
Appendix B
Centralized Query Processing

Our discussion in this appendix is a survey of query processing in centralized
relational DBMSs. The distributed approach discussed in Chapter 4 is an extension
of these techniques.
The success of relational database technology in data processing is due, in part,

to the availability of non-procedural languages (i.e., SQL), which can significantly
improve application development and end-user productivity. By hiding the low-level
details about the physical organization of the data, relational database languages allow
the expression of complex queries in a concise and simple fashion. In particular, to
construct the answer to the query, the user does not precisely specify the procedure to
follow. This procedure is actually devised by a DBMS module, usually called a query
processor. This relieves the user from query optimization, a time-consuming task
that is best handled by the query processor, since it can exploit a large amount of
useful information about the data.

B.1 Characterization of Query Processors

It is quite difficult to evaluate and compare query processors in the context of both
centralized systems and distributed systems because they may differ in many aspects.
In what follows, we list important characteristics of query processors that can be used
as a basis for comparison.

B.1.1 Languages

Initially, most of the work on query processing was done in the context of relational
DBMSs because their high-level languages give the system many opportunities for
optimization. The input language to the query processor is thus based on relational

B-1

B-2 B Centralized Query Processing

calculus. As noted in Appendix A, we primarily use SQL as the user language in this
book.
The former requires an additional phase to decompose a query expressed in

relational calculus into relational algebra. In a distributed context, the output language
is generally some internal form of relational algebra augmented with communication
primitives. The operators of the output language are implemented directly in the
system. Query processing must perform efficient mapping from the input language to
the output language.

B.1.2 Types of Optimization

Conceptually, query optimization aims at choosing the “best” point in the solution
space of all possible execution strategies. An immediatemethod for query optimization
is to search the solution space, exhaustively predict the cost of each strategy, and
select the strategy with minimum cost. Although this method is effective in selecting
the best strategy, it may incur a significant processing cost for the optimization itself.
The problem is that the solution space can be large; that is, there may be many
equivalent strategies, even with a small number of relations. The problem becomes
worse as the number of relations increases (e.g., becomes greater than 1-). Having
high optimization cost is not necessarily bad, particularly if query optimization is
done once for many subsequent executions of the query. Therefore, an “exhaustive”
search approach is often used whereby (almost) all possible execution strategies are
considered [Selinger et al., 1979].
To avoid the high cost of exhaustive search, randomized strategies, such as iterative

improvement [Swami, 1989] and simulated annealing [Ioannidis and Wong, 1987]
have been proposed to be used for query optimization. They try to find a very good
solution, not necessarily the best one, but avoid the high cost of optimization, in
terms of memory and time consumption.
Another popular way of reducing the cost of exhaustive search is the use of

heuristics, whose effect is to restrict the solution space so that only a few strategies
are considered. In both centralized and distributed systems, a common heuristic is to
minimize the size of intermediate relations. This can be done by performing unary
operators first, and ordering the binary operators by the increasing sizes of their
intermediate relations.

B.1.3 Optimization Timing

A query may be optimized at different times relative to the actual time of query
execution. Optimization can be done statically before executing the query or dynami-
cally as the query is executed. Static query optimization is done at query compilation
time. Thus the cost of optimization may be amortized over multiple query executions.

B.2 Query Processing Methodology B-3

Therefore, this timing is appropriate for use with the exhaustive search method. Since
the sizes of the intermediate relations of a strategy are not known until run time, they
must be estimated using database statistics. Errors in these estimates can lead to the
choice of suboptimal strategies.
Dynamic query optimization proceeds at query execution time. At any point of

execution, the choice of the best next operator can be based on accurate knowledge of
the results of the operators executed previously. Therefore, database statistics are not
needed to estimate the size of intermediate results. However, they may still be useful
in choosing the first operators. The main advantage over static query optimization is
that the actual sizes of intermediate relations are available to the query processor,
thereby minimizing the probability of a bad choice. The main shortcoming is that
query optimization, an expensive task, must be repeated for each execution of the
query. Therefore, this approach is best for ad-hoc queries.
Hybrid query optimization attempts to provide the advantages of static query

optimization while avoiding the issues generated by inaccurate estimates. The
approach is basically static, but dynamic query optimization may take place at run
time when a high difference between predicted sizes and actual size of intermediate
relations is detected.

B.1.4 Statistics

The effectiveness of query optimization relies on statistics on the database. Dynamic
query optimization requires statistics in order to choose which operators should
be done first. Static query optimization is even more demanding since the size of
intermediate relations must also be estimated based on statistical information. In a
distributed database, statistics for query optimization typically bear on fragments,
and include fragment cardinality and size as well as the size and number of distinct
values of each attribute. To minimize the probability of error, more detailed statistics
such as histograms of attribute values are sometimes used at the expense of higher
management cost. The accuracy of statistics is achieved by periodic updating. With
static optimization, significant changes in statistics used to optimize a query might
result in query reoptimization.

B.2 Query Processing Methodology

The centralized query processing methodology in relational databases is given in
Figure B.1. We discuss each of these steps below.

B-4 B Centralized Query Processing

NORMALIZATION

ANALYSIS

CALCULUS (DECLARATIVE) QUERY

CLEANED-UP QUERY

CORRECT QUERY

SIMPLIFIED QUERY

REWRITING

SIMPLIFICATION

ALGEBRAIC QUERY

OPTIMIZATION

DATABASE
SCHEMA

Fig. B.1: Centralized Query Processing Methodology

B.2.1 Normalization

The input query may be arbitrarily complex, depending on the facilities provided by
the language. It is the goal of normalization to transform the query to a normalized
form to facilitate further processing. With relational languages such as SQL, the most
important transformation is that of the query qualification (the WHERE clause), which
may be an arbitrarily complex, quantifier-free predicate, preceded by all necessary
quantifiers (∀ or ∃). There are two possible normal forms for the predicate, one giving
precedence to the AND (∧) and the other to the OR (∨). The conjunctive normal
form is a conjunction (∧ predicate) of disjunctions (∨ predicates) as follows:

(𝑝11 ∨ 𝑝12 ∨ · · · ∨ 𝑝1𝑛) ∧ · · · ∧ (𝑝𝑚1 ∨ 𝑝𝑚2 ∨ · · · ∨ 𝑝𝑚𝑛)

where 𝑝𝑖 𝑗 is a simple predicate. A qualification in disjunctive normal form, on the
other hand, is as follows:

(𝑝11 ∧ 𝑝12 ∧ · · · ∧ 𝑝1𝑛) ∨ · · · ∨ (𝑝𝑚1 ∧ 𝑝𝑚2 ∧ · · · ∧ 𝑝𝑚𝑛)

B.2 Query Processing Methodology B-5

The transformation of the quantifier-free predicate is straightforward using the
well-known equivalence rules for logical operations (∧, ∨, and ¬):

1. 𝑝1 ∧ 𝑝2 ⇔ 𝑝2 ∧ 𝑝1

2. 𝑝1 ∨ 𝑝2 ⇔ 𝑝2 ∨ 𝑝1

3. 𝑝1 ∧ (𝑝2 ∧ 𝑝3) ⇔ (𝑝1 ∧ 𝑝2) ∧ 𝑝3

4. 𝑝1 ∨ (𝑝2 ∨ 𝑝3) ⇔ (𝑝1 ∨ 𝑝2) ∨ 𝑝3

5. 𝑝1 ∧ (𝑝2 ∨ 𝑝3) ⇔ (𝑝1 ∧ 𝑝2) ∨ (𝑝1 ∧ 𝑝3)
6. 𝑝1 ∨ (𝑝2 ∧ 𝑝3) ⇔ (𝑝1 ∨ 𝑝2) ∧ (𝑝1 ∨ 𝑝3)
7. ¬(𝑝1 ∧ 𝑝2) ⇔ ¬𝑝1 ∨ ¬𝑝2
8. ¬(𝑝1 ∨ 𝑝2) ⇔ ¬𝑝1 ∧ ¬𝑝2
9. ¬(¬𝑝) ⇔ 𝑝

In the disjunctive normal form, the query can be processed as independent
conjunctive subqueries linked by unions (corresponding to the disjunctions). However,
this form may lead to replicated join and select predicates, as shown in the following
example. The reason is that predicates are very often linked with the other predicates
by AND. The use of rule 5 mentioned above, with 𝑝1 as a join or select predicate,
would result in replicating 𝑝1. The conjunctive normal form is more practical since
query qualifications typically include more AND than OR predicates. However,
it leads to predicate replication for queries involving many disjunctions and few
conjunctions, a rare case.

Example B.1. Let us consider the following query on the engineering database that
we have been referring to:

“Find the names of employees who have been working on project P1 for 12 or
24 months”

The query expressed in SQL is

SELECT ENAME
FROM EMP, ASG
WHERE EMP.ENO = ASG.ENO
AND ASG.PNO = "P1"
AND DUR = 12 OR DUR = 24

The qualification in conjunctive normal form is

EMP.ENO = ASG.ENO ∧ ASG.PNO = "P1" ∧ (DUR = 12 ∨ DUR = 24)

while the qualification in disjunctive normal form is

(EMP.ENO = ASG.ENO ∧ ASG.PNO = "P1" ∧ DUR = 12) ∨
(EMP.ENO = ASG.ENO ∧ ASG.PNO = "P1" ∧ DUR = 24)

B-6 B Centralized Query Processing

In the latter form, treating the two conjunctions independently may lead to
redundant work if common subexpressions are not eliminated. ♦

B.2.2 Analysis

Query analysis enables rejection of normalized queries for which further processing
is either impossible or unnecessary. The main reasons for rejection are that the query
is type incorrect or semantically incorrect. When one of these cases is detected, the
query is simply returned to the user with an explanation. Otherwise, query processing
is continued. Below we present techniques to detect these incorrect queries.
A query is type incorrect if any of its attribute or relation names are not defined

in the global schema, or if operations are being applied to attributes of the wrong
type. The technique used to detect type incorrect queries is similar to type checking
for programming languages. However, the type declarations are part of the global
schema rather than of the query, since a relational query does not produce new types.

Example B.2. The following SQL query on the engineering database is type incorrect
for two reasons. First, attribute E\# is not declared in the schema. Second, the
operation “>200” is incompatible with the type string of ENAME.

SELECT E#
FROM EMP
WHERE ENAME > 200

♦

A query is semantically incorrect if its components do not contribute in any way
to the generation of the result. In the context of relational calculus, it is not possible
to determine the semantic correctness of general queries. However, it is possible to
do so for a large class of relational queries, those which do not contain disjunction
and negation [Rosenkrantz and Hunt, 1980]. This is based on the representation of
the query as a graph, called a query graph or connection graph [Ullman, 1982]. We
define this graph for the most useful kinds of queries involving select, project, and
join operators. In a query graph, one node indicates the result relation, and any other
node indicates an operand relation. An edge between two nodes one of which does
not correspond to the result represents a join, whereas an edge whose destination
node is the result represents a project. Furthermore, a non-result node may be labeled
by a select or a self-join (join of the relation with itself) predicate. An important
subgraph of the query graph is the join graph, in which only the joins are considered.
The join graph is particularly useful in the query optimization phase.

Example B.3. Let us consider the following query:

“Find the names and responsibilities of programmers who have been working
on the CAD/CAM project for more than 3 years.”

B.2 Query Processing Methodology B-7

The query expressed in SQL is

SELECT ENAME, RESP
FROM EMP, ASG, PROJ
WHERE EMP.ENO = ASG.ENO
AND ASG.PNO = PROJ.PNO
AND PNAME = "CAD/CAM"
AND \dur+ ≥ 36
AND TITLE = "Programmer

The query graph for the query above is shown in Figure B.2a. Figure B.2b shows
the join graph for the graph in Figure B.2a. ♦

(a) Query graph

DUR≥36

PNAME = "CAD/CAM"

ENAME

PROJ

EMP.ENO =ASG.ENO ASG.PNO = PROJ.PNO

RESULT

TITLE =
"Programmer"

RESP

(b) Corresponding join graph

ASG.PNO = PROJ.PNOEMP.ENO = ASG.ENO ASG

EMP PROJ

ASG

EMP

Fig. B.2: Relation Graphs

The query graph is useful to determine the semantic correctness of a conjunctive
multivariable query without negation. Such a query is semantically incorrect if its
query graph is not connected. In this case one or more subgraphs (corresponding to
subqueries) are disconnected from the graph that contains the result relation. The
query could be considered correct (which some systems do) by considering the
missing connection as a Cartesian product. But, in general, the problem is that join
predicates are missing and the query should be rejected.

B-8 B Centralized Query Processing

Example B.4. Let us consider the following SQL query:

SELECT ENAME, RESP
FROM EMP, ASG, PROJ
WHERE EMP.ENO = ASG.ENO
AND PNAME = "CAD/CAM"
AND DUR ≥ 36
AND TITLE = "Programmer

Its query graph, shown in Figure B.3, is disconnected, which tells us that the query
is semantically incorrect. There are basically three solutions to the problem: (1) reject
the query, (2) assume that there is an implicit Cartesian product between relations
ASG and PROJ, or (3) infer (using the schema) the missing join predicate ASG.PNO =
PROJ.PNO which transforms the query into that of Example B.3. ♦

PNAME = "CAD/CAM"

ENAME

EMP.ENO = ASG.ENO

TITLE =

"Programmer"
RESP

RESULT

DUR≥36

PROJ

ASG

EMP

Fig. B.3: Disconnected Query Graph

B.2.3 Elimination of Redundancy

As discussed in Chapter 3, relational languages can be used uniformly for semantic
data control. In particular, a user query typically expressed on a view may be enriched
with several predicates to achieve view-relation correspondence, and ensure semantic
integrity and security. The enriched query qualification may then contain redundant
predicates. A naive evaluation of a qualification with redundancy can well lead to
duplicated work. Such redundancy and thus redundant work may be eliminated by
simplifying the qualification with the following well-known idempotency rules:

1. 𝑝 ∧ 𝑝 ⇔ 𝑝

2. 𝑝 ∨ 𝑝 ⇔ 𝑝

B.2 Query Processing Methodology B-9

3. 𝑝 ∧ 𝑡𝑟𝑢𝑒 ⇔ 𝑝

4. 𝑝 ∨ 𝑓 𝑎𝑙𝑠𝑒 ⇔ 𝑝

5. 𝑝 ∧ 𝑓 𝑎𝑙𝑠𝑒 ⇔ 𝑓 𝑎𝑙𝑠𝑒

6. 𝑝 ∨ 𝑡𝑟𝑢𝑒 ⇔ 𝑡𝑟𝑢𝑒

7. 𝑝 ∧ ¬𝑝 ⇔ 𝑓 𝑎𝑙𝑠𝑒

8. 𝑝 ∨ ¬𝑝 ⇔ 𝑡𝑟𝑢𝑒

9. 𝑝1 ∧ (𝑝1 ∨ 𝑝2) ⇔ 𝑝1

10. 𝑝1 ∨ (𝑝1 ∧ 𝑝2) ⇔ 𝑝1

Example B.5. The SQL query

SELECT TITLE
FROM EMP
WHERE (NOT (TITLE = "Programmer")
AND (TITLE = "Programmer"
OR TITLE = "Elect. Eng.")
AND NOT (TITLE = "Elect. Eng."))
OR ENAME = "J. Doe

can be simplified using the previous rules to become

SELECT TITLE
FROM EMP
WHERE ENAME = "J. Doe"

The simplification proceeds as follows. Let 𝑝1 be TITLE = "Programmer", 𝑝2 be
TITLE = "Elect. Eng.", and 𝑝3 be ENAME = "J. Doe". The query qualification is

(¬𝑝1 ∧ (𝑝1 ∨ 𝑝2) ∧ ¬𝑝2) ∨ 𝑝3

The disjunctive normal form for this qualification is obtained by applying rule 5
defined in Section B.2.1, which yields

(¬𝑝1 ∧ ((𝑝1 ∧ ¬𝑝2) ∨ (𝑝2 ∧ ¬𝑝2))) ∨ 𝑝3

and then rule 3 defined in Section B.2.1, which yields

(¬𝑝1 ∧ 𝑝1 ∧ ¬𝑝2) ∨ (¬𝑝1 ∧ 𝑝2 ∧ ¬𝑝2) ∨ 𝑝3

By applying rule 7 defined above, we obtain

(𝑓 𝑎𝑙𝑠𝑒 ∧ ¬𝑝2) ∨ (¬𝑝1 ∧ 𝑓 𝑎𝑙𝑠𝑒) ∨ 𝑝3

By applying the same rule, we get

B-10 B Centralized Query Processing

𝑓 𝑎𝑙𝑠𝑒 ∨ 𝑓 𝑎𝑙𝑠𝑒 ∨ 𝑝3

which is equivalent to 𝑝3 by rule 4. ♦

B.2.4 Rewriting

The last step of query decomposition rewrites the query in relational algebra. For the
sake of clarity it is customary to represent the relational algebra query graphically by
an operator tree. An operator tree is a tree in which a leaf node is a relation stored in
the database, and a non-leaf node is an intermediate relation produced by a relational
algebra operator. The sequence of operations is directed from the leaves to the root,
which represents the answer to the query.
The transformation of a tuple relational calculus query into an operator tree can

easily be achieved as follows. First, a different leaf is created for each different tuple
variable (corresponding to a relation). In SQL, the leaves are immediately available in
the FROM clause. Second, the root node is created as a project operation involving the
result attributes. These are found in the SELECT clause in SQL. Third, the qualification
(SQL WHERE clause) is translated into the appropriate sequence of relational operations
(select, join, union, etc.) going from the leaves to the root. The sequence can be given
directly by the order of appearance of the predicates and operators.

Example B.6. The query
“Find the names of employees other than J. Doe who worked on the CAD/CAM
project for either one or two years”

whose SQL expression is

SELECT ENAME
FROM PROJ, ASG, EMP
WHERE ASG.ENO = EMP.ENO
AND ASG.PNO = PROJ.PNO
AND ENAME != "J. Doe"
AND PROJ.PNAME = "CAD/CAM"
AND (DUR = 12 OR DUR = 24)

can be mapped in a straightforward way in the tree in Figure B.4. The predicates have
been transformed in order of appearance as join and then select operations. ♦

By applying transformation rules, many different trees may be found equivalent
to the one produced by the method described above [Smith and Chang, 1975]. We
now present the six most useful equivalence rules, which concern the basic relational
algebra operators. The correctness of these rules has been proven [Ullman, 1982].
In the remainder of this section, R, S, and T are relations where R is defined over

attributes A = {A1, A2, . . . , A𝑛} and S is defined over B = {B1, B2, . . . , B𝑛}.

1. Commutativity of binary operators. The Cartesian product of two relations
R and S is commutative:

B.2 Query Processing Methodology B-11

PROJ ASG EMP

project

select

join

PNO

Π
ENAME

σ
DUR=12 ∨ DUR=24

σ
PNAME=”CAD/CAM”

σ
ENAME≠”J. Doe”

ENO

Fig. B.4: Example of Operator Tree

R × S⇔ S × R

Similarly, the join of two relations is commutative:

R Z S⇔ S Z R

This rule also applies to union but not to set difference or semijoin.
2. Associativity of binary operators. The Cartesian product and the join are
associative operators:

(R × S) × T⇔ R × (S × T)
(R Z S) Z T⇔ R Z (S Z T)

3. Idempotence of unary operators. Several subsequent projections on the
same relation may be grouped. Conversely, a single projection on several
attributes may be separated into several subsequent projections. If R is defined
over the attribute set A, and A′ ⊆ A, A′′ ⊆ A, and A′ ⊆ A′′, then

ΠA′ (ΠA′′ (R)) ⇔ ΠA′ (R)

Several subsequent selections 𝜎𝑝𝑖 (A𝑖) on the same relation, where 𝑝𝑖 is a
predicate applied to attribute A𝑖 , may be grouped as follows:

B-12 B Centralized Query Processing

𝜎𝑝1 (A1) (𝜎𝑝2 (A2) (R)) = 𝜎𝑝1 (A1)∧𝑝2 (A2) (R)

Conversely, a single selectionwith a conjunction of predicatesmay be separated
into several subsequent selections.

4. Commuting selection with projection. Selection and projection on the same
relation can be commuted as follows:

ΠA1 ,...,A𝑛 (𝜎𝑝 (A𝑝) (R)) ⇔ ΠA1 ,...,A𝑛 (𝜎𝑝 (A𝑝) (ΠA1 ,...,A𝑛 ,A𝑝 (R)))

Note that if A𝑝 is already a member of {A1, . . . , A𝑛}, the last projection on
[A1, . . . , A𝑛] on the right-hand side of the equality is useless.

5. Commuting selection with binary operators. Selection and Cartesian
product can be commuted using the following rule (remember that attribute A𝑖
belongs to relation R):

𝜎𝑝 (A𝑖) (R × S) ⇔ (𝜎𝑝 (A𝑖) (R)) × S

Selection and join can be commuted:

𝜎𝑝 (A𝑖) (R Z𝑝 (A 𝑗 ,B𝑘) S) ⇔ 𝜎𝑝 (A𝑖) (R) Z𝑝 (A 𝑗 ,B𝑘) S

Selection and union can be commuted if R and Tare union compatible (have
the same schema):

𝜎𝑝 (A𝑖) (R ∪ T) ⇔ 𝜎𝑝 (A𝑖) (R) ∪ 𝜎𝑝 (A𝑖) (T)

Selection and difference can be commuted in a similar fashion.
6. Commuting projection with binary operators. Projection and Cartesian
product can be commuted. If C = A′ ∪ B′, where A′ ⊆ A, B′ ⊆ B, and A and B
are the sets of attributes over which relations R andS respectively, are defined,
we have

ΠC (R × S) ⇔ ΠA′ (R) × ΠB′ (S)

Projection and join can also be commuted.

ΠC (R Z𝑝 (A𝑖 ,B 𝑗) 𝑆) ⇔ ΠA′ (R) Z𝑝 (A𝑖 ,B 𝑗) ΠB′ (S)

For the join on the right-hand side of the implication to hold we need to have
A𝑖 ∈ A′ and B 𝑗 ∈ B′. Since C = A′∪B′, A𝑖 and B 𝑗 are in C and therefore we don’t
need a projection over C once the projections over A′ and B′ are performed.
Projection and union can be commuted as follows:

ΠC (R ∪ S) ⇔ ΠC (R) ∪ ΠC (S)

Projection and difference can be commuted similarly.

B.2 Query Processing Methodology B-13

The application of these six rules enables the generation of many equivalent trees.
For instance, the tree in Figure B.5 is equivalent to the one in Figure B.4. However,
the one in Figure B.5 requires a Cartesian product of relations EMP and PROJ, and
may lead to a higher execution cost than the original tree. In the optimization phase,
one can imagine comparing all possible trees based on their predicted cost. However,
the excessively large number of possible trees makes this approach unrealistic. The
rules presented above can be used to restructure the tree in a systematic way so that
the “bad” operator trees are eliminated. These rules can be used in four different
ways. First, they allow the separation of the unary operations, simplifying the query
expression. Second, unary operations on the same relation may be grouped so that
access to a relation for performing unary operations can be done only once. Third,
unary operations can be commuted with binary operations so that some operations
(e.g., selection) may be done first. Fourth, the binary operations can be ordered. This
last rule is used extensively in query optimization. A simple restructuring algorithm
uses a single heuristic that consists of applying unary operations (select/project) as
soon as possible to reduce the size of intermediate relations [Ullman, 1982].

ASG

PROJEMP

x

PNO, ENO

Π
ENAME

σ
PNAME="CAD/CAM" ∧ (DUR=12 ∨ DUR=24) ∧ ENAME ≠ "J. Doe"

Fig. B.5: Equivalent Operator Tree

Example B.7. The restructuring of the tree in Figure B.4 leads to the tree in Figure
B.6. The resulting tree is good in the sense that repeated access to the same relation
(as in Figure B.4) is avoided and that the most selective operations are done first.
However, this tree is far from optimal. For example, the select operation on EMP is not
very useful before the join because it does not greatly reduce the size of the operand
relation. ♦

B-14 B Centralized Query Processing

EMPASGPROJ

PNO

ENO

Π
ENAME

Π
PNO,ENAME

Π
ENO,ENAME

Π
PNO,ENO

Π
PNO

σ
PNAME="CAD/CAM"

σ
ENAME≠"J. Doe"

σ
DUR=12 ∨ DUR=24

Fig. B.6: Rewritten Operator Tree

B.3 Query Optimization

Query optimization is one of the more important and involved aspects of query
processors. Therefore, we devote a section to it. An important aspect of query
optimization is the complexity of the relational algebra operators. Therefore, we start
with a discussion of operator complexity. Then, we present the main components of a
query optimizer. Finally, we introduce different optimization approaches as discussed
early in this appendix.

B.3.1 Complexity of Relational Algebra Operations

In this book we consider relational algebra as a basis to express the output of query
processing. Therefore, the complexity of relational algebra operators, which directly
affects their execution time, dictates some principles useful to a query processor.
These principles can help in choosing the final execution strategy.
The simplest way of defining complexity is in terms of relation cardinalities

independent of physical implementation details such as fragmentation and storage
structures. Figure B.7 shows the complexity of unary and binary operators in the
order of increasing complexity, and thus of increasing execution time. Complexity is

B.3 Query Optimization B-15

𝑂 (𝑛) for unary operators, where n denotes the relation cardinality, if the resulting
tuples may be obtained independently of each other. Complexity is 𝑂 (𝑛 ∗ log𝑛) for
binary operators if each tuple of one relation must be compared with each tuple of the
other on the basis of the equality of selected attributes. This complexity assumes that
tuples of each relation must be sorted on the comparison attributes. However, using
hashing and enough memory to hold one hashed relation can reduce the complexity
of binary operators𝑂 (𝑛) [Bratbergsengen, 1984]. Projects with duplicate elimination
and grouping operators require that each tuple of the relation be compared with each
other tuple, and thus also have 𝑂 (𝑛 ∗ log𝑛) complexity. Finally, complexity is 𝑂 (𝑛2)
for the Cartesian product of two relations because each tuple of one relation must be
combined with each tuple of the other.

Operation Complexity

Select

Project (without duplicate elimination)
O(n)

Project (with duplicate elimination)

Group by

Join

Semijoin

Division

Set Operators

Cartesian Product O(n2)

O(n*log n)

O(n*log n)

Fig. B.7: Complexity of Relational Algebra Operations

This simple look at operator complexity suggests two principles. First, because
complexity is relative to relation cardinalities, the most selective operators that reduce
cardinalities (e.g., selection) should be performed first. Second, operators should
be ordered by increasing complexity so that Cartesian products can be avoided or
delayed.

B.3.2 Query Optimizer Components

Query optimization refers to the process of producing a query execution plan
(QEP) which represents an execution strategy for the query. This QEP minimizes an
objective cost function. A query optimizer, the software module that performs query

B-16 B Centralized Query Processing

optimization, is usually seen as consisting of three components: a search space, a
cost model, and a search strategy (see Figure B.8). The search space is the set of
alternative execution plans that represent the input query. These plans are equivalent,
in the sense that they yield the same result, but they differ in the execution order
of operators and the way these operators are implemented, and therefore in their
performance. The search space is obtained by applying transformation rules, such
as those for relational algebra described in Section B.2.4. The cost model is used to
predict the cost of any given execution plan, and to compare equivalent plans so as to
choose the best one. To be accurate, the cost model must have good knowledge about
the distributed execution environment. The search strategy explores the search space
and selects the best plan, using the cost model. It defines which plans are examined
and in which order. The details of the environment (centralized versus distributed)
are captured by the search space and the cost model.

SEARCH SPACE

GENERATION
TRANSFORMATION

RULES

SEARCH

STRATEGY
COST MODEL

EQUIVALENT QEP

INPUT QUERY

BEST QEP

Fig. B.8: Query Optimization Process

B.3.2.1 Search Space

Query execution plans are typically abstracted by means of operator trees, which
define the order in which the operators are executed. They are enriched with additional
information, such as the best algorithm chosen for each operator. For a given query,
the search space can thus be defined as the set of equivalent operator trees that can be
produced using transformation rules. To characterize query optimizers, it is useful
to concentrate on join trees, which are operator trees whose operators are join or

B.3 Query Optimization B-17

Cartesian product. This is because permutations of the join order have the most
important effect on performance of relational queries.

Example B.8. Consider the following query:

SELECT ENAME, RESP
FROM EMP, ASG, PROJ
WHERE EMP.ENO=ASG.ENO
AND ASG.PNO=PROJ.PNO

Figure B.9 illustrates three equivalent join trees for that query, which are obtained
by exploiting the associativity of binary operators. Each of these join trees can be
assigned a cost based on the estimated cost of each operator. Join tree (c) which starts
with a Cartesian product may have a much higher cost than the other join trees. ♦

PNO

ENO PROJ

ASGEMP

(a)

ENO

PNO EMP

PROJASG

(b)

ENO,PNO

ASG

EMPPROJ

(c)

X

Fig. B.9: Equivalent Join Trees

For a complex query (involving many relations and many operators), the number
of equivalent operator trees can be very high. For instance, the number of alternative
join trees that can be produced by applying the commutativity and associativity rules
is 𝑂 (𝑁!) for 𝑁 relations. Investigating a large search space may make optimization
time prohibitive, sometimes much more expensive than the actual execution time.
Therefore, query optimizers typically restrict the size of the search space they consider.
The first restriction is to use heuristics. The most common heuristic is to perform
selection and projection when accessing base relations. Another common heuristic
is to avoid Cartesian products that are not required by the query. For instance, in
Figure B.9, operator tree (c) would not be part of the search space considered by the
optimizer.
Another important restriction is with respect to the shape of the join tree. Two

kinds of join trees are usually distinguished: linear versus bushy trees (see Figure
B.10). A linear tree is a tree such that at least one operand of each operator node is
a base relation. A bushy tree is more general and may have operators with no base
relations as operands (i.e., both operands are intermediate relations). By considering
only linear trees, the size of the search space is reduced to 𝑂 (2𝑁). However, in a
distributed environment, bushy trees are useful in exhibiting parallelism. For example,
in join tree (b) of Figure B.10, operators R1 Z R2 and R3 Z R4 can be done in parallel.

B-18 B Centralized Query Processing

(a) linear join tree

R1

(b) bushy join tree

R2

R4

R3 R1 R2 R3 R4

Fig. B.10: The Two Major Shapes of Join Trees

B.3.2.2 Search Strategy

The most popular search strategy used by query optimizers is dynamic programming,
which is deterministic. Deterministic strategies proceed by building plans, starting
from base relations, joining one more relation at each step until complete plans
are obtained, as in Figure B.11. Dynamic programming builds all possible plans,
breadth-first, before it chooses the “best” plan. To reduce the optimization cost, partial
plans that are not likely to lead to the optimal plan are pruned (i.e., discarded) as
soon as possible. By contrast, another deterministic strategy, the greedy algorithm,
builds only one plan, depth-first.

R2R1

R3

R2R1

R4

R3

R2R1

Step 1 Step 2 Step 3

Fig. B.11: Optimizer Actions in a Deterministic Strategy

Dynamic programming is almost exhaustive and assures that the “best” of all
plans is found. It incurs an acceptable optimization cost (in terms of time and space)
when the number of relations in the query is small. However, this approach becomes
too expensive when the number of relations is greater than 5 or 6. For more complex
queries, randomized strategies have been proposed, which reduce the optimization
complexity but do not guarantee the best of all plans. Unlike deterministic strategies,
randomized strategies allow the optimizer to trade optimization time for execution
time [Lanzelotte et al., 1993].
Randomized strategies, such as Simulated Annealing [Ioannidis and Wong, 1987]

and Iterative Improvement [Swami, 1989] concentrate on searching for the optimal

B.3 Query Optimization B-19

solution around some particular points. They do not guarantee that the best solution
is obtained, but avoid the high cost of optimization, in terms of memory and time
consumption. First, one or more start plans are built by a greedy strategy. Then, the
algorithm tries to improve the start plan by visiting its neighbors. A neighbor is
obtained by applying a random transformation to a plan. An example of a typical
transformation consists in exchanging two randomly chosen operand relations of the
plan, as in Figure B.12. It has been shown experimentally that randomized strategies
provide better performance than deterministic strategies as soon as the query involves
more than several relations[Lanzelotte et al., 1993].

R
2

R
1

R
3

R
3

R
1

R
2

Fig. B.12: Optimizer Action in a Randomized Strategy

B.3.2.3 Cost Model

An optimizer’s cost model includes cost functions to predict the cost of operators,
statistics and base data, and formulas to evaluate the sizes of intermediate results.
The cost is in terms of execution time, so a cost function represents the execution
time of a query.

Cost Functions

The cost of a distributed execution strategy can be expressed with respect to either the
total time or the response time. The total time is the sum of all time (also referred to
as cost) components, while the response time is the elapsed time from the initiation
to the completion of the query. A general formula for determining the total time can
be specified as follows:

𝑇𝑜𝑡𝑎𝑙_𝑡𝑖𝑚𝑒 = 𝑇𝐶𝑃𝑈 ∗ #𝑖𝑛𝑠𝑡𝑠 + 𝑇𝐼/𝑂 ∗ #𝐼/𝑂𝑠 + 𝑇𝑀𝑆𝐺 ∗ #𝑚𝑠𝑔𝑠 + 𝑇𝑇 𝑅 ∗ #𝑏𝑦𝑡𝑒𝑠

The two first components measure the local processing time, where 𝑇𝐶𝑃𝑈 is the
time of a CPU instruction and 𝑇𝐼 /𝑂 is the time of a disk I/O. Costs are generally
expressed in terms of time units, which in turn, can be translated into other units (e.g.,
dollars).

B-20 B Centralized Query Processing

Database Statistics

The main factor affecting the performance of an execution strategy is the size of the
intermediate relations that are produced during the execution. When a subsequent
operator is located at a different site, the intermediate relation must be transmitted over
the network. Therefore, it is of prime interest to estimate the size of the intermediate
results of relational algebra operators in order to minimize the size of data transfers.
This estimation is based on statistical information about the base relations and formulas
to predict the cardinalities of the results of the relational operators. There is a direct
trade-off between the precision of the statistics and the cost of managing them, the
more precise statistics being the more costly [Piatetsky-Shapiro and Connell, 1984].
For a relation R defined over the attributes A = {A1, A2, . . . , A𝑛} and fragmented as
R1, R2, . . . , R𝑟 , the statistical data typically are the following:

1. For each attribute A𝑖 , its length (in number of bytes), denoted by 𝑙𝑒𝑛𝑔𝑡ℎ(A𝑖),
and for each attribute A𝑖 of each fragment R 𝑗 , the number of distinct values
of A𝑖 , with the cardinality of the projection of fragment R 𝑗 on A𝑖 , denoted by
𝑐𝑎𝑟𝑑 (ΠA𝑖 (R 𝑗)).

2. For the domain of each attribute A𝑖 , which is defined on a set of values that
can be ordered (e.g., integers or reals), the minimum and maximum possible
values, denoted by 𝑚𝑖𝑛(A𝑖) and 𝑚𝑎𝑥(A𝑖).

3. For the domain of each attribute A𝑖 , the cardinality of the domain of A𝑖 ,
denoted by 𝑐𝑎𝑟𝑑 (𝑑𝑜𝑚 [A𝑖]). This value gives the number of unique values in
the 𝑑𝑜𝑚 [A𝑖].

4. The number of tuples in each fragment R 𝑗 , denoted by 𝑐𝑎𝑟𝑑 (R 𝑗).

In addition, for each attribute A𝑖 , there may be a histogram that approximates the
frequency distribution of the attribute within a number of buckets, each corresponding
to a range of values.
Sometimes, the statistical data also include the join selectivity factor for some pairs

of relations, that is the proportion of tuples participating in the join. This is useful to
predict the size of the joined relation which can then be used as input information for
evaluating the cost of the next operator. The join selectivity factor, denoted 𝑆𝐹Z, of
relations R and S is a real value between 0 and 1:

𝑆𝐹Z (R, S) =
𝑐𝑎𝑟𝑑 (R Z S)

𝑐𝑎𝑟𝑑 (R) ∗ 𝑐𝑎𝑟𝑑 (S)

For example, a join selectivity factor of 0.5 corresponds to a very large joined
relation, while 0.001 corresponds to a small one. We say that the join has bad (or
low) selectivity in the former case and good (or high) selectivity in the latter case.
These statistics are useful to predict the size of intermediate relations. The size of

an intermediate relation R is defined as follows:

𝑠𝑖𝑧𝑒(R) = 𝑐𝑎𝑟𝑑 (R) ∗ 𝑙𝑒𝑛𝑔𝑡ℎ(R)

B.3 Query Optimization B-21

where 𝑙𝑒𝑛𝑔𝑡ℎ(R) is the length (in bytes) of a tuple of R, computed from the lengths
of its attributes. The estimation of 𝑐𝑎𝑟𝑑 (R), the number of tuples in R, requires the
use of the formulas given in the following section.

Cardinalities of Intermediate Results

Database statistics are useful in evaluating the cardinalities of the intermediate results
of queries. Two simplifying assumptions are commonly made about the database.
The distribution of attribute values in a relation is supposed to be uniform, and all
attributes are independent, meaning that the value of an attribute does not affect the
value of any other attribute. These two assumptions are often wrong in practice, but
they make the problem tractable. In what follows we give the formulas for estimating
the cardinalities of the results of the basic relational algebra operators (selection,
projection, Cartesian product, join, semijoin, union, and difference). The operand
relations are denoted by R and S. The selectivity factor of an operator, that is, the
proportion of tuples of an operand relation that participate in the result of that operator,
is denoted 𝑆𝐹𝑂𝑃 , where 𝑂𝑃 denotes the operator.

Selection.

The cardinality of selection is

𝑐𝑎𝑟𝑑 (𝜎𝐹 (R)) = 𝑆𝐹𝜎 (𝐹) ∗ 𝑐𝑎𝑟𝑑 (R)

where 𝑆𝐹𝜎 (𝐹) is dependent on the selection formula and can be computed as follows
[Selinger et al., 1979], where 𝑝(A𝑖) and 𝑝(A 𝑗) indicate predicates over attributes A𝑖
and A 𝑗 , respectively:

𝑆𝐹𝜎 (A = 𝑣𝑎𝑙𝑢𝑒) = 1
𝑐𝑎𝑟𝑑 (ΠA (R))

𝑆𝐹𝜎 (A > 𝑣𝑎𝑙𝑢𝑒) = 𝑚𝑎𝑥(A) − 𝑣𝑎𝑙𝑢𝑒
𝑚𝑎𝑥(A) − 𝑚𝑖𝑛(A)

𝑆𝐹𝜎 (A < 𝑣𝑎𝑙𝑢𝑒) = 𝑣𝑎𝑙𝑢𝑒 − 𝑚𝑖𝑛(A)
𝑚𝑎𝑥(A) − 𝑚𝑖𝑛(A)

𝑆𝐹𝜎 (𝑝(A𝑖) ∧ 𝑝(A 𝑗)) = 𝑆𝐹𝜎 (𝑝(A𝑖)) ∗ 𝑆𝐹𝜎 (𝑝(A 𝑗))

𝑆𝐹𝜎 (𝑝(A𝑖) ∨ 𝑝(A 𝑗)) = 𝑆𝐹𝜎 (𝑝(A𝑖)) + 𝑆𝐹𝜎 (𝑝(A 𝑗)) − (𝑆𝐹𝜎 (𝑝(A𝑖)) ∗ 𝑆𝐹𝜎 (𝑝(A 𝑗)))

𝑆𝐹𝜎 (A ∈ {𝑣𝑎𝑙𝑢𝑒𝑠}) = 𝑆𝐹𝜎 (A = 𝑣𝑎𝑙𝑢𝑒) ∗ 𝑐𝑎𝑟𝑑 ({𝑣𝑎𝑙𝑢𝑒𝑠})

B-22 B Centralized Query Processing

Projection.

As indicated in Section A.3.1, projection can be with or without duplicate elimination.
We consider projection with duplicate elimination. An arbitrary projection is difficult
to evaluate precisely because the correlations between projected attributes are usually
unknown [Gelenbe and Gardy, 1982]. However, there are two particularly useful
cases where it is trivial. If the projection of relation R is based on a single attribute A,
the cardinality is simply the number of tuples when the projection is performed. If
one of the projected attributes is a key of R, then

𝑐𝑎𝑟𝑑 (ΠA (R)) = 𝑐𝑎𝑟𝑑 (R)

Cartesian product.

The cardinality of the Cartesian product of R and S is simply

𝑐𝑎𝑟𝑑 (R × S) = 𝑐𝑎𝑟𝑑 (R) ∗ 𝑐𝑎𝑟𝑑 (S)

Join.

There is no general way to estimate the cardinality of a join without additional
information. The upper bound of the join cardinality is the cardinality of the Cartesian
product. It has been used in the earlier distributed DBMS (e.g. [Epstein et al., 1978]),
but it is a quite pessimistic estimate. A more realistic solution is to divide this upper
bound by a constant to reflect the fact that the join result is smaller than that of the
Cartesian product [Selinger and Adiba, 1980]. However, there is a case, which occurs
frequently, where the estimation is simple. If relation R is equijoined with S over
attribute A from R, and B from S where A is a key of relation R, and B is a foreign key
of relationS the cardinality of the result can be approximated as

𝑐𝑎𝑟𝑑 (R Z𝐴=𝐵 S) = 𝑐𝑎𝑟𝑑 (S)

because each tuple of S matches with at most one tuple of R. Obviously, the same
thing is true if B is a key of S and A is a foreign key of R. However, this estimation
is an upper bound since it assumes that each tuple of R participates in the join. For
other important joins, it is worthwhile to maintain their join selectivity factor 𝑆𝐹Z as
part of statistical information. In that case the result cardinality is simply

𝑐𝑎𝑟𝑑 (R Z S) = 𝑆𝐹Z ∗ 𝑐𝑎𝑟𝑑 (R) ∗ 𝑐𝑎𝑟𝑑 (S)

B.3 Query Optimization B-23

Semijoin.

The selectivity factor of the semijoin of R by S gives the fraction (percentage) of
tuples of R that join with tuples of S. An approximation for the semijoin selectivity
factor is given by Hevner and Yao [1979] as

𝑆𝐹⋉ (R ⋉A S) =
𝑐𝑎𝑟𝑑 (ΠA (S))
𝑐𝑎𝑟𝑑 (𝑑𝑜𝑚 [A])

This formula depends only on attribute A of S. Thus it is often called the selectivity
factor of attribute A of S, denoted 𝑆𝐹⋉ (S.A), and is the selectivity factor of S.A on
any other joinable attribute. Therefore, the cardinality of the semijoin is given by

𝑐𝑎𝑟𝑑 (R ⋉A S) = 𝑆𝐹⋉ (S.A) ∗ 𝑐𝑎𝑟𝑑 (R)

This approximation can be verified on a very frequent case, that of R.Abeing a
foreign key of S (R.A is a primary key). In this case, the semijoin selectivity factor
is 1 since ΠA (S)) = 𝑐𝑎𝑟𝑑 (𝑑𝑜𝑚 [A]) yielding that the cardinality of the semijoin is
𝑐𝑎𝑟𝑑 (R).

Union.

It is quite difficult to estimate the cardinality of the union of R and S because the
duplicates between R and S are removed by the union. We give only the simple
formulas for the upper and lower bounds, which are, respectively,

𝑐𝑎𝑟𝑑 (R) + 𝑐𝑎𝑟𝑑 (S)
𝑚𝑎𝑥{𝑐𝑎𝑟𝑑 (R), 𝑐𝑎𝑟𝑑 (S)}

Note that these formulas assume that R and S do not contain duplicate tuples.

Difference.

Like the union, we give only the upper and lower bounds. The upper bound of
𝑐𝑎𝑟𝑑 (R − S) is 𝑐𝑎𝑟𝑑 (R), whereas the lower bound is 0.
More complex predicates with conjunction and disjunction can also be handled by

using the formulas given above.

Using Histograms for Selectivity Estimation

The formulae above for estimating the cardinalities of intermediate results of queries
rely on the strong assumption that the distribution of attribute values in a relation is
uniform. The advantage of this assumption is that the cost of managing the statistics

B-24 B Centralized Query Processing

is minimal since only the number of distinct attribute values is needed. However, this
assumption is not practical. In case of skewed data distributions, it can result in fairly
inaccurate estimations and QEPs which are far from the optimal.
An effective solution to accurately capture data distributions is to use histograms.

Today, most commercial DBMS optimizers support histograms as part of their cost
model. Various kinds of histograms have been proposed for estimating the selectivity
of query predicates with different trade-offs between accuracy and maintenance
cost [Poosala et al., 1996]. To illustrate the use of histograms, we use the basic
definition by Bruno and Chaudhuri [2002]. A histogram on attribute A from R is a set
of buckets. Each bucket 𝑏𝑖 describes a range of values of A, denoted by 𝑟𝑎𝑛𝑔𝑒𝑖 , with
its associated frequency 𝑓𝑖 and number of distinct values 𝑑𝑖 . 𝑓𝑖 gives the number of
tuples of R where R.A ∈ 𝑟𝑎𝑛𝑔𝑒𝑖 . 𝑑𝑖 gives the number of distinct values of A where
R.A ∈ 𝑟𝑎𝑛𝑔𝑒𝑖 . This representation of a relation’s attribute can capture non-uniform
distributions of values, with the buckets adapted to the different ranges. However,
within a bucket, the distribution of attribute values is assumed to be uniform.
Histograms can be used to accurately estimate the selectivity of selection operators.

They can also be used for more complex queries including selection, projection and
join. However, the precise estimation of join selectivity remains difficult and depends
on the type of the histogram [Poosala et al., 1996]. We now illustrate the use of
histograms with two important selection predicates: equality and range predicate.

Equality predicate.

With 𝑣𝑎𝑙𝑢𝑒 ∈ 𝑟𝑎𝑛𝑔𝑒𝑖 , we simply have: 𝑆𝐹𝜎 (A = 𝑣𝑎𝑙𝑢𝑒) = 1/𝑑𝑖 .

Range predicate.

Computing the selectivity of range predicates such as A ≤ 𝑣𝑎𝑙𝑢𝑒, A < 𝑣𝑎𝑙𝑢𝑒 and
A > 𝑣𝑎𝑙𝑢𝑒 requires identifying the relevant buckets and summing up their frequencies.
Let us consider the range predicate R.A ≤ 𝑣𝑎𝑙𝑢𝑒 with 𝑣𝑎𝑙𝑢𝑒 ∈ 𝑟𝑎𝑛𝑔𝑒𝑖 . To estimate
the numbers of tuples of R that satisfy this predicate, we must sum up the frequencies
of all buckets which precede bucket 𝑖 and the estimated number of tuples that satisfy
the predicate in bucket 𝑏𝑖 . Assuming uniform distribution of attribute values in 𝑏𝑖 ,
we have:

𝑐𝑎𝑟𝑑 (𝜎A≤𝑣𝑎𝑙𝑢𝑒 (R)) =
𝑖−1∑︁
𝑗=1

𝑓 𝑗 + (
𝑣𝑎𝑙𝑢𝑒 − 𝑚𝑖𝑛(𝑟𝑎𝑛𝑔𝑒𝑖)

𝑚𝑖𝑛(𝑟𝑎𝑛𝑔𝑒𝑖)
− 𝑚𝑖𝑛(𝑟𝑎𝑛𝑔𝑒𝑖) ∗ 𝑓𝑖)

The cardinality of other range predicates can be computed in a similar way.

Example B.9. Figure B.13 shows a possible 4-bucket histogram for attribute DUR of
a relation ASG with 300 tuples. Let us consider the equality predicate ASG.DUR=18.
Since the value ”18” fits in bucket 𝑏3, the selectivity factor is 1/12. Since the cardinalty

B.3 Query Optimization B-25

of 𝑏3 is 50, the cardinality of the selection is 50/12 which is approximately 5 tuples.
Let us now consider the range predicate ASG.DUR ≤ 18. We have 𝑚𝑖𝑛(𝑟𝑎𝑛𝑔𝑒3) = 12
and 𝑚𝑎𝑥(𝑟𝑎𝑛𝑔𝑒3) = 24. The cardinality of the selection is: 100 + 75 + (((18 −
12)/(24 − 12)) ∗ 50) = 200 tuples. ♦

Frequency

50

100

ASG.DURb
1

b
2

b
3

b
4

d
3
=12

0 6 12 24 30

card(ASG)=300

Fig. B.13: Histogram of Attribute ASG.DUR

B.3.3 Query Optimization Approaches

As discussed earlier in this Appendix, the optimization timing, which can be dynamic,
static or hybrid, is a good basis for classifying query optimization techniques.
Therefore, we present a representative technique of each class.

B.3.4 Dynamic Query Optimization

Dynamic query optimization combines the two phases of query decomposition and
optimization with execution. The QEP is dynamically constructed by the query
optimizer which makes calls to the DBMS execution engine for executing the query’s
operations. Thus, there is no need for a cost model.
The most popular dynamic query optimization algorithm is that of INGRES

[Stonebraker et al., 1976], one of the first relational DBMS. In this section, we
present this algorithm based on the detailed description by Wong and Youssefi
[1976]. The algorithm recursively breaks up a query expressed in relational calculus
(i.e., SQL) into smaller pieces which are executed along the way. The query is first
decomposed into a sequence of queries having a unique relation in common. Then
each monorelation query is processed by selecting, based on the predicate, the best

B-26 B Centralized Query Processing

access method to that relation (e.g., index, sequential scan). For example, if the
predicate is of the form 𝐴 = 𝑣𝑎𝑙𝑢𝑒, an index available on attribute A would be used if
it exists. However, if the predicate is of the form A ≠ 𝑣𝑎𝑙𝑢𝑒, an index on A would not
help, and sequential scan should be used.
The algorithm executes first the unary (monorelation) operations and tries to

minimize the sizes of intermediate results in ordering binary (multirelation) operations.
Let us denote by 𝑞𝑖−1 → 𝑞𝑖 a query 𝑞 decomposed into two subqueries, 𝑞𝑖−1 and
𝑞𝑖 , where 𝑞𝑖−1 is executed first and its result is consumed by 𝑞𝑖 . Given an 𝑛-relation
query 𝑞, the optimizer decomposes 𝑞 into 𝑛 subqueries 𝑞1 → 𝑞2 → · · · → 𝑞𝑛.
This decomposition uses two basic techniques: detachment and substitution. These
techniques are presented and illustrated in the rest of this section.
Detachment is the first technique employed by the query processor. It breaks a

query 𝑞 into 𝑞′ → 𝑞′′, based on a common relation that is the result of 𝑞′. If the
query 𝑞 expressed in SQL is of the form

SELECT R2.A2, R3.A3, . . . , R𝑛 .A𝑛
FROM R1, R2, . . . , R𝑛
WHERE 𝑃1 (R1.A

′
1)

AND 𝑃2 (R1.A1, R2.A2, . . . , R𝑛 .A𝑛)

where A𝑖 and A
′
𝑖
are lists of attributes of relation R𝑖 , 𝑃1 is a predicate involving

attributes from relation R1, and 𝑃2 is a multirelation predicate involving attributes of
relations R1, R2, . . . , R𝑛. Such a query may be decomposed into two subqueries, 𝑞′
followed by 𝑞′′, by detachment of the common relation R1:

𝑞′: SELECT R1.A1 INTO R
′

1
FROM R1
WHERE 𝑃1 (R1.A

′

1)

where R′1 is a temporary relation containing the information necessary for the
continuation of the query:

𝑞′′: SELECT R2.A2, . . . , R𝑛.A𝑛
FROM R

′

1, R2, . . . , R𝑛
WHERE 𝑃2 (R

′

1.A1, . . . , R𝑛.A𝑛)

This step has the effect of reducing the size of the relation on which the query 𝑞′′
is defined. Furthermore, the created relation R′1 may be stored in a particular structure
to speed up the following subqueries. For example, the storage of R′1 in a hashed file
on the join attributes of 𝑞′′ will make processing the join more efficient. Detachment
extracts the select operations, which are usually the most selective ones. Therefore,
detachment is systematically done whenever possible. Note that this can have adverse
effects on performance if the selection has bad selectivity.

Example B.10. To illustrate the detachment technique, we apply it to the following
query:

B.3 Query Optimization B-27

“Names of employees working on the CAD/CAM project”

This query can be expressed in SQL by the following query 𝑞1 on the engineering
database example we have been using:

𝑞1: SELECT EMP.ENAME
FROM EMP, ASG, PROJ
WHERE EMP.ENO=ASG.ENO
AND ASG.PNO=PROJ.PNO
AND PNAME="CAD/CAM"

After detachment of the selections, query 𝑞1 is replaced by 𝑞11 followed by 𝑞′,
where JVAR is an intermediate relation.

𝑞11: SELECT PROJ.PNO INTO JVAR
FROM PROJ
WHERE PNAME="CAD/CAM"

𝑞′: SELECT EMP.ENAME
FROM EMP, ASG, JVAR
WHERE EMP.ENO=ASG.ENO
AND ASG.PNO=JVAR.PNO

The successive detachments of 𝑞′ may generate

𝑞12: SELECT ASG.ENO INTO GVAR
FROM ASG, JVAR
WHERE ASG.PNO=JVAR.PNO

𝑞13: SELECT EMP.ENAME
FROM EMP, GVAR
WHERE EMP.ENO=GVAR.ENO

Note that other subqueries are also possible.
Thus query 𝑞1 has been reduced to the subsequent queries 𝑞11 → 𝑞12 → 𝑞13.

Query 𝑞11 is monorelation and can be executed. However, 𝑞12 and 𝑞13 are not
monorelation and cannot be reduced by detachment. ♦

Multirelation queries, which cannot be further detached (e.g., 𝑞12 and 𝑞13), are
irreducible. A query is irreducible if and only if its query graph is a chain with two
nodes or a cycle with 𝑘 nodes where 𝑘 > 2. Irreducible queries are converted into
monorelation queries by tuple substitution. Given an 𝑛-relation query 𝑞, the tuples of
one relation are substituted by their values, thereby producing a set of (𝑛 − 1)-relation
queries. Tuple substitution proceeds as follows. First, one relation in 𝑞 is chosen for
tuple substitution. Let R1 be that relation. Then for each tuple 𝑡1𝑖 in R1, the attributes
referred to by in 𝑞 are replaced by their actual values in 𝑡1𝑖 , thereby generating a
query 𝑞′ with 𝑛 − 1 relations. Therefore, the total number of queries 𝑞′ produced by
tuple substitution is 𝑐𝑎𝑟𝑑 (R1). Tuple substitution can be summarized as follows:

B-28 B Centralized Query Processing

𝑞(R1, R2, . . . , R𝑛) is replaced by {𝑞′(𝑡1𝑖 , R2, R3, . . . , R𝑛), 𝑡1𝑖 ∈ R1}

For each tuple thus obtained, the subquery is recursively processed by substitution if
it is not yet irreducible.

Example B.11. Let us consider the query 𝑞13:

SELECT EMP.ENAME
FROM EMP, GVAR
WHERE EMP.ENO=GVAR.ENO

The relation GVAR is over a single attribute (ENO). Assume that it contains only
two tuples: ⟨E1⟩ and ⟨E2⟩. The substitution of GVAR generates two one-relation
subqueries:

𝑞131: SELECT EMP.ENAME
FROM EMP
WHERE EMP.ENO="E1"

𝑞132: SELECT EMP.ENAME
FROM EMP
WHERE EMP.ENO="E2"

These queries may then be executed. ♦

This dynamic query optimization algorithm (called Dynamic-QOA) is depicted
in Algorithm B.1. The algorithm works recursively until there remain no more
monorelation queries to be processed. It consists of applying the selections and
projections as soon as possible by detachment. The results of the monorelation
queries are stored in data structures that are capable of optimizing the later queries
(such as joins). The irreducible queries that remain after detachment must be processed
by tuple substitution. For the irreducible query, denoted by𝑀𝑅𝑄 ′, the smallest relation
whose cardinality is known from the result of the preceding query is chosen for
substitution. This simple method enables one to generate the smallest number of
subqueries. Monorelation queries generated by the reduction algorithm are executed
after choosing the best existing access path to the relation, according to the query
qualification.

B.3.5 Static Query Optimization

With static query optimization, there is a clear separation between the generation of
the QEP at compile-time and its execution by the DBMS execution engine. Thus, an
accurate cost model is key to predict the costs of candidate QEPs.
The most popular static query optimization algorithm is that of System R [Astrahan

et al., 1976], also one of the first relational DBMS. In this section, we present this

B.3 Query Optimization B-29

Algorithm B.1: Dynamic-QOA
Input: 𝑀𝑅𝑄: multirelation query with 𝑛 relations
Output: 𝑜𝑢𝑡𝑝𝑢𝑡: result of execution
begin

𝑜𝑢𝑡𝑝𝑢𝑡 ← 𝜙 ;
if 𝑛 = 1 then

𝑜𝑢𝑡𝑝𝑢𝑡 ← 𝑟𝑢𝑛(𝑀𝑅𝑄) {execute the one relation query}
end if
{detach 𝑀𝑅𝑄 into 𝑚 one-relation queries (ORQ) and one multirelation
query} 𝑂𝑅𝑄1, . . . , 𝑂𝑅𝑄𝑚, 𝑀𝑅𝑄 ′← 𝑀𝑅𝑄 ;

for 𝑖 from 1 to 𝑚 do
𝑜𝑢𝑡𝑝𝑢𝑡 ′← 𝑟𝑢𝑛(𝑂𝑅𝑄𝑖) ; {execute 𝑂𝑅𝑄𝑖}
𝑜𝑢𝑡𝑝𝑢𝑡 ← 𝑜𝑢𝑡𝑝𝑢𝑡 ∪ 𝑜𝑢𝑡𝑝𝑢𝑡 ′ {merge all results}

end for
R← CHOOSE_RELATION(𝑀𝑅𝑄 ′) ; {R chosen for tuple substitution}
for each tuple 𝑡 ∈ R do

𝑀𝑅𝑄 ′′← substitute values for 𝑡 in 𝑀𝑅𝑄 ′ ;
𝑜𝑢𝑡𝑝𝑢𝑡 ′← Dynamic-QOA(𝑀𝑅𝑄 ′′) ; {recursive call}
𝑜𝑢𝑡𝑝𝑢𝑡 ← 𝑜𝑢𝑡𝑝𝑢𝑡 ∪ 𝑜𝑢𝑡𝑝𝑢𝑡 ′ {merge all results}

end for
end

algorithm based on the description by Selinger et al. [1979]. Most commercial
relational DBMSs have implemented variants of this algorithm due to its efficiency
and compatibility with query compilation.
The input to the optimizer is a relational algebra tree resulting from the decompo-

sition of an SQL query. The output is a QEP that implements the “optimal” relational
algebra tree.
The optimizer assigns a cost (in terms of time) to every candidate tree and retains

the one with the smallest cost. The candidate trees are obtained by a permutation
of the join orders of the 𝑛 relations of the query using the commutativity and
associativity rules. To limit the overhead of optimization, the number of alternative
trees is reduced using dynamic programming. The set of alternative strategies is
constructed dynamically so that, when two joins are equivalent by commutativity,
only the cheapest one is kept. Furthermore, the strategies that include Cartesian
products are eliminated whenever possible.
The cost of a candidate strategy is a weighted combination of I/O and CPU costs

(times). The estimation of such costs (at compile time) is based on a cost model that
provides a cost formula for each low-level operation (e.g., select using a B-tree index
with a range predicate). For most operations (except exact match select), these cost
formulas are based on the cardinalities of the operands. The cardinality information for
the relations stored in the database is found in the database statistics. The cardinality

B-30 B Centralized Query Processing

of the intermediate results is estimated based on the operation selectivity factors
discussed in Section B.3.2.3.
The optimization algorithm consists of two major steps. First, the best access

method to each individual relation based on a select predicate is predicted (this is
the one with the least cost). Second, for each relation R, the best join ordering is
estimated, where R is first accessed using its best single-relation access method. The
cheapest ordering becomes the basis for the best execution plan.
In considering the joins, there are two basic algorithms available, with one of them

being optimal in a given context. For the join of two relations, the relation whose
tuples are read first is called the external, while the other, whose tuples are found
according to the values obtained from the external relation, is called the internal
relation. An important decision with either join method is to determine the cheapest
access path to the internal relation.
The first method, called nested-loop, performs two loops over the relations. For

each tuple of the external relation, the tuples of the internal relation that satisfy the
join predicate are retrieved one by one to form the resulting relation. An index or
a hashed table on the join attribute is a very efficient access path for the internal
relation. In the absence of an index, for relations of 𝑛1 and 𝑛2 tuples, respectively,
this algorithm has a cost proportional to 𝑛1 * 𝑛2, which may be prohibitive if 𝑛1 and
𝑛2 are high. Thus, an efficient variant is to build a hashed table on the join attribute
for the internal relation (chosen as the smallest relation) before applying nested-loop.
If the internal relation is itself the result of a previous operation, then the cost of
building the hashed table can be shared with that of producing the previous result.
The second method, called merge-join, consists of merging two sorted relations on

the join attribute. Indices on the join attribute may be used as access paths. If the join
criterion is equality, the cost of joining two relations of 𝑛1 and 𝑛2 tuples, respectively,
is proportional to 𝑛1 + 𝑛2. Therefore, this method is always chosen when there is an
equijoin, and when the relations are previously sorted. If only one or neither of the
relations are sorted, the cost of the nested-loop algorithm is to be compared with
the combined cost of the merge join and of the sorting. The cost of sorting 𝑛 pages
is proportional to 𝑛 log 𝑛. In general, it is useful to sort and apply the merge join
algorithm when large relations are considered.
The simplified version of the static optimization algorithm, for a select-project-join

query, is shown in Algorithm B.2. It consists of two loops, the first of which selects
the best single-relation access method to each relation in the query, while the second
examines all possible permutations of join orders (there are 𝑛! permutations with 𝑛
relations) and selects the best access strategy for the query. The permutations are
produced by the dynamic construction of a tree of alternative strategies. First, the
join of each relation with every other relation is considered, followed by joins of
three relations. This continues until joins of 𝑛 relations are optimized. Actually, the
algorithm does not generate all possible permutations since some of them are useless.
As we discussed earlier, permutations involving Cartesian products are eliminated,
as are the commutatively equivalent strategies with the highest cost. With these two
heuristics, the number of strategies examined has an upper bound of 2𝑛 rather than 𝑛!.

B.3 Query Optimization B-31

Algorithm B.2: Static-QOA
Input: 𝑄𝑇 : query tree with 𝑛 relations
Output: 𝑜𝑢𝑡𝑝𝑢𝑡: best QEP
begin

for each relation R𝑖 ∈ 𝑄𝑇 do
for each access path 𝐴𝑃𝑖 𝑗 to R𝑖 do
compute cost(𝐴𝑃𝑖 𝑗)

end for
𝑏𝑒𝑠𝑡_𝐴𝑃𝑖 ← 𝐴𝑃𝑖 𝑗 with minimum cost ;
for each order (R𝑖1, R𝑖2, · · · , R𝑖𝑛) with 𝑖 = 1, · · · , 𝑛! do
build QEP (. . .((best 𝐴𝑃𝑖1 Z R𝑖2) Z R𝑖3) Z . . . Z R𝑖𝑛) ;
compute cost (QEP)

end for
𝑜𝑢𝑡𝑝𝑢𝑡 ← QEP with minimum cost

end for
end

Example B.12. Let us illustrate this algorithm with the query 𝑞1 (see Example B.10)
on the engineering database. The join graph of 𝑞1 is given in Figure B.14. For short,
the label ENO on edge EMP–ASG stands for the predicate EMP.ENO=ASG.ENO and
the label PNO on edge ASG–PROJ stands for the predicate ASG.PNO=PROJ.PNO. We
assume the following indices:

EMP has an index on ENO
ASG has an index on PNO
PROJ has an index on PNO and an index on PNAME

EMP

ASG

PROJ

ENO PNO

Fig. B.14: Join Graph of Query 𝑞1

We assume that the first loop of the algorithm selects the following best single-
relation access paths:

B-32 B Centralized Query Processing

EMP: sequential scan (because there is no selection on EMP)
ASG: sequential scan (because there is no selection on ASG)
PROJ: index on PNAME (because there is a selection on PROJ

based on PNAME)

The dynamic construction of the tree of alternative strategies is illustrated in
Figure B.15. Note that the maximum number of join orders is 3!; dynamic search
considers fewer alternatives, as depicted in Figure B.15. The operations marked
“pruned” are dynamically eliminated. The first level of the tree indicates the best
single-relation access method. The second level indicates, for each of these, the best
join method with any other relation. Strategies (EMP × PROJ) and (PROJ × EMP) are
pruned because they are Cartesian products that can be avoided (by other strategies).
We assume that (EMP Z ASG) and (ASG Z PROJ) have a cost higher than (ASG Z EMP)
and (PROJ Z ASG), respectively. Thus they can be pruned because there are better
join orders equivalent by commutativity. The two remaining possibilities are given at
the third level of the tree. The best total join order is the least costly of ((ASG Z EMP)
Z PROJ) and ((PROJ Z ASG) Z EMP). The latter is the only one that has a useful
index on the select attribute and direct access to the joining tuples of ASG and EMP.
Therefore, it is chosen with the following access methods:

ASGEMP

EMP X PROJ
pruned pruned pruned

PROJ

PROJ X EMP
pruned

(PROJ ASG) EMP

PROJ ASG

(ASG EMP) PROJ

EMP ASG ASG PROJASG EMP

Fig. B.15: Alternative Join Orders

Select PROJ using index on PNAME
Then join with ASG using index on PNO
Then join with EMP using index on ENO

♦

The performance measurements substantiate the important contribution of the
CPU time to the total time of the query[Mackert and Lohman, 1986b]. The accuracy
of the optimizer’s estimations is generally good when the relations can be contained
in the main memory buffers, but degrades as the relations increase in size and are

B.3 Query Optimization B-33

written to disk. An important performance parameter that should also be considered
for better predictions is buffer utilization.

B.3.6 Hybrid Query Optimization

Dynamic and static query optimimization both have advantages and drawbacks.
Dynamic query optimization mixes optimization and execution and thus can make
accurate optimization choices at run-time. However, query optimization is repeated for
each execution of the query. Therefore, this approach is best for ad-hoc queries. Static
query optimization, done at compilation time, amortizes the cost of optimization over
multiple query executions. The accuracy of the cost model is thus critical to predict
the costs of candidate QEPs. This approach is best for queries embedded in stored
procedures, and has been adopted by all commercial DBMSs.
However, even with a sophisticated cost model, there is an important problem

that prevents accurate cost estimation and comparison of QEPs at compile-time. The
problem is that the actual bindings of parameter values in embedded queries is not
known until run-time. Consider for instance the selection predicate “WHERE R.A = $𝑎”
where “$𝑎” is a parameter value. To estimate the cardinality of this selection, the
optimizer must rely on the assumption of uniform distribution of A values in R and
cannot make use of histograms. Since there is a runtime binding of the parameter 𝑎,
the accurate selectivity of 𝜎A=$𝑎 (R) cannot be estimated until runtime.
Thus, it can make major estimation errors that can lead to the choice of suboptimal

QEPs.
Hybrid query optimization attempts to provide the advantages of static query

optimization while avoiding the issues generated by inaccurate estimates. The
approach is basically static, but further optimization decisions may take place at run
time. This approach was pionnered in System R by adding a conditional runtime
reoptimization phase for execution plans statically optimized [Chamberlin et al.,
1981]. Thus, plans that have become infeasible (e.g., because indices have been
dropped) or suboptimal (e.g. because of changes in relation sizes) are reoptimized.
However, detecting suboptimal plans is hard and this approach tends to perform
much more reoptimization than necessary. A more general solution is to produce
dynamic QEPs which include carefully selected optimization decisions to be made at
runtime using “choose-plan” operators [Cole and Graefe, 1994]. The choose-plan
operator links two or more equivalent subplans of a QEP that are incomparable
at compile-time because important runtime information (e.g. parameter bindings)
is missing to estimate costs. The execution of a choose-plan operator yields the
comparison of the subplans based on actual costs and the selection of the best one.
Choose-plan nodes can be inserted anywhere in a QEP.

Example B.13. Consider the following query expressed in relational algebra:

𝜎𝐴≤$𝑎 (R1) Z R2 Z R3

B-34 B Centralized Query Processing

Figure B.16 shows a dynamic execution plan for this query. We assume that each
join is performed by nested-loop, with the left operand relation as external and the
right operand relation as internal. The bottom choose-plan operator compares the
cost of two alternative subplans for joining R1 and R2, the left subplan being better
than the right one if the selection predicate has high selectivity. As stated above, since
there is a runtime binding of the parameter $a, the accurate selectivity of 𝜎𝐴≤$𝑎 (R1)
cannot be estimated until runtime. The top choose-plan operator compares the cost of
two alternative subplans for joining the result of the bottom choose-plan operation
with R3. Depending on the estimated size of the join of R1 and R2, which indirectly
depends on the selectivity of the selection on R1 it may be better to use R3 as external
or internal relation. ♦

Fig. B.16: A Dynamic Execution Plan

Dynamic QEPs are produced at compile-time using any static algorithm such as
the one presented in Section B.3.5. However, instead of producing a total order of
operations, the optimizer must produce a partial order by introducing choose-node
operators anywhere in the QEP. The main modification necessary to a static query
optimizer to handle dynamic QEPs is that the cost model supports incomparable
costs of plans in addition to the standard values “greater than”, “less than” and “equal
to”. Costs may be incomparable because the costs of some subplans are unknown at
compile-time. Another reason for cost incomparability is when cost is modeled as an
interval of possible cost values rather than a single value [Cole and Graefe, 1994].
Therefore, if two plan costs have overlapping intervals, it is not possible to decide
which one is better and they should be considered as incomparable.
Given a dynamic QEP, produced by a static query optimizer, the choose-plan

decisions must be made at query startup time. The most effective solution is to simply
evaluate the costs of the participating subplans and compare them. In Algorithm B.3,
we describe the startup procedure (called Hybrid-QOA) which makes the optimization
decisions to produce the final QEP and run it. The algorithm executes the choose-plan
operators in bottom-up order and propagates cost information upward in the QEP.

B.3 Query Optimization B-35

Algorithm B.3: Hybrid-QOA
Input: 𝑄𝐸𝑃: dynamic QEP; B: Query parameter bindinds
Output: 𝑜𝑢𝑡𝑝𝑢𝑡: result of execution
begin

𝑏𝑒𝑠𝑡_𝑄𝐸𝑃← 𝑄𝐸𝑃 ;
for each choose-plan operator 𝐶𝑃 in bottom-up order do

for each alternative subplan 𝑆𝑃 do
compute cost(𝐶𝑃) using B

end for
𝑏𝑒𝑠𝑡_𝑄𝐸𝑃← 𝑏𝑒𝑠𝑡_𝑄𝐸𝑃 without 𝐶𝑃 and 𝑆𝑃 of highest cost

end for
𝑜𝑢𝑡𝑝𝑢𝑡 ← execute 𝑏𝑒𝑠𝑡_𝑄𝐸𝑃

end

Experimentation with the Volcano query optimizer [Graefe, 1994] has shown
that this hybrid query optimization outperforms both dynamic and static query
optimization. In particular, the overhead of dynamic QEP evaluation at startup time is
significantly less than that of dynamic optimization, and the reduced execution time
of dynamic QEPs relative to static QEPs more than offsets the startup time overhead.

