transaction is the execution of a program. It is clear that in any execution,
only one of the two termination conditions can occur. Therefore, what exists is one
transaction that aborts and another one that commits. Using this formal notation, the
former can be specified as follows:

Σ = {𝑅(STSOLD), 𝑅(CAP), 𝐴}
≺ = {(𝑂1, 𝐴), (𝑂2, 𝐴)}

and the latter can be specified as

Σ = {𝑅(STSOLD), 𝑅(CAP),𝑊(STSOLD),𝑊(FNO),𝑊(FDATE),
𝑊(CNAME),𝑊(SPECIAL), 𝐶}

≺ = {(𝑂1, 𝑂3), (𝑂2, 𝑂3), (𝑂1, 𝑂4), (𝑂1, 𝑂5), (𝑂1, 𝑂6), (𝑂1, 𝑂7), (𝑂2, 𝑂4),
(𝑂2, 𝑂5), (𝑂2, 𝑂6), (𝑂2, 𝑂7), (𝑂1, 𝐶), (𝑂2, 𝐶), (𝑂3, 𝐶), (𝑂4, 𝐶),
(𝑂5, 𝐶), (𝑂6, 𝐶), (𝑂7, 𝐶)}

where 𝑂1 = 𝑅(STSOLD), 𝑂2 = 𝑅(CAP), 𝑂3 = 𝑊(STSOLD), 𝑂4 = 𝑊(FNO), 𝑂5 =

𝑊(FDATE), 𝑂6 = 𝑊(CNAME), and 𝑂7 = 𝑊(SPECIAL). ♦

C.2 Properties of Transactions C-9

One advantage of defining a transaction as a partial order is its correspondence to
a directed acyclic graph (DAG). Thus a transaction can be specified as a DAG whose
vertices are the operations of a transaction and whose arcs indicate the ordering
relationship between a given pair of operations. This will be useful in discussing the
concurrent execution of a number of transactions (Section C.5) and in arguing about
their correctness by means of graph-theoretic tools.

Example C.7. The transaction discussed in Example C.5 can be represented as a
DAG as depicted in Figure C.2. Note that we do not draw the arcs that are implied by
transitivity even though we indicate them as elements of ≺. ♦

R(x)

R(y)

W(x) C

Fig. C.2: DAG Representation of a Transaction

In most cases we do not need to refer to the domain of the partial order separately
from the ordering relation. Therefore, it is common to drop Σ from the transaction
definition and use the name of the partial order to refer to both the domain and the
name of the partial order. This is convenient since it allows us to specify the ordering
of the operations of a transaction in a more straightforward manner by making use of
their relative ordering in the transaction definition. For example, we can define the
transaction of Example C.5 as follows:

𝑇 = {𝑅(𝑥), 𝑅(𝑦),𝑊 (𝑥), 𝐶}

instead of the longer specification given before. We will therefore use the modified
definition in this and subsequent chapters.

C.2 Properties of Transactions

The previous discussion clarifies the concept of a transaction. However, we have
not yet provided any justification of our earlier claim that it is a unit of consistent
and reliable computation. We do that in this section. The consistency and reliability
aspects of transactions are due to four properties: (1) atomicity, (2) consistency, (3)
isolation, and (4) durability. Together, these are commonly referred to as the ACID

C-10 C Transaction Processing Fundamentals

properties of transactions. They are not entirely independent of each other; usually
there are dependencies among them as we will indicate below.

C.2.1 Atomicity

Atomicity refers to the fact that a transaction is treated as a unit of operation. Therefore,
either all the transaction’s actions are completed, or none of them are. This is also
known as the “all-or-nothing property.” Notice that we have just extended the concept
of atomicity from individual operations to the entire transaction. Atomicity requires
that if the execution of a transaction is interrupted by any sort of failure, the DBMS
will be responsible for determining what to do with the transaction upon recovery
from the failure. There are, of course, two possible courses of action: it can either be
terminated by completing the remaining actions, or it can be terminated by undoing
all the actions that have already been executed.
One can generally talk about two types of failures. A transaction itself may fail due

to input data errors, deadlocks, or other factors. In these cases either the transaction
aborts itself, as we have seen in Example C.2, or the DBMS may abort it while
handling deadlocks, for example. Maintaining transaction atomicity in the presence
of this type of failure is commonly called the transaction recovery. The second type
of failure is caused by system crashes, such as media failures, processor failures,
communication link breakages, power outages, and so on. Ensuring transaction
atomicity in the presence of system crashes is called crash recovery. An important
difference between the two types of failures is that during some types of system
crashes, the information in volatile storage may be lost or inaccessible. Both types of
recovery are parts of the reliability issue, which we discuss in considerable detail in
Section C.6.

C.2.2 Consistency

The consistency of a transaction is simply its correctness. In other words, a transaction
is a correct program that maps one consistent database state to another. Verifying
that transactions are consistent is the concern of integrity enforcement that we don’t
discuss any further (for discussion of the issue within the context of distributed
DBMS, see Chapter 3). Ensuring transaction consistency as defined at the beginning
of this chapter, on the other hand, is the objective of concurrency control mechanisms,
which we discuss in Section C.5.
There is an interesting classification of consistency that parallels our discussion

above and is equally important. This classification groups databases into four levels
of consistency [Gray et al., 1976]. In the following definition (which is taken verbatim
from the original paper), dirty data refers to data values that have been updated by a

C.2 Properties of Transactions C-11

transaction prior to its commitment. Then, based on the concept of dirty data, the
four levels are defined as follows:

“Degree 3: Transaction 𝑇 sees degree 3 consistency if:

1. 𝑇 does not overwrite dirty data of other transactions.
2. 𝑇 does not commit any writes until it completes all its writes [i.e., until the
end of transaction (EOT)].

3. 𝑇 does not read dirty data from other transactions.
4. Other transactions do not dirty any data read by 𝑇 before 𝑇 completes.

Degree 2: Transaction 𝑇 sees degree 2 consistency if:

1. 𝑇 does not overwrite dirty data of other transactions.
2. 𝑇 does not commit any writes before EOT.
3. 𝑇 does not read dirty data from other transactions.

Degree 1: Transaction 𝑇 sees degree 1 consistency if:

1. 𝑇 does not overwrite dirty data of other transactions.
2. 𝑇 does not commit any writes before EOT.

Degree 0: Transaction 𝑇 sees degree 0 consistency if:

1. 𝑇 does not overwrite dirty data of other transactions.”

Of course, it is true that a higher degree of consistency encompasses all the lower
degrees. The point in defining multiple levels of consistency is to provide application
programmers the flexibility to define transactions that operate at different levels.
Consequently, while some transactions operate at Degree 3 consistency level, others
may operate at lower levels and may see, for example, dirty data.

C.2.3 Isolation

Isolation is the property of transactions that requires each transaction to see a
consistent database at all times. In other words, an executing transaction cannot reveal
its results to other concurrent transactions before its commitment.
There are a number of reasons for insisting on isolation. One has to do with

maintaining the interconsistency of transactions. If two concurrent transactions access
a data item that is being updated by one of them, it is not possible to guarantee that
the second will read the correct value.

C-12 C Transaction Processing Fundamentals

Example C.8. Consider the following two concurrent transactions (𝑇1 and 𝑇2), both
of which access data item 𝑥. Assume that the value of 𝑥 before they start executing is
50.

𝑇1: Read(𝑥) 𝑇2: Read(𝑥)
𝑥 ← 𝑥 + 1 𝑥 ← 𝑥 + 1
Write(𝑥) Write(𝑥)
Commit Commit

The following is one possible sequence of execution of the actions of these
transactions:

𝑇1: Read(𝑥)
𝑇1: 𝑥 ← 𝑥 + 1
𝑇1: Write(𝑥)
𝑇1: Commit
𝑇2: Read(𝑥)
𝑇2: 𝑥 ← 𝑥 + 1
𝑇2: Write(𝑥)
𝑇2: Commit

In this case, there are no problems; transactions𝑇1 and𝑇2 are executed one after the
other and transaction 𝑇2 reads 51 as the value of 𝑥. Note that if, instead, 𝑇2 executes
before𝑇1,𝑇2 reads 51 as the value of 𝑥. So, if𝑇1 and𝑇2 are executed one after the other
(regardless of the order), the second transaction will read 51 as the value of 𝑥 and 𝑥
will have 52 as its value at the end of execution of these two transactions. However,
since transactions are executing concurrently, the following execution sequence is
also possible:

𝑇1: Read(𝑥)
𝑇1: 𝑥 ← 𝑥 + 1
𝑇2: Read(𝑥)
𝑇1: Write(𝑥)
𝑇2: 𝑥 ← 𝑥 + 1
𝑇2: Write(𝑥)
𝑇1: Commit
𝑇2: Commit

In this case, transaction 𝑇2 reads 50 as the value of 𝑥. This is incorrect since 𝑇2
reads 𝑥 while its value is being changed from 50 to 51. Furthermore, the value of 𝑥 is
51 at the end of execution of 𝑇1 and 𝑇2 since 𝑇2’s Write will overwrite 𝑇1’s Write. ♦

Ensuring isolation by not permitting incomplete results to be seen by other
transactions, as the previous example shows, solves the lost updates problem. This
type of isolation has been called cursor stability. In the example above, the second

C.2 Properties of Transactions C-13

execution sequence resulted in the effects of 𝑇1 being lost3. A second reason for
isolation is cascading aborts. If a transaction permits others to see its incomplete
results before committing and then decides to abort, any transaction that has read its
incomplete values will have to abort as well. This chain can easily grow and impose
considerable overhead on the DBMS.
It is possible to treat consistency levels discussed in the preceding section from

the perspective of the isolation property (thus demonstrating the dependence between
isolation and consistency). As we move up the hierarchy of consistency levels, there is
more isolation among transactions. Degree 0 provides very little isolation other than
preventing lost updates. However, since transactions commit write operations before
the entire transaction is completed (and committed), if an abort occurs after some
writes are committed to disk, the updates to data items that have been committed
will need to be undone. Since at this level other transactions are allowed to read the
dirty data, it may be necessary to abort them as well. Degree 2 consistency avoids
cascading aborts. Degree 3 provides full isolation which forces one of the conflicting
transactions to wait until the other one terminates. Such execution sequences are
called strict and will be discussed further in the next chapter. It is obvious that the
issue of isolation is directly related to database consistency and is therefore the topic
of concurrency control.
SQL defines a number of isolation levels based on phenomena which are situations

that can occur if proper isolation is not maintained [ANSI, 1992]. Three phenomena
are specified:

Dirty Read: As defined earlier, dirty data refer to data items whose values have
been modified by a transaction that has not yet committed. Consider the case
where transaction 𝑇1 modifies a data item value, which is then read by another
transaction 𝑇2 before 𝑇1 performs a Commit or Abort. In case 𝑇1 aborts, 𝑇2 has
read a value which never exists in the database.
A precise specification4 of this phenomenon is as follows (where subscripts
indicate the transaction identifiers)

. . . ,𝑊1 (𝑥), . . . , 𝑅2 (𝑥), . . . , 𝐶1 (or 𝐴1), . . . , 𝐶2 (or 𝐴2)

or

. . . ,𝑊1 (𝑥), . . . , 𝑅2 (𝑥), . . . , 𝐶2 (or 𝐴2), . . . , 𝐶1 (or 𝐴1)

Non-repeatable or Fuzzy read: Transaction 𝑇1 reads a data item value. Another
transaction 𝑇2 then modifies or deletes that data item and commits. If 𝑇1 then

3 A more dramatic example may be to consider 𝑥 to be your bank account and 𝑇1 a transaction that
executes as a result of your depositing money into your account. Assume that 𝑇2 is a transaction that
is executing as a result of your spouse withdrawing money from the account at another branch. If
the same problem as described in Example C.8 occurs and the results of 𝑇1 are lost, you will be
terribly unhappy. If, on the other hand, the results of 𝑇2 are lost, the bank will be furious. A similar
argument can be made for the reservation transaction example we have been considering.
4 The precise specifications of these phenomena are due to Berenson et al. [1995] and correspond to
their loose interpretations which they indicate are the more appropriate interpretations.

C-14 C Transaction Processing Fundamentals

attempts to reread the data item, it either reads a different value or it can’t find
the data item at all; thus two reads within the same transaction 𝑇1 return different
results.
A precise specification of this phenomenon is as follows:

. . . , 𝑅1 (𝑥), . . . ,𝑊2 (𝑥), . . . , 𝐶1 (or 𝐴1), . . . , 𝐶2 (or 𝐴2)

or

. . . , 𝑅1 (𝑥), . . . ,𝑊2 (𝑥), . . . , 𝐶2 (or 𝐴2), . . . , 𝐶1 (or 𝐴1)

Phantom: The phantom condition that was defined earlier occurs when 𝑇1 does a
search with a predicate and 𝑇2 inserts new tuples that satisfy the predicate. Again,
the precise specification of this phenomenon is (where 𝑃 is the search predicate)

. . . , 𝑅1 (𝑃), . . . ,𝑊2 (𝑦 in 𝑃), . . . , 𝐶1 (or 𝐴1), . . . , 𝐶2 (or 𝐴2)

or

. . . , 𝑅1 (𝑃), . . . ,𝑊2 (𝑦 in 𝑃), . . . , 𝐶2 (or 𝐴2), . . . , 𝐶1 (or 𝐴1)

Based on these phenomena, the isolation levels are defined as follows. The objective
of defining multiple isolation levels is the same as defining multiple consistency
levels.

Read uncommitted: For transactions operating at this level all three phenomena
are possible.

Read committed: Fuzzy reads and phantoms are possible, but dirty reads are not.
Repeatable read: Only phantoms are possible.
Anomaly serializable: None of the phenomena are possible.

SQL standard uses the term “serializable” rather than “anomaly serializable.”
However, a serializable isolation level, as precisely defined in Section C.5, cannot be
defined solely in terms of the three phenomena identified above; thus this isolation
level is called “anomaly serializable” [Berenson et al., 1995]. The relationship between
SQL isolation levels and the four levels of consistency defined in the previous section
are also discussed in [Berenson et al., 1995].
One non-serializable isolation level that is commonly implemented in commercial

products is snapshot isolation [Berenson et al., 1995]. Snapshot isolation provides
repeatable reads, but not serializable isolation. Each transaction “sees” a snapshot of
the database when it starts and its reads and writes are performed on this snapshot –
thus the writes are not visible to other transactions and it does not see the writes of
other transactions.

C.3 Types of Transactions C-15

C.2.4 Durability

Durability refers to that property of transactions which ensures that once a transaction
commits, its results are permanent and cannot be erased from the database. Therefore,
the DBMS ensures that the results of a transaction will survive subsequent system
failures. This is exactly why in Example C.2 we insisted that the transaction commit
before it informs the user of its successful completion. The durability property brings
forth the issue of database recovery, that is, how to recover the database to a consistent
state where all the committed actions are reflected. This issue is discussed further in
Section C.6.

C.3 Types of Transactions

A number of transaction models have been proposed in literature, each being
appropriate for a class of applications. The fundamental problem of providing
“ACID”ity usually remains, but the algorithms and techniques that are used to
address them may be considerably different. In some cases, various aspects of ACID
requirements are relaxed, removing some problems and adding new ones. In this
section we provide an overview of some of the transaction models that have been
proposed and then identify our focus in Sections C.5 and C.6.
Transactions have been classified according to a number of criteria. One criterion

is the duration of transactions. Accordingly, transactions may be classified as online
or batch [Gray, 1987]. These two classes are also called short-life and long-life
transactions, respectively. Online transactions are characterized by very short execu-
tion/response times (typically, on the order of a couple of seconds) and by access
to a relatively small portion of the database. This class of transactions probably
covers a large majority of current transaction applications. Examples include banking
transactions and airline reservation transactions.
Batch transactions, on the other hand, take longer to execute (response time

being measured in minutes, hours, or even days) and access a larger portion of
the database. Typical applications that might require batch transactions are design
databases, statistical applications, report generation, complex queries, and image
processing. Along this dimension, one can also define a conversational transaction,
which is executed by interacting with the user issuing it.
Another classification that has been proposed is with respect to the organization of

the read and write actions. The examples that we have considered so far intermix their
read and write actions without any specific ordering. We call this type of transactions
general. If the transactions are restricted so that all the read actions are performed
before any write action, the transaction is called a two-step transaction [Papadimitriou,
1979]. Similarly, if the transaction is restricted so that a data item has to be read
before it can be updated (written), the corresponding class is called restricted (or
read-before-write) [Stearns et al., 1976]. If a transaction is both two-step and restricted,
it is called a restricted two-step transaction. Finally, there is the action model of

C-16 C Transaction Processing Fundamentals

transactions [Kung and Papadimitriou, 1979], which consists of the restricted class
with the further restriction that each ⟨read, write⟩ pair be executed atomically. This
classification is shown in Figure C.3, where the generality increases upward.

General model

Two-step model Restricted model

Restricted two-step
model Action model

Fig. C.3: Various Transaction Models (From: C.H. Papadimitriou and P.C. Kanel-
lakis, ON CONCURRENCY CONTROL BY MULTIPLE VERSIONS. ACM Trans.
Database Sys.; December 1984; 9(1): 89–99.)

Example C.9. The following are some examples of the above-mentioned models. We
omit the declaration and commit commands.
General:

𝑇1 : {𝑅(𝑥), 𝑅(𝑦),𝑊 (𝑦), 𝑅(𝑧),𝑊 (𝑥),𝑊 (𝑧),𝑊 (𝑤), 𝐶}

Two-step:

𝑇2 : {𝑅(𝑥), 𝑅(𝑦), 𝑅(𝑧),𝑊 (𝑥),𝑊 (𝑧),𝑊 (𝑦),𝑊 (𝑤), 𝐶}

Restricted:

𝑇3 : {𝑅(𝑥), 𝑅(𝑦),𝑊 (𝑦), 𝑅(𝑧),𝑊 (𝑥),𝑊 (𝑧), 𝑅(𝑤),𝑊 (𝑤), 𝐶}

Note that 𝑇3 has to read 𝑤 before writing.
Two-step restricted:

𝑇4 : {𝑅(𝑥), 𝑅(𝑦), 𝑅(𝑧), 𝑅(𝑤),𝑊 (𝑥),𝑊 (𝑧),𝑊 (𝑦),𝑊 (𝑤), 𝐶}

Action:

𝑇5 : {[𝑅(𝑥),𝑊 (𝑥)], [𝑅(𝑦),𝑊 (𝑦)], [𝑅(𝑧),𝑊 (𝑧)], [𝑅(𝑤),𝑊 (𝑤)], 𝐶}

C.3 Types of Transactions C-17

Note that each pair of actions within square brackets is executed atomically. ♦

Transactions can also be classified according to their structure. We distinguish four
broad categories in increasing complexity: flat transactions, closed nested transactions
as in [Moss, 1985], and open nested transactions such as sagas [Garcia-Molina and
Salem, 1987], and workflow modelswhich, in some cases, are combinations of various
nested forms. This classification is arguably the most dominant one and we will
discuss it at some length.

C.3.1 Flat Transactions

Flat transactions have a single start point (Begin_transaction) and a single termination
point (End_transaction). All our examples in this section are of this type. Most of the
transaction management work in databases has concentrated on flat transactions. This
model will also be our main focus in this book, even though we discuss management
techniques for other transaction types, where appropriate.

C.3.2 Nested Transactions

An alternative transaction model is to permit a transaction to include other transac-
tions with their own begin and commit points. Such transactions are called nested
transactions. These transactions that are embedded in another one are usually called
subtransactions.

Example C.10. Let us extend the reservation transaction of Example C.2. Most travel
agents will make reservations for hotels and car rentals in addition to the flights. If
one chooses to specify all of this as one transaction, the reservation transaction would
have the following structure:

begin_transaction Reservation
begin
begin_transaction Airline

. . .

end {Airline}
begin_transaction Hotel

. . .

end {Hotel}
begin_transaction Car

. . .

end {Car}
end

♦

C-18 C Transaction Processing Fundamentals

Nested transactions have received considerable interest as a more generalized
transaction concept. The level of nesting is generally open, allowing subtransactions
themselves to have nested transactions. This generality is necessary to support
application areas where transactions are more complex than in traditional data
processing.
In this taxonomy, we differentiate between closed and open nesting because of

their termination characteristics. Closed nested transactions [Moss, 1985] commit in
a bottom-up fashion through the root. Thus, a nested subtransaction begins after its
parent and finishes before it, and the commitment of the subtransactions is conditional
upon the commitment of the parent. The semantics of these transactions enforce
atomicity at the top-most level. Open nesting relaxes the top-level atomicity restriction
of closed nested transactions. Therefore, an open nested transaction allows its partial
results to be observed outside the transaction. Sagas [Garcia-Molina and Salem, 1987;
Garcia-Molina et al., 1990] and split transactions [Pu, 1988] are examples of open
nesting.
A saga is a “sequence of transactions that can be interleaved with other trans-

actions” [Garcia-Molina and Salem, 1987]. The DBMS guarantees that either all
the transactions in a saga are successfully completed or compensating transac-
tions [Garcia-Molina, 1983; Korth et al., 1990] are run to recover from a partial
execution. A compensating transaction effectively does the inverse of the transaction
that it is associated with. For example, if the transaction adds $100 to a bank account,
its compensating transaction deducts $100 from the same bank account. If a transac-
tion is viewed as a function that maps the old database state to a new database state,
its compensating transaction is the inverse of that function.
Two properties of sagas are: (1) only two levels of nesting are allowed, and (2) at

the outer level, the system does not support full atomicity. Therefore, a saga differs
from a closed nested transaction in that its level structure is more restricted (only 2)
and that it is open (the partial results of component transactions or sub-sagas are
visible to the outside). Furthermore, the transactions that make up a saga have to be
executed sequentially.
The saga concept is extended and placed within a more general model that deals

with long-lived transactions and with activities that consist of multiple steps [Garcia-
Molina et al., 1990] . The fundamental concept of the model is that of a module
that captures code segments each of which accomplishes a given task and access a
database in the process. The modules are modeled (at some level) as sub-sagas that
communicate with each other via messages over ports. The transactions that make up
a saga can be executed in parallel. The model is multi-layer where each subsequent
layer adds a level of abstraction.
The advantages of nested transactions are the following. First, they provide a

higher-level of concurrency among transactions. Since a transaction consists of a
number of other transactions, more concurrency is possible within a single transaction.
For example, if the reservation transaction of Example C.10 is implemented as a flat
transaction, it may not be possible to access records about a specific flight concurrently.
In other words, if one travel agent issues the reservation transaction for a given flight,
any concurrent transaction that wishes to access the same flight data will have to wait

C.3 Types of Transactions C-19

until the termination of the first, which includes the hotel and car reservation activities
in addition to flight reservation. However, a nested implementation will permit the
second transaction to access the flight data as soon as the Airline subtransaction of
the first reservation transaction is completed. In other words, it may be possible to
perform a finer level of synchronization among concurrent transactions.
A second argument in favor of nested transactions is related to recovery. It is

possible to recover independently from failures of each subtransaction. This limits
the damage to a smaller part of the transaction, making it less costly to recover. In a
flat transaction, if any operation fails, the entire transaction has to be aborted and
restarted, whereas in a nested transaction, if an operation fails, only the subtransaction
containing that operation needs to be aborted and restarted.
Finally, it is possible to create new transactions from existing ones simply by

inserting the old one inside the new one as a subtransaction.

C.3.3 Workflows

Flat transactions model relatively simple and short activities very well. However,
they are less appropriate for modeling longer and more elaborate activities.That is
the reason for the development of the various nested transaction models discussed
above. It has been argued that these extensions are not sufficiently powerful to model
business activities: “after several decades of data processing, we have learned that we
have not won the battle of modeling and automating complex enterprises” [Medina-
Mora et al., 1993]. To meet these needs, more complex transaction models which
are combinations of open and nested transactions have been proposed. There are
well-justified arguments for not calling these transactions, since they hardly follow
any of the ACID properties; a more appropriate name that has been proposed is a
workflow [Dogac et al., 1998; Georgakopoulos et al., 1995].
The term “workflow,” unfortunately, does not have a clear and uniformly accepted

meaning. A working definition is that a workflow is “a collection of tasks organized
to accomplish some business process.” [Georgakopoulos et al., 1995]. This defini-
tion, however, leaves a lot undefined. This is perhaps unavoidable given the very
different contexts where this term is used. Three types of workflows are identified
[Georgakopoulos et al., 1995]:

1. Human-oriented workflows, which involve humans in performing the tasks.
The system support is provided to facilitate collaboration and coordination
among humans, but it is the humans themselves who are ultimately responsible
for the consistency of the actions.

2. System-oriented workflows are those that consist of computation-intensive and
specialized tasks that can be executed by a computer. The system support
in this case is substantial and involves concurrency control and recovery,
automatic task execution, notification, etc.

C-20 C Transaction Processing Fundamentals

3. Transactional workflows range in between human-oriented and system-oriented
workflows and borrow characteristics from both. They involve “coordinated
execution of multiple tasks that (a) may involve humans, (b) require access
to HAD [heterogeneous, autonomous, and/or distributed] systems, and (c)
support selective use of transactional properties [i.e., ACID properties] for
individual tasks or entire workflows.” [Georgakopoulos et al., 1995].
Among the features of transactional workflows, the selective use of transac-
tional properties is particularly important as it characterizes possible relax-
ations of ACID properties.

In this book, our primary interest is with transactional workflows. There have
been many transactional workflow proposals [Elmagarmid et al., 1990; Nodine and
Zdonik, 1990; Buchmann et al., 1992; Dayal et al., 1991; Hsu, 1993], and they differ
in a number of ways. The common point among them is that a workflow is defined
as an activity consisting of a set of tasks with well-defined precedence relationship
among them.

Example C.11. Let us further extend the reservation transaction of Example C.3. The
entire reservation activity consists of the following taks and involves the following
data:

• Customer request is obtained (task 𝑇1) and Customer Database is accessed to
obtain customer information, preferences, etc.;
• Airline reservation is performed (𝑇2) by accessing the Flight Database;
• Hotel reservation is performed (𝑇3), which may involve sending a message to
the hotel involved;
• Auto reservation is performed (𝑇4), which may also involve communication
with the car rental company;
• Bill is generated (𝑇5) and the billing info is recorded in the billing database.

Figure C.4 depicts this workflow where there is a serial dependency of 𝑇2 on 𝑇1,
and 𝑇3, 𝑇4 on 𝑇2; however, 𝑇3 and 𝑇4 (hotel and car reservations) are performed in
parallel and 𝑇5 waits until their completion. ♦

A number of workflow models go beyond this basic model by both defining more
precisely what tasks can be and by allocating different relationships among the tasks.
In the following, we define one model that is similar to the models of Buchmann et al.
[1992] and Dayal et al. [1991].
A workflow is modeled as an activity with open nesting semantics in that it permits

partial results to be visible outside the activity boundaries. Thus, tasks that make up
the activity are allowed to commit individually. Tasks may be other activities (with
the same open transaction semantics) or closed nested transactions that make their
results visible to the entire system when they commit. Even though an activity can
have both other activities and closed nested transactions as its component, a closed
nested transaction task can only be composed of other closed nested transactions (i.e.,
once closed nesting semantics begins, it is maintained for all components).

C.3 Types of Transactions C-21

T
1

T
2

T
3

T
4

T
5

Customer

Database

Customer

Database

Customer

Database

Fig. C.4: Example Workflow

An activity commits when its components are ready to commit. However, the
components commit individually, without waiting for the root activity to commit.
This raises problems in dealing with aborts since when an activity aborts, all of its
components should be aborted. The problem is dealing with the components that
have already committed. Therefore, compensating transactions are defined for the
components of an activity. Thus, if a component has already committed when an
activity aborts, the corresponding compensating transaction is executed to “undo” its
effects.
Some components of an activity may be marked as vital. When a vital component

aborts, its parent must also abort. If a non-vital component of a workflow model
aborts, it may continue executing. A workflow, on the other hand, always aborts
when one of its components aborts. For example, in the reservation workflow of
Example C.11, 𝑇2 (airline reservation) and 𝑇3 (hotel reservation) may be declared
as vital so that if an airline reservation or a hotel reservation cannot be made, the
workflow aborts and the entire trip is canceled. However, if a car reservation cannot
be committed, the workflow can still successfully terminate.
It is possible to define contingency tasks that are invoked if their counterparts fail.

For example, in the Reservation example presented earlier, one can specify that the
contingency to making a reservation at Hilton is to make a reservation at Sheraton.
Thus, if the hotel reservation component for Hilton fails, the Sheraton alternative is
tried rather than aborting the task and the entire workflow.

C-22 C Transaction Processing Fundamentals

C.4 Transaction Processing Architecture

We now discuss an abstract architecture for transaction processing. The architecture
is abstract, because it does not necessarily reflect any actual system implementation,
but focuses on the functions that need to exist in any actual system. There are different
ways these functions can be implemented.
The abstract architecture is shown in Figure C.5. The transaction manager (TM) is

the interface for applications to the transaction functionality and is responsible for
coordinating the execution of the database operations on behalf of an application.
The scheduler (SC), on the other hand, is responsible for the implementation of a
specific concurrency control algorithm for synchronizing access to the database. A
third component that participates in the management of distributed transactions is
the recovery manager (RM), which implements the procedures by which database
consistency can be maintained even in the face of failures and the database can be
recovered to a consistent state following a failure.
All access to the database is via the database buffer manager that coordinates the

movement of data between secondary storage (which stores the stable database) and
main memory buffers (where volatile database is maintained).
The transaction manager implements an interface for the application programs

which consists of five commands: Begin_transaction, Read, Write, Commit, and
Abort. The processing of each of these commands in a DBMS is discussed below
with the details deferred to Sections C.5 and C.6.

1. Begin_transaction. This is an indicator to the TM that a new transaction is
starting. The TM does some bookkeeping, such as recording the transaction’s
name, the originating application, and so on, through a begin_transaction
record in the log5.

2. Read. The data item’s value is read and returned to the transaction.
3. Write. The data item’s value is modified in the database. We use Write to
model Update, Insert or Delete on the database.

4. Commit. The TM coordinates that the updates are made permanent.
5. Abort. The TM makes sure that no effects of the transaction are reflected in
the database.

The database is typically stored permanently on secondary storage, which in this
context is called the stable storage [Lampson and Sturgis, 1976]. The stability of this
storage medium is due to its robustness to failures. A stable storage device would
experience considerably less-frequent failures than would a non-stable storage device.
We call the version of the database that is kept on stable storage the stable database.
The unit of storage and access of the stable database is typically a page.

5 For the time being, we ignore the logs and logging in Figure C.5; these will be discussed in Section
C.6.2.

C.5 Concurrency Control C-23

Read
Write

Database
buffers

(Volatile
database)

Log
buffers

Archive
log

Archive
database

Recovery
Manager

Scheduler

Transaction
Manager

Database Buffer
Manager

Stable
log

Stable
database

Fetch,
Flush

begin_transaction

W
rite

W
rit

e

W
rite

Read

Read
Write

Read, Write,
Commit, Abort

Read, Write,
Commit, Abort

write,

Begin_transaction,
Read, Write,
Commit, Abort Results

commit, abort

Read

Write
Secondary

storage

Tertiary storage

Main
memory

Fig. C.5: Abstract Transaction Processign Architecture

The database buffer manager keeps some of the recently accessed data in main
memory buffers where the applications can access them. Typically, the buffer is
divided into pages that are of the same size as the stable database pages. The part
of the database that is in the database buffer is called the volatile database. It is
important to note that the RM executes the operations on behalf of a transaction only
on the volatile database, which, at a later time, is written back to the stable database.
The movement of the data between the stable database and the volatile database is
the responsibility of the buffer manager and is discussed in Section C.6.2.

C.5 Concurrency Control

Concurrency control dealswith the isolation and consistency properties of transactions.
The concurrency control mechanism of a DBMS ensures that the consistency of the

C-24 C Transaction Processing Fundamentals

database, as defined earlier, is maintained in a multiuser environment. If transactions
are internally consistent (i.e., do not violate any consistency constraints), the simplest
way of achieving this objective is to execute each transaction alone, one after
another. It is obvious that such an alternative is only of theoretical interest and
would not be implemented in any practical system, since it minimizes the system
throughput. The level of concurrency (i.e., the number of concurrent transactions) is
one of the important parameters affecting DBMS performance [Balter et al., 1982].
Therefore, the concurrency control mechanism attempts to find a suitable trade-off
between maintaining the consistency of the database and maintaining a high level of
concurrency.
In this section, we make a major assumption: the DBMS and the underlying system

is fully reliable and does not experience any failures (of hardware or software). We
make this (unrealistic) assumption to isolate the issues related to the management of
concurrency from those related to the operation of a reliable system. In Section C.6,
we discuss how the algorithms that are presented in this section need to be enhanced
to operate in an unreliable environment.

C.5.1 Serializability Theory

In Section C.1.3 we discussed the issue of isolating transactions from one another
in terms of their effects on the database. We also pointed out that if the concurrent
execution of transactions leaves the database in a state that can be achieved by their
serial execution in some order, problems such as lost updates will be resolved. This
is exactly the point of the serializability argument. The remainder of this section
addresses serializability issues more formally.
A history R (also called a schedule) is defined over a set of transactions 𝑇 =

{𝑇1, 𝑇2, . . . , 𝑇𝑛} and specifies an interleaved order of execution of these transactions’
operations. Based on the definition of a transaction introduced in Section C.1, the
history can be specified as a partial order over 𝑇 . We need a few preliminaries, though,
before we present the formal definition.
Recall the definition of conflicting operations that we gave earlier. Two operations

𝑂𝑖 𝑗 (𝑥) and 𝑂𝑘𝑙 (𝑥) (𝑖 and 𝑘 representing transactions and are not necessarily distinct)
accessing the same database entity 𝑥 are said to be in conflict if at least one of them
is a write operation. Note two things in this definition. First, read operations do
not conflict with each other. We can, therefore, talk about two types of conflicts:
read-write (or write-read), and write-write. Second, the two operations can belong
to the same transaction or to two different transactions. In the latter case, the two
transactions are said to be conflicting. Intuitively, the existence of a conflict between
two operations indicates that their order of execution is important. The ordering of
two read operations is insignificant.
We first define a complete history, which defines the execution order of all

operations in its domain. We will then define a history as a prefix of a complete history.

C.5 Concurrency Control C-25

Formally, a complete history𝐻𝑐
𝑇
defined over a set of transactions𝑇 = {𝑇1, 𝑇2, . . . , 𝑇𝑛}

is a partial order 𝐻𝑐
𝑇
= {Σ𝑇 , ≺𝐻} where

1. Σ𝑇 =
⋃𝑛

𝑖=1 Σ𝑖 .
2. ≺𝐻⊇

⋃𝑛
𝑖=1 ≺𝑇𝑖 .

3. For any two conflicting operations 𝑂𝑖 𝑗 , 𝑂𝑘𝑙 ∈ Σ𝑇 , either 𝑂𝑖 𝑗 ≺𝐻 𝑂𝑘𝑙 , or
𝑂𝑘𝑙 ≺𝐻 𝑂𝑖 𝑗 .

The first condition simply states that the domain of the history is the union of
the domains of individual transactions. The second condition defines the ordering
relation of the history as a superset of the ordering relations of individual transactions.
This maintains the ordering of operations within each transaction. The final condition
simply defines the execution order among conflicting operations in 𝐻.

Example C.12. Consider the two transactions from Example C.8, which were as
follows:

𝑇1: Read(𝑥) 𝑇2: Read(𝑥)
𝑥 ← 𝑥 + 1 𝑥 ← 𝑥 + 1
Write(𝑥) Write(𝑥)
Commit Commit

A possible complete history 𝐻𝑐
𝑇
over 𝑇 = {𝑇1, 𝑇2} is the partial order 𝐻𝑐

𝑇
=

{Σ𝑇 , ≺𝑇 } where

Σ1 ={𝑅1 (𝑥),𝑊1 (𝑥), 𝐶1}
Σ2 ={𝑅2 (𝑥),𝑊2 (𝑥), 𝐶2}

Thus

Σ𝑇 = Σ1 ∪ Σ2 = {𝑅1 (𝑥),𝑊1 (𝑥), 𝐶1, 𝑅2 (𝑥),𝑊2 (𝑥), 𝐶2}

and

≺𝐻={(𝑅1, 𝑅2), (𝑅1,𝑊1), (𝑅1, 𝐶1), (𝑅1,𝑊2), (𝑅1, 𝐶2), (𝑅2,𝑊1), (𝑅2, 𝐶1), (𝑅2,𝑊2),
(𝑅2, 𝐶2), (𝑊1, 𝐶1), (𝑊1,𝑊2), (𝑊1, 𝐶2), (𝐶1,𝑊2), (𝐶1, 𝐶2), (𝑊2, 𝐶2)}

which can be specified as a DAG as depicted in Figure C.6. Note that consistent with
our earlier adopted convention (see Example C.7), we do not draw the arcs that are
implied by transitivity [e.g., (𝑅1, 𝐶1)].
It is quite common to specify a history as a listing of the operations in Σ𝑇 , where

their execution order is relative to their order in this list. Thus 𝐻𝑐
𝑇
can be specified as

𝐻𝑐
𝑇 = {𝑅1 (𝑥), 𝑅2 (𝑥),𝑊1 (𝑥), 𝐶1,𝑊2 (𝑥), 𝐶2}

C-26 C Transaction Processing Fundamentals

C
1

C
2

R
1
(x) R

2
(x)

W
2
(x)W

1
(x)

Fig. C.6: DAG Representation of a Complete History

♦

A history is defined as a prefix of a complete history. A prefix of a partial order
can be defined as follows. Given a partial order 𝑃 = {Σ, ≺}, 𝑃′ = {Σ′, ≺′} is a
prefix of 𝑃 if

1. Σ′ ⊆ Σ;
2. ∀𝑒𝑖 ∈ Σ′, 𝑒1 ≺′ 𝑒2 if and only if 𝑒1 ≺ 𝑒2; and
3. ∀𝑒𝑖 ∈ Σ′, if ∃𝑒 𝑗 ∈ Σ and 𝑒 𝑗 ≺ 𝑒𝑖 , then 𝑒 𝑗 ∈ Σ′.

The first two conditions define 𝑃′ as a restriction of 𝑃 on domain Σ′, whereby the
ordering relations in 𝑃 are maintained in 𝑃′. The last condition indicates that for any
element of Σ′, all its predecessors in Σ have to be included in Σ′ as well.
What does this definition of a history as a prefix of a partial order provide for

us? The answer is simply that we can now deal with incomplete histories. This is
useful for a number of reasons. From the perspective of the serializability theory, we
deal only with conflicting operations of transactions rather than with all operations.
Furthermore, and perhaps more important, when we introduce failures, we need to be
able to deal with incomplete histories, which is what a prefix enables us to do.
The history discussed in Example C.12 is complete. It needs to be complete in

order to talk about the execution order of these two transactions’ operations. The
following example demonstrates a history that is not complete.

Example C.13. Consider the following three transactions:
𝑇1: Read(𝑥) 𝑇2: Write(𝑥) 𝑇3: Read(𝑥)
Write(𝑥) Write(𝑦) Read(𝑦)
Commit Read(𝑧) Read(𝑧)

Commit Commit
A complete history 𝐻𝑐 for these transactions is given in Figure C.7, and a history 𝐻
(as a prefix of 𝐻𝑐) is depicted in Figure C.8. ♦

If in a complete history 𝐻, the operations of various transactions are not interleaved
(i.e., the operations of each transaction occur consecutively), the history is said to be

C.5 Concurrency Control C-27

W
2
(x) R

3
(x)

W
2
(y) R

3
(y)

R
1
(x)

W
1
(x)

C
1

C
2

R
2
(z)

C
3

R
3
(z)

Fig. C.7: A Complete History

W
2
(x) R

3
(x)

W
2
(y) R

3
(y)

R
1
(x)

R
2
(z) R

3
(z)

Fig. C.8: Prefix of Complete History in Figure C.7

serial. As we indicated before, the serial execution of a set of transactions maintains
the consistency of the database. This follows naturally from the consistency property
of transactions: each transaction, when executed alone on a consistent database, will
produce a consistent database.

Example C.14. Consider the three transactions of Example C.13. The following
history is serial since all the operations of 𝑇2 are executed before all the operations of
𝑇1 and all operations of 𝑇1 are executed before all operations of 𝑇36.

𝐻 = {𝑊2 (𝑥),𝑊2 (𝑦), 𝑅2 (𝑧)︸ ︷︷ ︸
𝑇2

, 𝑅1 (𝑥),𝑊1 (𝑥)︸ ︷︷ ︸
𝑇1

, 𝑅3 (𝑥), 𝑅3 (𝑦), 𝑅3 (𝑧)︸ ︷︷ ︸
𝑇3

}

One common way to denote this precedence relationship between transaction execu-
tions is 𝑇2 → 𝑇1 → 𝑇3 rather than the more formal 𝑇2 ≺𝐻 𝑇1 ≺𝐻 𝑇3. ♦

Based on the precedence relationship introduced by the partial order, it is possible
to discuss the equivalence of histories with respect to their effects on the database.
Intuitively, two histories 𝐻1 and 𝐻2, defined over the same set of transactions 𝑇 , are

6 From now on we will generally omit the Commit operation from histories.

C-28 C Transaction Processing Fundamentals

equivalent if they have the same effect on the database. More formally, two histories,
𝐻1 and 𝐻2, defined over the same set of transactions 𝑇 , are said to be equivalent if
for each pair of conflicting operations 𝑂𝑖 𝑗 and 𝑂𝑘𝑙 (𝑖 ≠ 𝑘), whenever 𝑂𝑖 𝑗 ≺𝐻1 𝑂𝑘𝑙 ,
then 𝑂𝑖 𝑗 ≺𝐻2 𝑂𝑘𝑙 . This is called conflict equivalence since it defines equivalence of
two histories in terms of the relative order of execution of the conflicting operations
in those histories. Here, for the sake of simplicity, we assume that 𝑇 does not include
any aborted transaction. Otherwise, the definition needs to be modified to specify
only those conflicting operations that belong to unaborted transactions.

Example C.15. Again consider the three transactions given in Example C.13. The
following history 𝐻 ′ defined over them is conflict equivalent to 𝐻 given in Example
C.14:

𝐻 ′ = {𝑊2 (𝑥), 𝑅1 (𝑥),𝑊1 (𝑥), 𝑅3 (𝑥),𝑊2 (𝑦), 𝑅3 (𝑦), 𝑅2 (𝑧), 𝑅3 (𝑧)}

♦

We are now ready to define serializability more precisely. A history 𝐻 is said to
be serializable if and only if it is conflict equivalent to a serial history. Note that
serializability roughly corresponds to degree 3 consistency, which we defined in
Section C.2.2. Serializability so defined is also known as conflict-based serializability
since it is defined according to conflict equivalence.

Example C.16. History 𝐻 ′ in Example C.15 is serializable since it is equivalent to the
serial history 𝐻 of Example C.14. Also note that the problem with the uncontrolled
execution of transactions 𝑇1 and 𝑇2 in Example C.8 was that they could generate an
unserializable history. ♦

Now that we have formally defined serializability, we can indicate that the primary
function of a concurrency controller is to generate a serializable history for the
execution of pending transactions. The issue, then, is to devise algorithms that are
guaranteed to generate only serializable histories.
Serializability theory extends in a straightforward manner to the non-replicated

(or partitioned) distributed databases. The history of transaction execution at each
site is called a local history. If the database is not replicated and each local history is
serializable, their union (called the global history) is also serializable as long as local
serialization orders are identical.

Example C.17. Wewill give a very simple example to demonstrate the point. Consider
two bank accounts, 𝑥 (stored at Site 1) and 𝑦 (stored at Site 2), and the following two
transactions where 𝑇1 transfers $100 from 𝑥 to 𝑦, while 𝑇2 simply reads the balances
of 𝑥 and 𝑦:

C.5 Concurrency Control C-29

𝑇1: Read(𝑥) 𝑇2: Read(𝑥)
𝑥 ← 𝑥 − 100 Read(𝑦)
Write(𝑥) Commit
Read(𝑦)
𝑦 ← 𝑦 + 100
Write(𝑦)
Commit

Obviously, both of these transactions need to run at both sites. Consider the
following two histories that may be generated locally at the two sites (𝐻𝑖 is the history
at Site 𝑖):

𝐻1 ={𝑅1 (𝑥),𝑊1 (𝑥), 𝑅2 (𝑥)}
𝐻2 ={𝑅1 (𝑦),𝑊1 (𝑦), 𝑅2 (𝑦)}

Both of these histories are serializable; indeed, they are serial. Therefore, each
represents a correct execution order. Furthermore, the serialization order for both are
the same 𝑇1 → 𝑇2. Therefore, the global history that is obtained is also serializable
with the serialization order 𝑇1 → 𝑇2.
However, if the histories generated at the two sites are as follows, there is a

problem:

𝐻
′

1 ={𝑅1 (𝑥),𝑊1 (𝑥), 𝑅2 (𝑥)}
𝐻
′

2 ={𝑅2 (𝑦), 𝑅1 (𝑦),𝑊1 (𝑦)}

Although each local history is still serializable, the serialization orders are different:
𝐻
′

1 serializes 𝑇1 before 𝑇2 while 𝐻
′

2 serializes 𝑇2 before 𝑇1. Therefore, there can be
no global history that is serializable. ♦

A weaker version of serializability that has gained importance in recent years
is snapshot isolation [Berenson et al., 1995] that is now provided as a standard
consistency criterion in a number of commercial systems. Snapshot isolation allows
read transactions (queries) to read stale data by allowing them to read a snapshot of
the database that reflects the committed data at the time the read transaction starts.
Consequently, the reads are never blocked by writes, even though they may read old
data that may be dirtied by other transactions that were still running when the snapshot
was taken. Hence, the resulting histories are not serializable, but this is accepted as a
reasonable tradeoff between a lower level of isolation and better performance.

C.5.2 Taxonomy of Concurrency Control Mechanisms

There are a number of ways that the concurrency control approaches can be classified.
One obvious classification criterion is the mode of database distribution. Some

C-30 C Transaction Processing Fundamentals

algorithms that have been proposed require a fully replicated database, while others
can operate on partially replicated or partitioned databases. The concurrency control
algorithms may also be classified according to network topology, such as those
requiring a communication subnet with broadcasting capability or those working in a
star-type network or a circularly connected network.
The most common classification criterion, however, is the synchronization primi-

tive. The corresponding breakdown of the concurrency control algorithms results
in two classes [Bernstein and Goodman, 1981]: those algorithms that are based on
mutually exclusive access to shared data (locking), and those that attempt to order the
execution of the transactions according to a set of rules (protocols). However, these
primitives may be used in algorithms with two different viewpoints: the pessimistic
view that many transactions will conflict with each other, or the optimistic view that
not too many transactions will conflict with one another.
We will thus group the concurrency control mechanisms into two broad classes:

pessimistic concurrency control methods and optimistic concurrency control methods.
Pessimistic algorithms synchronize the concurrent execution of transactions early in
their execution life cycle, whereas optimistic algorithms delay the synchronization
of transactions until their termination. The pessimistic group consists of locking-
based algorithms, ordering (or transaction ordering) based algorithms, and hybrid
algorithms. The optimistic group can, similarly, be classified as locking-based or
timestamp ordering-based. This classification is depicted in Figure C.9.
In the locking-based approach, the synchronization of transactions is achieved

by employing physical or logical locks on some portion or granule of the database.
The size of these portions (usually called locking granularity) is an important issue.
However, for the time being, we will ignore it and refer to the chosen granule as a
lock unit. This class is subdivided further according to where the lock management
activities are performed: centralized and decentralized (or distributed) locking.
The timestamp ordering (TO) class involves organizing the execution order of

transactions so that they maintain transaction consistency. This ordering is maintained
by assigning timestamps to both the transactions and the data items that are stored in
the database. These algorithms can be basic TO, multiversion TO, or conservative
TO.
In some locking-based algorithms, timestamps are also used. This is done primarily

to improve efficiency and the level of concurrency. We call these hybrid algorithms.
We will not discuss these algorithms, since they have not been implemented in
any commercial or research prototype distributed DBMS. The rules for integrating
locking and timestamp ordering protocols are discussed by Bernstein and Goodman
[1981].

C.5.3 Locking-Based Concurrency Control

The main idea of locking-based concurrency control is to ensure that a data item
that is shared by conflicting operations is accessed by one operation at a time. This

C.5 Concurrency Control C-31

Centralized

Primary

Copy

Distributed

Basic

Multiversion

Conservative

Locking
Timestamp

Ordering
Hybrid

Pessimistic

Concurrency

Control

Algorithms

Optimistic

Locking
Timestamp

Ordering

Fig. C.9: Classification of Concurrency Control Algorithms

is accomplished by associating a “lock” with each lock unit. This lock is set by a
transaction before it is accessed and is reset at the end of its use. Obviously a lock
unit cannot be accessed by an operation if it is already locked by another. Thus a lock
request by a transaction is granted only if the associated lock is not being held by any
other transaction.
Since we are concerned with synchronizing the conflicting operations of conflicting

transactions, there are two types of locks (commonly called lock modes) associated
with each lock unit: read lock (rl) and write lock (wl). A transaction 𝑇𝑖 that wants to
read a data item contained in lock unit 𝑥 obtains a read lock on 𝑥 [denoted 𝑟𝑙𝑖 (𝑥)]. The
same happens for write operations. Two lock modes are compatible if two transactions
that access the same data item can obtain these locks on that data item at the same time.
As Figure C.10 shows, read locks are compatible, whereas read-write or write-write
locks are not. Therefore, it is possible, for example, for two transactions to read the
same data item concurrently.
The distributed DBMS not only manages locks but also handles the lock manage-

ment responsibilities on behalf of the transactions. In other words, users do not need
to specify when a data item needs to be locked; the distributed DBMS takes care of
that every time the transaction issues a read or write operation.

C-32 C Transaction Processing Fundamentals

compatible

not compatible

not compatible

not compatible

rl
i
(x)

rl
j
(x)

wl
j
(x)

wl
j
(x)

Fig. C.10: Compatibility Matrix of Lock Modes

In locking-based systems, the scheduler (see Figure C.5) is a lock manager (LM).
The transaction manager passes to the lock manager the database operation (read or
write) and associated information (such as the item that is accessed and the identifier
of the transaction that issues the database operation). The lock manager then checks
if the lock unit that contains the data item is already locked. If so, and if the existing
lock mode is incompatible with that of the current transaction, the current operation
is delayed. Otherwise, the lock is set in the desired mode and the database operation
is passed on to the data processor for actual database access. The transaction manager
is then informed of the results of the operation. The termination of a transaction
results in the release of its locks and the initiation of another transaction that might
be waiting for access to the same data item.
The locking algorithm as described above will not, unfortunately, properly syn-

chronize transaction executions. This is because to generate serializable histories,
the locking and releasing operations of transactions also need to be coordinated. We
demonstrate this by an example.

Example C.18. Consider the following two transactions:

𝑇1: Read(𝑥) 𝑇2: Read(𝑥)
𝑥 ← 𝑥 + 1 𝑥 ← 𝑥 ∗ 2
Write(𝑥) Write(𝑥)
Read(𝑦) Read(𝑦)
𝑦 ← 𝑦 − 1 𝑦 ← 𝑦 ∗ 2
Write(𝑦) Write(𝑦)
Commit Commit

The following is a valid history that a lock manager employing the locking
algorithm may generate:

𝐻 ={𝑤𝑙1 (𝑥), 𝑅1 (𝑥),𝑊1 (𝑥), 𝑙𝑟1 (𝑥), 𝑤𝑙2 (𝑥), 𝑅2 (𝑥), 𝑤2 (𝑥), 𝑙𝑟2 (𝑥), 𝑤𝑙2 (𝑦),
𝑅2 (𝑦),𝑊2 (𝑦), 𝑙𝑟2 (𝑦), 𝑤𝑙1 (𝑦), 𝑅1 (𝑦),𝑊1 (𝑦), 𝑙𝑟1 (𝑦)}

where 𝑙𝑟𝑖 (𝑧) indicates the release of the lock on 𝑧 that transaction 𝑇𝑖 holds.
Note that 𝐻 is not a serializable history. For example, if prior to the execution of

these transactions, the values of 𝑥 and 𝑦 are 50 and 20, respectively, one would expect
their values following execution to be, respectively, either 102 and 38 if 𝑇1 executes
before 𝑇2, or 101 and 39 if 𝑇2 executes before 𝑇1. However, the result of executing 𝐻
would give 𝑥 and 𝑦 the values 102 and 39. Obviously, 𝐻 is not serializable. ♦

C.5 Concurrency Control C-33

The problem with history 𝐻 in Example C.18 is the following. The locking
algorithm releases the locks that are held by a transaction (say, 𝑇𝑖) as soon as the
associated database command (read or write) is executed, and that lock unit (say 𝑥)
no longer needs to be accessed. However, the transaction itself is locking other items
(say, 𝑦), after it releases its lock on 𝑥. Even though this may seem to be advantageous
from the viewpoint of increased concurrency, it permits transactions to interfere with
one another, resulting in the loss of isolation and atomicity. Hence the argument for
two-phase locking (2PL).
The two-phase locking rule simply states that no transaction should request a lock

after it releases one of its locks. Alternatively, a transaction should not release a
lock until it is certain that it will not request another lock. 2PL algorithms execute
transactions in two phases. Each transaction has a growing phase, where it obtains
locks and accesses data items, and a shrinking phase, during which it releases locks
(Figure C.11). The lock point is the moment when the transaction has achieved all its
locks but has not yet started to release any of them. Thus the lock point determines the
end of the growing phase and the beginning of the shrinking phase of a transaction.
It has been proven that any history generated by a concurrency control algorithm that
obeys the 2PL rule is serializable [Eswaran et al., 1976].

N
u

m
b

e
r

o
f

lo
c
k
s

Obtain lock

Release lock

BEGIN LOCK

POINT

END Transaction

duration

Fig. C.11: 2PL Lock Graph

Figure C.11 indicates that the lock manager releases locks as soon as access to
that data item has been completed. This permits other transactions awaiting access to
go ahead and lock it, thereby increasing the degree of concurrency. However, this is
difficult to implement since the lock manager has to know that the transaction has
obtained all its locks and will not need to lock another data item. The lock manager
also needs to know that the transaction no longer needs to access the data item in
question, so that the lock can be released. Finally, if the transaction aborts after it
releases a lock, it may cause other transactions that may have accessed the unlocked
data item to abort as well. This is known as cascading aborts. These problems may
be overcome by strict two-phase locking, which releases all the locks together when

C-34 C Transaction Processing Fundamentals

ENDBEGIN

Period of

data item

use

Transaction

duration

Obtain lock

Release lock

N
u
m

b
e
r

o
f
lo

c
k
s

Fig. C.12: Strict 2PL Lock Graph

the transaction terminates (commits or aborts). Thus the lock graph is as shown in
Figure C.12.
We should note that even though a 2PL algorithm enforces conflict serializability,

it does not allow all histories that are conflict serializable. Consider the following
history discussed by Agrawal and El Abbadi [1990]:

𝐻 = {𝑊1 (𝑥), 𝑅2 (𝑥),𝑊3 (𝑦),𝑊1 (𝑦)}

𝐻 is not allowed by 2PL algorithm since 𝑇1 would need to obtain a write lock on 𝑦
after it releases its write lock on 𝑥. However, this history is serializable in the order
𝑇3 → 𝑇1 → 𝑇2. The order of locking can be exploited to design locking algorithms
that allow histories such as these [Agrawal and El Abbadi, 1990].
The main idea is to observe that in serializability theory, the order of serialization

of conflicting operations is as important as detecting the conflict in the first place and
this can be exploited in defining locking modes. Consequently, in addition to read
(shared) and write (exclusive) locks, a third lock mode is defined: ordered shared.
Ordered shared locking of an object 𝑥 by transactions 𝑇𝑖 and 𝑇𝑗 has the following
meaning: Given a history 𝐻 that allows ordered shared locks between operations
𝑜 ∈ 𝑇𝑖 and 𝑝 ∈ 𝑇𝑗 , if 𝑇𝑖 acquires 𝑜-lock before 𝑇𝑗 acquires 𝑝-lock, then 𝑜 is executed
before 𝑝. Consider the compatibility table between read and write locks given in
Figure C.10. If the ordered shared mode is added, there are eight variants of this table.
Figure C.10 depicts one of them and two more are shown in Figure C.13. In Figure
C.13(b), for example, there is an ordered shared relationship between 𝑟𝑙 𝑗 (𝑥) and
𝑤𝑙𝑖 (𝑥) indicating that 𝑇𝑖 can acquire a write lock on 𝑥 while 𝑇𝑗 holds a read lock on
𝑥 as long as the ordered shared relationship from 𝑟𝑙 𝑗 (𝑥) to 𝑤𝑙𝑖 (𝑥) is observed. The
eight compatibility tables can be compared with respect to their permissiveness (i.e.,
with respect to the histories that can be produced using them) to generate a lattice of
tables such that the one in Figure C.10 is the most restrictive and the one in Figure
C.13(b) is the most liberal.

C.5 Concurrency Control C-35

rl
i
(x) wl

i
(x)

compatible

ordered shared

not compatible

not compatible

compatible

ordered shared

ordered shared

ordered shared

(a) (b)

rl
i
(x)

rl
j
(x)rl

j
(x)

wl
i
(x)

wl
j
(x) wl

j
(x)

Fig. C.13: Commutativity Table with Ordered Shared Lock Mode

The locking protocol that enforces a compatibility matrix involving ordered shared
lock modes is identical to 2PL, except that a transaction may not release any locks as
long as any of its locks are on hold. Otherwise circular serialization orders can exist.
Locking-based algorithms may cause deadlocks since they allow exclusive access

to resources. It is possible that two transactions that access the same data items may
lock them in reverse order, causing each to wait for the other to release its locks
causing a deadlock. We discuss deadlock management in Section C.5.6.

C.5.4 Timestamp-Based Concurrency Control

Unlike locking-based algorithms, timestamp-based concurrency control algorithms
do not attempt to maintain serializability by mutual exclusion. Instead, they select, a
priori, a serialization order and execute transactions accordingly. To establish this
ordering, the transaction manager assigns each transaction 𝑇𝑖 a unique timestamp,
𝑡𝑠(𝑇𝑖), at its initiation.
A timestamp is a simple identifier that serves to identify each transaction uniquely

and is used for ordering. Uniqueness is only one of the properties of timestamp
generation. The second property is monotonicity. Two timestamps generated by the
same transaction manager should be monotonically increasing. Thus timestamps
are values derived from a totally ordered domain. It is this second property that
differentiates a timestamp from a transaction identifier.
With this information, it is simple to order the execution of the transactions’

operations according to their timestamps. Formally, the timestamp ordering (TO)
rule can be specified as follows:

TO Rule. Given two conflicting operations 𝑂𝑖 𝑗 and 𝑂𝑘𝑙 belonging, respectively, to
transactions 𝑇𝑖 and 𝑇𝑘 ,𝑂𝑖 𝑗 is executed before𝑂𝑘𝑙 if and only if 𝑡𝑠(𝑇𝑖) < 𝑡𝑠(𝑇𝑘). In
this case 𝑇𝑖 is said to be the older transaction and 𝑇𝑘 is said to be the younger one.

A scheduler that enforces the TO rule checks each new operation against conflicting
operations that have already been scheduled. If the new operation belongs to a
transaction that is younger than all the conflicting ones that have already been

C-36 C Transaction Processing Fundamentals

scheduled, the operation is accepted; otherwise, it is rejected, causing the entire
transaction to restart with a new timestamp.
A timestamp ordering scheduler that operates in this fashion is guaranteed to

generate serializable histories. However, this comparison between the transaction
timestamps can be performed only if the scheduler has received all the operations to
be scheduled. If operations come to the scheduler one at a time (which is the realistic
case), it is necessary to be able to detect, in an efficient manner, if an operation has
arrived out of sequence. To facilitate this check, each data item 𝑥 is assigned two
timestamps: a read timestamp [𝑟𝑡𝑠(𝑥)], which is the largest of the timestamps of the
transactions that have read 𝑥, and a write timestamp [𝑤𝑡𝑠(𝑥)], which is the largest of
the timestamps of the transactions that have written (updated) 𝑥. It is now sufficient
to compare the timestamp of an operation with the read and write timestamps of
the data item that it wants to access to determine if any transaction with a larger
timestamp has already accessed the same data item.
Architecturally (see Figure C.5), the transaction manager is responsible for

assigning a timestamp to each new transaction and attaching this timestamp to
each database operation that it passes on to the scheduler. The latter component is
responsible for keeping track of read and write timestamps as well as performing the
serializability check.

C.5.5 Optimistic Concurrency Control

For completeness of discussion, we mention optimistic concurrency control in this
appendix, but we do not discuss this class further since they are covered in detail in
the main body of the book (Chapter 5). Briefly, they differ from the locking-based
and timestamp-based concurrency control in that the overriding assumption is that
transactions do not conflict too much. So, they can be executed until the commit point
without much synchronization and a validation is performed at that point to see if the
isolation property has been violated. If that is the case, the transaction is aborted and
restarted; otherwise, it is allowed to commit.

C.5.6 Deadlock Management

As we indicated before, any locking-based concurrency control algorithm may result
in deadlocks, since there is mutual exclusion of access to shared resources (data)
and transactions may wait on locks. Furthermore, we have seen that some TO-based
algorithms that require the waiting of transactions (e.g., strict TO) may also cause
deadlocks. Therefore, the distributed DBMS requires special procedures to handle
them.

C.5 Concurrency Control C-37

A deadlock can occur because transactions wait for one another. Informally, a
deadlock situation is a set of requests that can never be granted by the concurrency
control mechanism.

Example C.19. Consider two transactions 𝑇𝑖 and 𝑇𝑗 that hold write locks on two
entities 𝑥 and 𝑦 [i.e., 𝑤𝑙𝑖 (𝑥) and 𝑤𝑙 𝑗 (𝑦)]. Suppose that 𝑇𝑖 now issues a 𝑟𝑙𝑖 (𝑦) or a
𝑤𝑙𝑖 (𝑦). Since 𝑦 is currently locked by transaction 𝑇𝑗 , 𝑇𝑖 will have to wait until 𝑇𝑗

releases its write lock on 𝑦. However, if during this waiting period, 𝑇𝑗 now requests a
lock (read or write) on 𝑥, there will be a deadlock. This is because, 𝑇𝑖 will be blocked
waiting for 𝑇𝑗 to release its lock on 𝑦 while 𝑇𝑗 will be waiting for 𝑇𝑖 to release its
lock on 𝑥. In this case, the two transactions 𝑇𝑖 and 𝑇𝑗 will wait indefinitely for each
other to release their respective locks. ♦

A deadlock is a permanent phenomenon. If one exists in a system, it will not go
away unless outside intervention takes place. This outside interference may come
from the user, the system operator, or the software system (the operating system or
the distributed DBMS).
A useful tool in analyzing deadlocks is a wait-for graph (WFG). A WFG is a

directed graph that represents the wait-for relationship among transactions. The nodes
of this graph represent the concurrent transactions in the system. An edge 𝑇𝑖 → 𝑇𝑗

exists in the WFG if transaction 𝑇𝑖 is waiting for 𝑇𝑗 to release a lock on some entity.
Figure C.14 depicts the WFG for Example C.19.

T
i

T
j

Fig. C.14: A WFG Example

Using the WFG, it is easier to indicate the condition for the occurrence of a
deadlock. A deadlock occurs when the WFG contains a cycle.
There are three known methods for handling deadlocks: prevention, avoidance, and

detection and resolution. In the remainder of this section we discuss each approach in
more detail.

C.5.6.1 Deadlock Prevention

Deadlock prevention methods guarantee that deadlocks cannot occur in the first place.
Thus the transaction manager checks a transaction when it is first initiated and does
not permit it to proceed if it may cause a deadlock. To perform this check, it is required
that all of the data items that will be accessed by a transaction be predeclared. The
transaction manager then permits a transaction to proceed if all the data items that it

C-38 C Transaction Processing Fundamentals

will access are available. Otherwise, the transaction is not permitted to proceed. The
transaction manager reserves all the data items that are predeclared by a transaction
that it allows to proceed.
Unfortunately, such systems are not very suitable for database environments. The

fundamental problem is that it is usually difficult to know precisely which data
items will be accessed by a transaction. Access to certain data items may depend on
conditions that may not be resolved until run time. For example, in the reservation
transaction that we developed in Example C.3, access to CNAME is conditional upon
the availability of free seats. To be safe, the system would thus need to consider
the maximum set of data items, even if they end up not being accessed. This would
certainly reduce concurrency. Furthermore, there is additional overhead in evaluating
whether a transaction can proceed safely. On the other hand, such systems require no
run-time support, which reduces the overhead. It has the additional advantage that
it is not necessary to abort and restart a transaction due to deadlocks. This not only
reduces the overhead but also makes such methods suitable for systems that have no
provisions for undoing processes.7

C.5.6.2 Deadlock Avoidance

Deadlock avoidance schemes either employ concurrency control techniques that will
never result in deadlocks or require that potential deadlock situations are detected in
advance and steps are taken such that they will not occur. We consider both of these
cases.
The simplest means of avoiding deadlocks is to order the resources and insist that

each process request access to these resources in that order. This solution was long
ago proposed for operating systems and can be adapted to DBMS by ordering the
lock units in the database so that transactions always request locks in that order. This
approach is not practical, however, because, as opposed to the number of resources
managed by an operating system, the number of lock units in a database are far
more numerous and the database is dynamic, making the maintenance of an order
impractical.
An alternative is to make use of transaction timestamps to prioritize transactions

and resolve deadlocks by aborting transactions with higher (or lower) priorities. To
implement this type of prevention method, the lock manager is modified as follows. If
a lock request of a transaction 𝑇𝑖 is denied, the lock manager does not automatically
force 𝑇𝑖 to wait. Instead, it applies a prevention test to the requesting transaction
and the transaction that currently holds the lock (say 𝑇𝑗). If the test is passed, 𝑇𝑖 is
permitted to wait for 𝑇𝑗 ; otherwise, one transaction or the other is aborted.
Examples of this approach is the WAIT-DIE and WOUND-WAIT algorithms

[Rosenkrantz et al., 1978], also used in the MADMAN DBMS [GE, 1976]. These
algorithms are based on the assignment of timestamps to transactions. WAIT-DIE is

7 This is not a significant advantage since most systems have to be able to undo transactions for
reliability purposes, as we will see in Section C.6.

C.5 Concurrency Control C-39

a non-preemptive algorithm in that if the lock request of 𝑇𝑖 is denied because the lock
is held by 𝑇𝑗 , it never preempts 𝑇𝑗 , following the rule:

WAIT-DIE Rule. If 𝑇𝑖 requests a lock on a data item that is already locked by 𝑇𝑗 ,
𝑇𝑖 is permitted to wait if and only if 𝑇𝑖 is older than 𝑇𝑗 . If 𝑇𝑖 is younger than 𝑇𝑗 ,
then 𝑇𝑖 is aborted and restarted with the same timestamp.

A preemptive version of the same idea is the WOUND-WAIT algorithm, which
follows the rule:

WOUND-WAIT Rule. If 𝑇𝑖 requests a lock on a data item that is already locked
by 𝑇𝑗 , then 𝑇𝑖 is permitted to wait if only if it is younger than 𝑇𝑗 ; otherwise, 𝑇𝑗 is
aborted and the lock is granted to 𝑇𝑖 .

The rules are specified from the viewpoint of 𝑇𝑖: 𝑇𝑖 waits, 𝑇𝑖 dies, and 𝑇𝑖 wounds
𝑇𝑗 . In fact, the result of wounding and dying are the same: the affected transaction is
aborted and restarted. With this perspective, the two rules can be specified as follows:

if 𝑡𝑠(𝑇𝑖) < 𝑡𝑠(𝑇𝑗) then 𝑇𝑖 waits else 𝑇𝑖 dies (WAIT-DIE)
if 𝑡𝑠(𝑇𝑖) < 𝑡𝑠(𝑇𝑗) then 𝑇𝑗 is wounded else 𝑇𝑖 waits (WOUND-WAIT)

Notice that in both algorithms the younger transaction is aborted. The difference
between the two algorithms is whether or not they preempt active transactions. Also
note that the WAIT-DIE algorithm prefers younger transactions and kills older ones.
Thus an older transaction tends to wait longer and longer as it gets older. By contrast,
theWOUND-WAIT rule prefers the older transaction since it never waits for a younger
one. One of these methods, or a combination, may be selected in implementing a
deadlock prevention algorithm.
Deadlock avoidance methods are more suitable than prevention schemes for

database environments. Their fundamental drawback is that they require run-time
support for deadlock management, which adds to the run-time overhead of transaction
execution.

C.5.6.3 Deadlock Detection and Resolution

Deadlock detection and resolution is the most popular and best-studied method.
Detection is done by studying the WFG for the formation of cycles. Resolution of
deadlocks is typically done by the selection of one or more victim transaction(s)
that will be preempted and aborted in order to break the cycles in the WFG. Under
the assumption that the cost of preempting each member of a set of deadlocked
transactions is known, the problem of selecting theminimum total-cost set for breaking
the deadlock cycle has been shown to be a difficult (NP-complete) problem [Leung
and Lai, 1979]. However, there are some factors that affect this choice [Bernstein
et al., 1987]:

C-40 C Transaction Processing Fundamentals

1. The amount of effort that has already been invested in the transaction. This
effort will be lost if the transaction is aborted.

2. The cost of aborting the transaction. This cost generally depends on the number
of updates that the transaction has already performed.

3. The amount of effort it will take to finish executing the transaction. The
scheduler wants to avoid aborting a transaction that is almost finished. To do
this, it must be able to predict the future behavior of active transactions (e.g.,
based on the transaction’s type).

4. The number of cycles that contain the transaction. Since aborting a transaction
breaks all cycles that contain it, it is best to abort transactions that are part of
more than one cycle (if such transactions exist).

C.6 DBMS Reliability

We now discuss DBMS reliability. From earlier discussion in this appendix, the
reader will recall that the reliability of a DBMS refers to the atomicity and durability
properties of transactions.

C.6.1 Failure Modes

Designing a reliable system that can recover from failures requires identifying the
types of failures with which the system has to deal. In a DBMS, we deal with three
types of failures: transaction failures (aborts), system failures, and media failures.

C.6.1.1 Transaction Failures

Transactions can fail for a number of reasons. Failure can be due to an error in the
transaction caused by incorrect input data as well as the detection of a present or
potential deadlock. Furthermore, some concurrency control algorithms do not permit
a transaction to proceed or even to wait if the data that they attempt to access are
currently being accessed by another transaction. This might also be considered a
failure. The usual approach to take in cases of transaction failure is to abort the
transaction, thus resetting the database to its state prior to the start of this transaction.8
The frequency of transaction failures is not easy to measure. An early study

reported that in System R, 3% of the transactions aborted abnormally [Gray et al.,
1981]. In general, within a single application, the ratio of transactions that abort

8 Recall that all transaction aborts are not due to failures; in some cases, application logic requires
transaction aborts as in Example B.3.

C.6 DBMS Reliability C-41

themselves is rather constant, being a function of the incorrect data, the available
semantic data control features, and so on. The number of transaction aborts by the
DBMS due to concurrency control considerations (mainly deadlocks) is dependent
on the level of concurrency (i.e., number of concurrent transactions), the interference
of the concurrent applications, the granularity of locks, and so on [Härder and Reuter,
1983].

C.6.1.2 System Failures

The reasons for system failure can be traced back to a hardware or to a software
failure. The ratio of hardware failures vary from study to study and range from 18%
to over 50%. Studies indicate that most hardware failures are intermittent [Roth et al.,
1967; Ball and Hardie, 1967]. Most of the software failures are also reported to be
transient Gray [1987], suggesting that a dump and restart may be sufficient to recover
without any need to “repair” the software.
Software failures are typically caused by “bugs” in the code. The estimates for the

number of bugs in software vary considerably. Figures such as 0.25 bug per 1000
instructions to 10 bugs per 1000 instructions have been reported.
The important point from the perspective of this discussion is that a system failure

is always assumed to result in the loss of main memory contents. Therefore, any part
of the database that was in main memory buffers is lost as a result of a system failure.
However, the database that is stored in secondary storage is assumed to be safe and
correct. In distributed database terminology, system failures are typically referred to
as site failures, since they result in the failed site being unreachable from other sites
in the distributed system.
We typically differentiate between partial and total failures in a distributed system.

Total failure refers to the simultaneous failure of all sites in the distributed system;
partial failure indicates the failure of only some sites while the others remain
operational. As indicated in Chapter 1, it is this aspect of distributed systems that
makes them more available.

C.6.1.3 Media Failures

Media failure refers to the failures of the secondary storage devices that store the
database. Such failures may be due to operating system errors, as well as to hardware
faults such as head crashes or controller failures. The important point from the
perspective of DBMS reliability is that all or part of the database that is on the
secondary storage is considered to be destroyed and inaccessible. Duplexing of disk
storage and maintaining archival copies of the database are common techniques that
deal with this sort of catastrophic problem.
Media failures are frequently treated as problems local to one site and therefore

not specifically addressed in the reliability mechanisms of distributed DBMSs. We
consider techniques for dealing with them in Section C.6.3.1 under local recovery

C-42 C Transaction Processing Fundamentals

management. We then turn our attention to site failures when we consider distributed
recovery functions.

C.6.2 Reliability Protocols

In this section we discuss the functions performed by the recovery manager (RM) that
exists at each site. These functions maintain the atomicity and durability properties
of local transactions. They relate to the execution of the commands that are passed to
the RM, which are Begin_transaction, Read,Write, Commit, and Abort. Later
in this section we introduce a new command into the RM’s repertoire that initiates
recovery actions after a failure.

C.6.2.1 Roles of Recovery Manager and Buffer Manager

When the RM wants to read a page of data9 on behalf of a transaction, it issues a
Fetch command, indicating the page that it wants to read (see Figure C.5). The buffer
manager checks to see if that page is already in the buffer (due to a previous fetch
command from another transaction) and if so, makes it available for that transaction;
if not, it reads the page from the stable database into an empty database buffer. If
the buffer is full, it selects one of the buffer pages to write back to stable storage and
reads the requested stable database page into that buffer page. There are a number of
different algorithms by which the buffer manager may choose the buffer page to be
replaced; these are discussed in standard database textbooks.
The buffer manager also provides the interface by which the RM can actually force

it to write back some of the buffer pages. This can be accomplished by means of the
Flush command, which specifies the buffer pages that the RM wants to be written
back. Different RM implementations may or may not use this forced writing. This
issue is discussed further in subsequent sections.
As its interface suggests, the buffer manager acts as a conduit for all access to the

database via the buffers that it manages. It provides this function by fulfilling three
tasks:

1. Searching the buffer pool for a given page;
2. If it is not found in the buffer, allocating a free buffer page and loading the
buffer page with a data page that is brought in from secondary storage;

3. If no free buffer pages are available, choosing a buffer page for replacement.

Searching is quite straightforward. Typically, the buffer pages are shared among
the transactions that execute against the database, so search is global.

9 RM’s unit of access may be in blocks that have sizes different from a page. However, for simplicity,
we assume that the unit of access is the same.

C.6 DBMS Reliability C-43

Allocation of buffer pages is typically done dynamically. This means that the
allocation of buffer pages to processes is performed as processes execute. The buffer
manager tries to calculate the number of buffer pages needed to run the process
efficiently and attempts to allocate that number of pages. The best known dynamic
allocation method is the working-set algorithm [Denning, 1968, 1980].
A second aspect of allocation is fetching data pages. The most common technique

is demand paging, where data pages are brought into the buffer as they are referenced.
However, a number of operating systems prefetch a group of data pages that are in
close physical proximity to the data page referenced. Buffer managers choose this
route if they detect sequential access to a file.
In replacing buffer pages, the best known technique is the least recently used

(LRU) algorithm that attempts to determine the logical reference strings [Effelsberg
and Härder, 1984] of processes to buffer pages and to replace the page that has not
been referenced for an extended period. The anticipation here is that if a buffer page
has not been referenced for a long time, it probably will not be referenced in the near
future.
The techniques discussed above are the most common. Other alternatives are

discussed in [Effelsberg and Härder, 1984].
Clearly, these functions are similar to those performed by operating system (OS)

buffer managers. However, quite frequently, DBMSs bypass OS buffer managers and
manage disks and main memory buffers themselves due to a number of problems
(see, e.g., [Stonebraker, 1981]) that are beyond the scope of this book. Basically, the
requirements of DBMSs are usually incompatible with the services that OSs provide.
The consequence is that DBMS kernels duplicate OS services with an implementation
that is more suitable for their needs.
The RM and the buffer manager are also responsible for maintaining the DBMS

log that records all actions on the database. We discuss these in the next section.

C.6.2.2 Recovery Information

In this section we assume that only system failures occur. We defer the discussion of
techniques for recovering from media failures until later. Since we are dealing with
centralized database recovery, communication failures are not applicable.
When a system failure occurs, the volatile database is lost. Therefore, the DBMS

has to maintain some information about its state at the time of the failure in order to
be able to bring the database to the state that it was in when the failure occurred. We
call this information the recovery information.
The recovery information that the system maintains is dependent on the method of

executing updates. Two possibilities are in-place updating and out-of-place updating.
In-place updating physically changes the value of the data item in the stable database.
As a result, the previous values are lost. Out-of-place updating, on the other hand,
does not change the value of the data item in the stable database but maintains the new
value separately. Of course, periodically, these updated values have to be integrated
into the stable database. We should note that the reliability issues are somewhat

C-44 C Transaction Processing Fundamentals

simpler if in-place updating is not used. However, most DBMSs use it due to its
improved performance.

In-Place Update Recovery Information

Since in-place updates cause previous values of the affected data items to be lost, it is
necessary to keep enough information about the database state changes to facilitate
the recovery of the database to a consistent state following a failure. This information
is typically maintained in a database log. Thus each update transaction not only
changes the database but the change is also recorded in the database log (Figure
C.15). The log contains information necessary to recover the database state following
a failure.

New

stable database

state

Database Log

Update

Operation

Old

stable database

state

Fig. C.15: Update Operation Execution

For the following discussion assume that the RM and buffer manager algorithms
are such that the buffer pages are written back to the stable database only when the
buffer manager needs new buffer space. In other words, the flush command is not
used by the RM and the decision to write back the pages into the stable database is
taken at the discretion of the buffer manager. Now consider that a transaction 𝑇1 had
completed (i.e., committed) before the failure occurred. The durability property of
transactions would require that the effect os 𝑇1 be reflected in the database. However,
it is possible that the volatile database pages that have been updated by 𝑇1 may not
have been written back to the stable database at the time of the failure. Therefore,
upon recovery, it is important to be able to redo the operations of 𝑇1. This requires
some information to be stored in the database log about the effects of 𝑇1. Given this
information, it is possible to recover the database from its “old” state to the “new”
state that reflects the effects of 𝑇1 (Figure C.16).
Now consider another transaction, 𝑇2, that was still running when the failure

occurred. The atomicity property would dictate that the stable database not contain
any effects of 𝑇2. It is possible that the buffer manager may have had to write into
the stable database some of the volatile database pages that have been updated by 𝑇2.

C.6 DBMS Reliability C-45

Database Log

REDO

New

stable database

state

Old

stable database

state

Fig. C.16: REDO Action

Upon recovery from failures it is necessary to undo the operations of 𝑇2.10 Thus the
recovery information should include sufficient data to permit the undo by taking the
“new” database state that reflects partial effects of 𝑇2 and recovers the “old” state that
existed at the start of 𝑇2 (Figure C.17).

New

stable database

state

Database Log

Old

stable database

state
UNDO

Fig. C.17: UNDO Action

We should indicate that the undo and redo actions are assumed to be idempotent.
In other words, their repeated application to a transaction would be equivalent to
performing them once. Furthermore, the undo/redo actions form the basis of different
methods of executing the commit commands. We discuss this further in Section
C.6.2.3.
The contents of the log may differ according to the implementation. However, the

following minimal information for each transaction is contained in almost all database
logs: a begin_transaction record, the value of the data item before the update (called
the before image), the updated value of the data item (called the after image), and a
termination record indicating the transaction termination condition (commit, abort).
The granularity of the before and after images may be different, as it is possible to
log entire pages or some smaller unit. As an alternative to this form of state logging,

10 One might think that it could be possible to continue with the operation of 𝑇2 following restart
instead of undoing its operations. However, in general it may not be possible for the RM to determine
the point at which the transaction needs to be restarted. Furthermore, the failure may not be a system
failure but a transaction failure (i.e., 𝑇2 may actually abort itself) after some of its actions have been
reflected in the stable database. Therefore, the possibility of undoing is necessary.

C-46 C Transaction Processing Fundamentals

operational logging, as in ARIES [Haderle et al., 1992], may be supported where the
operations that cause changes to the database are logged rather than the before and
after images.
The log is also maintained in main memory buffers (called log buffers) and

written back to stable storage (called stable log) similar to the database buffer pages
(Figure C.5). The log pages can be written to stable storage in one of two ways. They
can be written synchronously (more commonly known as forcing a log) where the
addition of each log record requires that the log be moved from main memory to
stable storage. They can also be written asynchronously, where the log is moved to
stable storage either at periodic intervals or when the buffer fills up. When the log is
written synchronously, the execution of the transaction is suspended until the write is
complete. This adds some delay to the response-time performance of the transaction.
On the other hand, if a failure occurs immediately after a forced write, it is relatively
easy to recover to a consistent database state.
Whether the log is written synchronously or asynchronously, one very important

protocol has to be observed in maintaining logs. Consider a case where the updates
to the database are written into the stable storage before the log is modified in stable
storage to reflect the update. If a failure occurs before the log is written, the database
will remain in updated form, but the log will not indicate the update that makes it
impossible to recover the database to a consistent and up-to-date state. Therefore,
the stable log is always updated prior to the updating of the stable database. This is
known as the write-ahead logging (WAL) protocol [Gray, 1979] and can be precisely
specified as follows:

1. Before a stable database is updated (perhaps due to actions of a yet uncommitted
transaction), the before images should be stored in the stable log. This facilitates
undo.

2. When a transaction commits, the after images have to be stored in the stable
log prior to the updating of the stable database. This facilitates redo.

Out-of-Place Update Recovery Information

As we mentioned above, the most common update technique is in-place updating.
Therefore, we provide only a brief overview of the other updating techniques and
their recovery information. Details can be found in [Verhofstadt, 1978] and the other
references given earlier.
Typical techniques for out-of-place updating are shadowing ([Astrahan et al., 1976;

Gray, 1979]) and differential files [Severence and Lohman, 1976]. Shadowing uses
duplicate stable storage pages in executing updates. Thus every time an update is
made, the old stable storage page, called the shadow page, is left intact and a new page
with the updated data item values is written into the stable database. The access path
data structures are updated to point to the new page, which contains the current data
so that subsequent accesses are to this page. The old stable storage page is retained
for recovery purposes (to perform undo).

C.6 DBMS Reliability C-47

Recovery based on shadow paging is implemented in System R’s recovery manager
[Gray et al., 1981]. This implementation uses shadowing together with logging.
The differential file approach was discussed in Chapter 3 within the context of

integrity enforcement. In general, the method maintains each stable database file as a
read-only file. In addition, it maintains a corresponding read-write differential file
that stores the changes to that file. Given a logical database file 𝐹, let us denote its
read-only part as 𝐹𝑅 and its corresponding differential file as 𝐷𝐹. 𝐷𝐹 consists of
two parts: an insertions part, which stores the insertions to 𝐹, denoted 𝐷𝐹+, and a
corresponding deletions part, denoted 𝐷𝐹−. All updates are treated as the deletion of
the old value and the insertion of a new one. Thus each logical file 𝐹 is considered
to be a view defined as 𝐹 = (𝐹𝑅 ∪ 𝐷𝐹+) − 𝐷𝐹−. Periodically, the differential file
needs to be merged with the read-only base file.
Recovery schemes based on this method simply use private differential files for

each transaction, which are then merged with the differential files of each file at
commit time. Thus recovery from failures can simply be achieved by discarding the
private differential files of non-committed transactions.
There are studies that indicate that the shadowing and differential files approaches

may be advantageous in certain environments. One study by Agrawal and DeWitt
[1985] investigates the performance of recovery mechanisms based on logging,
differential files, and shadow paging, integrated with locking and optimistic (using
timestamps) concurrency control algorithms. The results indicate that shadowing,
together with locking, can be a feasible alternative to the more common log-based
recovery integrated with locking if there are only large (in terms of the base-set size)
transactions with sequential access patterns. Similarly, differential files integrated with
locking can be a feasible alternative if there are medium-sized and large transactions.

C.6.2.3 Execution of RM Commands

Recall that there are five commands that form the interface to the RM. These are the
Begin_transaction, Read, Write, Commit, and Abort commands. As we indicated
earlier, some DBMSs do not have an explicit commit command. In this case the end
(of transaction) indicator serves as the commit command. For simplicity, we specify
commit explicitly.
In this section we introduce a sixth interface command to the RM: recover. The

Recover command is the interface that the operating system has to the RM. It is used
during recovery from system failures when the operating system asks the DBMS to
recover the database to the state that existed when the failure occurred.
The execution of some of these commands (specifically, Abort, Commit, and

Recover) is quite dependent on the specific RM algorithms that are used as well as on
the interaction of the RM with the buffer manager. Others (i.e., Begin_transaction,
Read, andWrite) are quite independent of these considerations.
The fundamental design decision in the implementation of the local recovery

manager, the buffer manager, and the interaction between the two components is
whether or not the buffer manager obeys the local recovery manager’s instructions as

C-48 C Transaction Processing Fundamentals

to when to write the database buffer pages to stable storage. Specifically, two decisions
are involved. The first one is whether the buffer manager may independently write
the buffer pages updated by a transaction into stable storage during the execution of
that transaction, or it waits for the RM to instruct it to write them back. We call this
the fix/no-fix decision. The reasons for the choice of this terminology will become
apparent shortly. Note that it is also called the steal/no-steal decision by Härder and
Reuter [1983]. The second decision is whether the buffer manager will be forced
to flush the buffer pages updated by a transaction into the stable storage at the end
of that transaction (i.e., the commit point), or the buffer manager flushes them out
whenever it needs to according to its buffer management algorithm. We call this the
flush/no-flush decision. It is called the force/no-force decision by Härder and Reuter
[1983].
Accordingly, four alternatives can be identified: (1) no-fix/no-flush, (2) no-fix/flush,

(3) fix/no-flush, and (4) fix/flush. We will consider each of these in more detail.
However, first we present the execution methods of the Begin_transaction, Read,
andWrite commands, which are quite independent of these considerations. Where
modifications are required in these methods due to different RM and buffer manager
implementation strategies, we will indicate them.

Begin_transaction, Read, and Write Commands

Begin_transaction. This command causes various components of the DBMS to carry
out some bookkeeping functions. We will also assume that it causes the TM to write
a begin_transaction record into the log. This is an assumption made for convenience
of discussion; in reality, writing of the begin_transaction record may be delayed until
the first write to improve performance by reducing I/O.

Read. TheRead command specifies a data item. The RM tries to read the specified
data item from the buffer pages that belong to the transaction. If the data item is not
in one of these pages, it issues a Fetch command to the buffer manager in order to
make the data available. Upon reading the data, the RM returns it to the scheduler.

Write. TheWrite command specifies the data item and the new value. As with
a read command, if the data item is available in the buffers of the transaction, its
value is modified in the database buffers (i.e., the volatile database). If it is not in
the private buffer pages, a Fetch command is issued to the buffer manager, and the
data is made available and updated. The before image of the data page, as well as its
after image, are recorded in the log. The local recovery manager then informs the
scheduler that the operation has been completed successfully.

No-fix/No-flush

This type of RM algorithm requires performing both the redo and undo operations
upon recovery. It is also called redo/undo algorithm [Bernstein et al., 1987] or
steal/no-force [Härder and Reuter, 1983].

C.6 DBMS Reliability C-49

Abort. As we indicated before, abort is an indication of transaction failure. Since
the buffer manager may have written the updated pages into the stable database, abort
will have to undo the actions of the transaction. Therefore, the RM reads the log
records for that specific transaction and replaces the values of the updated data items
in the volatile database with their before images. The scheduler is then informed about
the successful completion of the abort action. This process is called the transaction
undo or partial undo.
An alternative implementation is the use of an abort list, which stores the identifiers

of all the transactions that have been aborted. If such a list is used, the abort action is
considered to be complete as soon as the transaction’s identifier is included in the
abort list.
Note that even though the values of the updated data items in the stable database

are not restored to their before images, the transaction is considered to be aborted
at this point. The buffer manager will write the “corrected” volatile database pages
into the stable database at a future time, thereby restoring it to its state prior to that
transaction. An abort record is written into the log as well.

Commit. The Commit command causes an commit record to be written into the
log by the RM. Under this scenario, no other action is taken in executing a commit
command other than informing the scheduler about the successful completion of the
commit action.
An alternative to writing a commit record into the log is to add the transaction’s

identifier to a commit list, which is a list of the identifiers of transactions that have
committed. In this case the commit action is accepted as complete as soon as the
transaction identifier is stored in this list.

Recover. The RM starts the recovery action by going to the beginning of the log
and redoing the operations of each transaction for which both a begin_transaction
and an commit record is found. This is called partial redo. Similarly, it undoes the
operations of each transaction for which a begin_transaction record is found in the
log without a corresponding commit record. This action is called global undo, as
opposed to the transaction undo discussed above. The difference is that the effects of
all incomplete transactions need to be rolled back, not one.
If commit list and abort list implementations are used, the recovery action consists

of redoing the operations of all the transactions in the commit list and undoing the
operations of all the transactions in the abort list. In the remainder of this chapter
we will not make this distinction, but rather will refer to both of these recovery
implementations as global undo.

No-fix/Flush

The RM algorithms that use this strategy require an explicit Flush command to the
buffer manager for a page to be written back to stable storage. Since the RM pushes all
updated pages when a transaction commits, there is no need for a redo upon recovery
from a failure. These are called undo/no-redo [Bernstein et al., 1987] or steal/force
[Härder and Reuter, 1983].

C-50 C Transaction Processing Fundamentals

Abort. The execution of Abort is identical to the previous case. Upon transaction
failure, the RM initiates a partial undo for that particular transaction.

Commit. The RM issues a Flush command to the buffer manager, forcing it
to write back all the updated volatile database pages into the stable database. The
commit command is then executed either by placing a record in the log or by insertion
of the transaction identifier into the commit list as specified for the previous case.
When all of this is complete, the RM informs the scheduler that the commit has been
carried out successfully.

Recover. As noted above, since all the updated pages are written into the stable
database at the commit point, there is no need to perform redo; all the effects of
successful transactions will have been reflected in the stable database. Therefore, the
recovery action initiated by the RM consists of a global undo.

Fix/No-flush

In this case the RM controls the writing of the volatile database pages into stable
storage. The key here is not to permit the buffer manager to write any updated volatile
database page into the stable database until at least the transaction commit point.
This is accomplished by the Fix command, which is a modified version of the fetch
command whereby the specified page is fixed in the database buffer and cannot be
written back to the stable database by the buffer manager. Thus any Fetch command
to the buffer manager for a write operation is replaced by a fix command.11 Note
that this precludes the need for a global undo operation and is therefore called a
redo/no-undo algorithm [Bernstein et al., 1987] or a no-force/no-steal algorithm by
[Härder and Reuter, 1983].

Abort. Since the volatile database pages have not been written to the stable
database, no special action is necessary. To release the buffer pages that have been
fixed by the transaction, however, it is necessary for the RM to send anUnfix command
to the buffer manager for all such pages. It is then sufficient to carry out the abort
action either by writing an abort record in the log or by including the transaction in
the abort list, informing the scheduler and then forgetting about the transaction.

Commit. The RM sends an Unfix command to the buffer manager for every
volatile database page that was previously fixed by that transaction. Note that these
pages may now be written back to the stable database at the discretion of the buffer
manager. The commit command is then executed either by placing an commit record
in the log or by inserting the transaction identifier into the commit list as specified for
the preceding case. When all of this is complete, the RM informs the scheduler that
the commit has been successfully carried out.

Recover. As we mentioned above, since the volatile database pages that have been
updated by ongoing transactions are not yet written into the stable database, there
is no necessity for global undo. The RM, therefore, initiates a partial redo action

11 Of course, any page that was previously fetched for read but is now being updated also needs to be
fixed.

C.6 DBMS Reliability C-51

to recover those transactions that may have already committed, but whose volatile
database pages may not have yet written into the stable database.

Fix/Flush

This is the case where the RM forces the buffer manager to write the updated volatile
database pages into the stable database at precisely the commit point—not before
and not after. This strategy is called no-undo/no-redo [Bernstein et al., 1987] or
no-steal/force [Härder and Reuter, 1983].

Abort. The execution of Abort is identical to that of the fix/no-flush case.
Commit. The RM sends an Unfix command to the buffer manager for every

volatile database page that was previously fixed by that transaction. It then issues a
Flush command to the buffer manager, forcing it to write back all the unfixed volatile
database pages into the stable database.12 Finally, theCommit command is processed
by either writing an commit record into the log or by including the transaction in
the commit list. The important point to note here is that all three of these operations
have to be executed as an atomic action. One step that can be taken to achieve this
atomicity is to issue only a Fush command, which serves to unfix the pages as well.
This eliminates the need to send two messages from the RM to the buffer manager,
but does not eliminate the requirement for the atomic execution of the flush operation
and the writing of the database log. The RM then informs the scheduler that the
Commit has been carried out successfully. Methods for ensuring this atomicity are
beyond the scope of our discussion (see [Bernstein et al., 1987]).

Recover. The recover command does not need to do anything in this case. This is
true since the stable database reflects the effects of all the successful transactions and
none of the effects of the uncommitted transactions.

C.6.3 Checkpointing

In most of the RM implementation strategies, the execution of the recovery action
requires searching the entire log. This is a significant overhead because the RM is
trying to find all the transactions that need to be undone and redone. The overhead
can be reduced if it is possible to build a wall which signifies that the database at that
point is up-to-date and consistent. In that case, the redo has to start from that point on
and the undo only has to go back to that point. This process of building the wall is
called checkpointing.
Checkpointing is achieved in three steps [Gray, 1979]:

12 Our discussion here gives the impression that two commands (Unfix and Flush) need to be sent
to the BM by the RM for each commit action. We have chosen to explain the action in this way
only for presentation simplicity. In reality, it is, of course, possible and preferable to implement one
command that instructs the BM to both unfix and flush, thereby reducing the message overhead
between DBMS components.

C-52 C Transaction Processing Fundamentals

1. Write a begin_checkpoint record into the log.
2. Collect the checkpoint data into the stable storage.
3. Write an end_checkpoint record into the log.

The first and the third steps enforce the atomicity of the checkpointing operation.
If a system failure occurs during checkpointing, the recovery process will not find an
end_checkpoint record and will consider checkpointing not completed.
There are a number of different alternatives for the data that is collected in Step

2, how it is collected, and where it is stored. We will consider one example here,
called transaction-consistent checkpointing [Gray, 1979; Gray et al., 1981]. The
checkpointing starts by writing the begin_checkpoint record in the log and stopping
the acceptance of any new transactions by the RM. Once the active transactions are all
completed, all the updated volatile database pages are flushed to the stable database
followed by the insertion of an end_checkpoint record into the log. In this case, the
redo action only needs to start from the end_checkpoint record in the log. The undo
action can go the reverse direction, starting from the end of the log and stopping at
the end_checkpoint record.
Transaction-consistent checkpointing is not the most efficient algorithm, since

a significant delay is experienced by all the transactions. There are alternative
checkpointing schemes such as action-consistent checkpoints, fuzzy checkpoints, and
others [Gray, 1979; Lindsay, 1979].

C.6.3.1 Handling Media Failures

As we mentioned before, the previous discussion on centralized recovery considered
non-media failures, where the database as well as the log stored in the stable storage
survive the failure. Media failures may either be quite catastrophic, causing the loss
of the stable database or of the stable log, or they can simply result in partial loss of
the database or the log (e.g., loss of a track or two).
The methods that have been devised for dealing with this situation are again based

on duplexing. To cope with catastrophic media failures, an archive copy of both the
database and the log is maintained on a different (tertiary) storage medium. Thus the
DBMS deals with three levels of memory hierarchy: the main memory, random access
secondary storage, and tertiary storage (Figure C.5). To deal with less catastrophic
failures, having duplicate copies of the database and log may be sufficient.
When a media failure occurs, the database is recovered from the archive copy by

redoing and undoing the transactions as stored in the archive log. The real question is
how the archive database is stored. If we consider the large sizes of current databases,
the overhead of writing the entire database to tertiary storage is significant. Two
methods that have been proposed for dealing with this are to perform the archiving
activity concurrent with normal processing and to archive the database incrementally
as changes occur so that each archive version contains only the changes that have
occurred since the previous archiving.

