
Appendix A
Overview of Relational DBMS

The aim of this appendix is to define the relational database terminology and concepts
used in the book, since most of the distributed database technology has been developed
using the relational model. Our focus here is on the language and operators. All of the
material covered in this appendix is the subject of standard undergraduate database
courses and available in any good database book.

A.1 Basic Concepts

A database is a structured collection of data related to some real-life phenomena that
we are trying to model. A relational database is one where the database structure is
in the form of tables. Formally, a relation R defined over 𝑛 sets 𝐷1, 𝐷2, . . . , 𝐷𝑛 (not
necessarily distinct) is a set of n-tuples (or simply tuples) ⟨𝑑1, 𝑑2, . . . , 𝑑𝑛⟩ such that
𝑑1 ∈ 𝐷1, 𝑑2 ∈ 𝐷2, . . . , 𝑑𝑛 ∈ 𝐷𝑛. In a relational database 𝐷𝑖s are the domains and a
relation R consists of a set of attributes A1, A2, . . . , A𝑛 each of which has one of the
𝐷𝑖s as its domain that restrict the values the attribute can assume. This is written
as R(A1 : 𝐷1, A2 : 𝐷2, . . . , A𝑛 : 𝐷𝑛); the domain specifications are usually omitted
unless necessary.

Example A.1. As an example we use a database that models an engineering company.
The entities to be modeled are the employees (EMP) and projects (PROJ). For each
employee, we would like to keep track of the employee number (ENO), name (ENAME),
title in the company (TITLE), salary (SAL), identification number of the project(s) the
employee is working on (PNO), responsibility within the project (RESP), and duration
of the assignment to the project (DUR) in months. Similarly, for each project we would
like to store the project number (PNO), the project name (PNAME), and the project
budget (BUDGET).
The relation schemas for this database can be defined as follows:

EMP(ENO, ENAME, TITLE, SAL, PNO, RESP, DUR)
PROJ(PNO, PNAME, BUDGET)

A-1

A-2 A Overview of Relational DBMS

ENO

EMP

ENAME TITLE SAL PNO RESP DUR

PROJ

PNO PNAME BUDGET

Fig. A.1: Sample Database Scheme

In relation scheme EMP, there are seven attributes: ENO, ENAME, TITLE, SAL, PNO,
RESP, DUR. The values of ENO come from the domain of all valid employee numbers,
say 𝐷1, the values of ENAME come from the domain of all valid names, say 𝐷2, and
so on. Note that each attribute of each relation does not have to come from a distinct
domain. Various attributes within a relation or from a number of relations may be
defined over the same domain. ♦

The key of a relation scheme is the minimum non-empty subset of its attributes
such that the values of the attributes comprising the key uniquely identify each tuple
of the relation. The attributes that make up key are called prime attributes. The
superset of a key is usually called a superkey. We are interested in the minimal set
of attributes that uniquely identify each tuple. Each relation has at least one key.
Sometimes, there may be more than one possibility for the key. In such cases, each
alternative is considered a candidate key, and one of the candidate keys is chosen
as the primary key, which we denote by underlining. Thus in our example the key
of PROJ is PNO, and that of EMP is the set (ENO, PNO). The number of attributes of a
relation defines its degree, whereas the number of tuples of the relation defines its
cardinality.
In tabular form, the example database consists of two tables, as shown in Figure

A.1. The columns of the tables correspond to the attributes of the relations; if there
were any information entered as the rows, they would correspond to the tuples. The
empty table, showing the structure of the table, corresponds to the relation schema;
when the table is filled with rows, it corresponds to a relation instance. Since the
information within a table varies over time, many instances can be generated from
one relation scheme. Note that from now on, the term relation refers to a relation
instance. In Figure A.2 we depict instances of the two relations that are defined in
Figure A.1.
An attribute value may be undefined. This lack of definition may have various

interpretations, the most common being “unknown” or “not applicable”. This special
value of the attribute is generally referred to as the null value. The representation of a
null value must be different from any other domain value, and special care should be
given to differentiate it from zero. For example, value “0” for attribute DUR is known
information (e.g., in the case of a newly hired employee), while value “null” for DUR
means unknown. Supporting null values is an important feature necessary to deal
with maybe queries [Codd, 1979].

A.2 Normalization A-3

ENO

EMP

ENAME TITLE SAL

J. Doe Elect. Eng. 40000

M. Smith 34000

M. Smith

Analyst

Analyst 34000

A. Lee Mech. Eng. 27000

A. Lee Mech. Eng. 27000

J. Miller Programmer 24000

B. Casey Syst. Anal. 34000

L. Chu Elect. Eng. 40000

R. Davis Mech. Eng. 27000

E1

E2

E2

E3

E3

E4

E5

E6

E7

E8 J. Jones Syst. Anal. 34000

24

PNO RESP DUR

P1 Manager 12

P1 Analyst

P2 Analyst 6

P3 Consultant 10

P4 Engineer 48

P2 Programmer 18

P2 Manager 24

P4 Manager 48

P3 Engineer 36

P3 Manager 40

PROJ

PNO PNAME BUDGET

P1 Instrumentation 150000

P2 Database Develop. 135000

P3 CAD/CAM 250000

P4 Maintenance 310000

Fig. A.2: Sample Database Instance

A.2 Normalization

The aim of normalization is to eliminate various anomalies (or undesirable aspects)
of a relation in order to obtain “better” relations. The following four problems might
exist in a relation scheme:

1. Repetition anomaly. Certain information may be repeated unnecessarily.
Consider, for example, the EMP relation in Figure A.2. The name, title, and
salary of an employee are repeated for each project on which this person serves.
This is obviously a waste of storage and is contrary to the spirit of databases.

2. Update anomaly. As a consequence of the repetition of data, performing
updates may be troublesome. For example, if the salary of an employee
changes, multiple tuples have to be updated to reflect this change.

3. Insertion anomaly. It may not be possible to add new information to the
database. For example, when a new employee joins the company, we cannot
add personal information (name, title, salary) to the EMP relation unless an

A-4 A Overview of Relational DBMS

appointment to a project is made. This is because the key of EMP includes the
attribute PNO, and null values cannot be part of the key.

4. Deletion anomaly. This is the converse of the insertion anomaly. If an employee
works on only one project, and that project is terminated, it is not possible to
delete the project information from the EMP relation. To do so would result in
deleting the only tuple about the employee, thereby resulting in the loss of
personal information we might want to retain.

Normalization transforms arbitrary relation schemes into ones without these
problems. A relation with one or more of the above mentioned anomalies is split into
two or more relations of a higher normal form. A relation is said to be in a normal
form if it satisfies the conditions associated with that normal form. Codd initially
defined the first, second, and third normal forms (1NF, 2NF, and 3NF, respectively).
Boyce and Codd [Codd, 1974] later defined a modified version of the third normal
form, commonly known as the Boyce-Codd normal form (BCNF). This was followed
by the definition of the fourth (4NF) [Fagin, 1977] and fifth normal forms (5NF)
[Fagin, 1979].
There is a hierarchical relationship among these normal forms. Every normalized

relation is in 1NF; some of the relations in 1NF are also in 2NF, some of which are
in 3NF, and so on. The higher normal forms have better properties than others with
respect to the four anomalies discussed above.
One of the requirements of a normalization process is that the decomposition

be lossless. This means that the replacement of a relation by several others should
not result in loss of information. If it is possible to join the decomposed relations to
obtain the original relation, the process is said to be a lossless decomposition.
The join operation is defined formally in Section A.3.1. Intuitively, it is an operation

that takes two relations and concatenates tuples from both that satisfy a specified
condition. The condition is defined over the attributes of the two relations. For
example, it might be specified that the value of an attribute of the first relation should
be equal to the value of an attribute of the second relation.
Another requirement of the normalization process is dependency preservation. A

decomposition is said to be dependency preserving if the union of the dependencies
in the decomposed relations is equivalent to the closure (with respect to a set of
inference rules) of the dependencies of the original relation.

A.2.1 Dependency Structures

The normal forms are based on certain dependency structures. BCNF and lower normal
forms are based on functional dependencies (FDs), 4NF is based on multivalued
dependencies, and 5NF is based on projection-join dependencies. We only introduce
functional dependency, since that is the only relevant one for the example we are
considering.

A.2 Normalization A-5

Let R be a relation defined over the set of attributes A = {A1, A2, . . . , A𝑛} and let
X ⊂ A, Y ⊂ A. If for each value of X in R , there is only one associated Y value, we
say that “X functionally determines Y” or that “Y is functionally dependent on X.”
Notationally, this is shown as X→ Y. The key of a relation functionally determines
the non-key attributes of the same relation.

Example A.2. For example, in the PROJ relation of Example A.1 (one can observe
these in Figure A.2 as well), the valid FD is

PNO→ (PNAME, BUDGET)

In the EMP relation we have

(ENO, PNO)→ (ENAME,TITLE,SAL,RESP,DUR)

This last FD is not the only FD in EMP, however. If each employee is given unique
employee numbers, we can write

ENO→ (ENAME, TITLE, SAL)
(ENO, PNO)→ (RESP, DUR)

If the salary for a given position is fixed, it would give rise to one more FD

TITLE→ SAL
♦

A.2.2 Normal Forms

The first normal form (1NF) states simply that the attributes of the relation contain
atomic values only. In other words, the tables should be flat with no repeating groups.
The relations EMP and PROJ in Figure A.2 satisfy this condition, so they both are in
1NF.
Relations in 1NF still suffer from the anomalies discussed earlier. To eliminate

some of these anomalies, they should be decomposed into relations in higher normal
forms. We are not particularly interested in the second normal form. In fact, it is
only of historical importance, since there are algorithms that take a 1NF relation and
directly normalize it to third normal form (3NF) or higher.
A relation R is in 3NF if for each FD X → Y where Y is not in X, either X is a

superkey of R or Y is a prime attribute. There are algorithms that provide a lossless
and dependency-preserving decomposition of a 1NF relation into a 3NF relation.
Boyce-Codd normal form (BCNF) is a stronger form of 3NF. The definitions are

identical except for the last part. For a relation to be in BCNF, for every FD X→ Y, X
has to be a superkey. Notice that the clause “or Y is a prime attribute” is deleted from
the definition. The final form of relation EMP, as well as the relations PAY, PROJ, and
ASG, are in BCNF.

A-6 A Overview of Relational DBMS

It is possible to decompose a 1NF relation directly into a set of relations in BCNF.
These algorithms are guaranteed to generate lossless decompositions; however, they
cannot be guaranteed to preserve dependencies.
The following example shows the result of normalization on the sample database

that we introduced in Example A.1.

Example A.3. The following set of relation schemes are normalized into BCNF with
respect to the functional dependencies defined over the relations.

EMP(ENO, ENAME, TITLE)
PAY(TITLE, SAL)
PROJ(PNO, PNAME, BUDGET)
ASG(ENO, PNO, RESP, DUR)

The normalized instances of these relations are shown in Figure A.3. ♦

ENO ENAME TITLE

E1 J. Doe Elect. Eng

E2 M. Smith Syst. Anal.

E3 A. Lee Mech. Eng.

E4 J. Miller Programmer

E5 B. Casey Syst. Anal.

E6 L. Chu Elect. Eng.

E7 R. Davis Mech. Eng.

E8 J. Jones Syst. Anal.

EMP

TITLE SAL

PAY

Elect. Eng. 40000

Syst. Anal. 34000

Mech. Eng. 27000

Programmer 24000

PROJ

PNO PNAME BUDGET

P1 Instrumentation 150000

P2 Database Develop. 135000

P3 CAD/CAM 250000

P4 Maintenance 310000

ENO PNO RESP

E1 P1 Manager 12

DUR

E2 P1 Analyst 24

E2 P2 Analyst 6

E3 P3 Consultant 10

E3 P4 Engineer 48

E4 P2 Programmer 18

E5 P2 Manager 24

E6 P4 Manager 48

E7 P3 Engineer 36

E8 P3 Manager 40

ASG

Fig. A.3: Normalized Relations

A.3 Relational Data Languages A-7

A.3 Relational Data Languages

Data manipulation languages developed for the relational model (commonly called
query languages) fall into two fundamental groups: relational algebra languages and
relational calculus languages. The difference between them is based on how the user
query is formulated. The relational algebra is procedural in that the user is expected
to specify, using certain high-level operators, how the result is to be obtained. The
relational calculus, on the other hand, is non-procedural; the user only specifies the
relationships that should hold in the result. Both of these languages were originally
proposed by Codd [1970], who also proved that they were equivalent in terms of
expressive power [Codd, 1972].

A.3.1 Relational Algebra

Relational algebra consists of a set of operators that operate on relations. Each
operator takes one or two relations as operands and produces a result relation, which,
in turn, may be an operand to another operator. These operations permit the querying
and updating of a relational database.
There are five fundamental relational algebra operators and five others that can be

defined in terms of these. The fundamental operators are selection, projection, union,
set difference, and Cartesian product. The first two of these operators are unary
operators, and the last three are binary operators. The additional operators that can be
defined in terms of these fundamental operators are intersection, 𝜃 − 𝑗𝑜𝑖𝑛, natural
join, semijoin and division. In practice, relational algebra is extended with operators
for grouping or sorting the results, and for performing arithmetic and aggregate
functions. Other operators, such as outer join and transitive closure, are sometimes
used as well to provide additional functionality. We only discuss the more common
operators.
The operands of some of the binary relations should be union compatible. Two

relations R and S are union compatible if and only if they are of the same degree
and the i-th attribute of each is defined over the same domain. The second part of
the definition holds, obviously, only when the attributes of a relation are identified
by their relative positions within the relation and not by their names. If relative
ordering of attributes is not important, it is necessary to replace the second part of the
definition by the phrase “the corresponding attributes of the two relations should be
defined over the same domain.” The correspondence is defined rather loosely here.
Many operator definitions refer to “formula”, which also appears in relational

calculus expressions we discuss later. Thus, let us define precisely, at this point, what
we mean by a formula. We define a formula within the context of first-order predicate
calculus (since we use that formalism later), and follow the notation of Gallaire et al.
[1984]. First-order predicate calculus is based on a symbol alphabet that consists of (1)
variables, constants, functions, and predicate symbols; (2) parentheses; (3) the logical
connectors ∧ (and), ∨ (or), ¬ (not),→ (implication), and↔ (equivalence); and (4)

A-8 A Overview of Relational DBMS

quantifiers ∀ (for all) and ∃ (there exists). A term is either a constant or a variable.
Recursively, if 𝑓 is an n-ary function and 𝑡1, . . . , 𝑡𝑛 are terms, 𝑓 (𝑡1, . . . , 𝑡𝑛) is also a
term. An atomic formula is of the form 𝑃(𝑡1, . . . , 𝑡𝑛), where 𝑃 is an n-ary predicate
symbol and the 𝑡𝑖’s are terms. A well-formed formula (wff) can be defined recursively
as follows: If𝑤𝑖 and𝑤 𝑗 are wffs, then (𝑤𝑖), ¬(𝑤𝑖), (𝑤𝑖)∧ (𝑤 𝑗), (𝑤𝑖)∨ (𝑤 𝑗), (𝑤𝑖) →
(𝑤 𝑗), and (𝑤𝑖) ↔ (𝑤 𝑗) are all wffs. Variables in a wff may be free or they may be
bound by one of the two quantifiers.

Selection.

Selection produces a horizontal subset of a given relation. The subset consists of all
the tuples that satisfy a formula (condition). The selection from a relation R is

𝜎𝐹 (R)

where R is the relation and 𝐹 is a formula.
The formula in the selection operation is called a selection predicate and is an

atomic formula whose terms are of the form A𝜃𝑐, where A is an attribute of R and 𝜃 is
one of the arithmetic comparison operators <, >, =, ≠, ≤, and ≥. The terms can be
connected by the logical connectors ∧,∨, and ¬. Furthermore, the selection predicate
does not contain any quantifiers.

Example A.4. Consider the relation EMP shown in Figure A.3. The result of selecting
those tuples for electrical engineers is shown in Figure A.4. ♦

ENO ENAME TITLE

E1 J. Doe Elect. Eng

E6 L. Chu Elect. Eng.

σ
TITLE="Elect. Eng."

(EMP)

Fig. A.4: Result of Selection

Projection.

Projection produces a vertical subset of a relation. The result relation contains only
those attributes of the original relation over which projection is performed. Thus the
degree of the result is less than or equal to the degree of the original relation.
The projection of relation R over attributes A and B is denoted as

A.3 Relational Data Languages A-9

ΠA,B (R)

Note that the result of a projection might contain tuples that are identical. In that
case the duplicate tuples may be deleted from the result relation. It is possible to
specify projection with or without duplicate elimination.

Example A.5. The projection of relation PROJ shown in Figure A.3 over attributes
PNO and BUDGET is depicted in Figure A.5. ♦

PNO BUDGET

P1 150000

P2 135000

P3 250000

P4 310000

Π
PNO,BUDGET

(PROJ)

Fig. A.5: Result of Projection

Union.

The union of two relations R and S (denoted as R ∪ S) is the set of all tuples that are
in R, or in S, or in both. We should note that R and S should be union compatible. As
in the case of projection, the duplicate tuples are normally eliminated. Union may be
used to insert new tuples into an existing relation, where these tuples form one of the
operand relations.

Intersection.

Intersection of two relations R and S (R ∩ S) consists of the set of all tuples that are
in both R and S. In terms of the basic operators, it can be specified as follows:

R ∩ S = R − (R − S)

Set Difference.

The set difference of two relations R and S (R − S) is the set of all tuples that are
in R but not in S. In this case, not only should R and S be union compatible, but

A-10 A Overview of Relational DBMS

ENO ENAME EMP.TITLE PAY.TITLE SAL

E1 J. Doe Elect. Eng.

E1 J. Doe Elect. Eng.

E1 J. Doe Elect. Eng.

E1 J. Doe Elect. Eng.

Elect. Eng. 40000

Syst. Anal. 34000

Mech. Eng. 27000

Programmer 24000

E2 M. Smith Syst. Anal.

E2 M. Smith Syst. Anal.

E2 M. Smith Syst. Anal.

E2 M. Smith Syst. Anal.

Elect. Eng. 40000

Syst. Anal. 34000

Mech. Eng. 27000

Programmer 24000

Elect. Eng. 40000

Syst. Anal. 34000

Mech. Eng. 27000

Programmer 24000

Elect. Eng. 40000

Syst. Anal. 34000

Mech. Eng. 27000

Programmer 24000

E3 A. Lee Mech. Eng.

E3 A. Lee Mech. Eng.

E3 A. Lee Mech. Eng.

E3 A. Lee Mech. Eng.

E8 J. Jones Syst. Anal.

E8 J. Jones Syst. Anal.

E8 J. Jones Syst. Anal.

E8 J. Jones Syst. Anal.

EMP x PAY

≈≈≈≈≈≈

Fig. A.6: Partial Result of Cartesian Product

the operation is also asymmetric (i.e., R − S ≠ S − R). This operation allows the
deletion of tuples from a relation. Together with the union operation, we can perform
modification of tuples by deletion followed by insertion.

Cartesian Product.

The Cartesian product of two relations R of degree 𝑘1 and S of degree 𝑘2 is the set of
(𝑘1 + 𝑘2)-tuples, where each result tuple is a concatenation of one tuple of R with
one tuple of S, for all tuples of R and S. The Cartesian product of R and S is denoted
as R × S.
It is possible that the two relations might have attributes with the same name. In

this case the attribute names are prefixed with the relation name so as to maintain the
uniqueness of the attribute names within a relation.

Example A.6. Consider relations EMP and PAY in Figure A.3. EMP × PAY is shown
in Figure A.6. Note that the attribute TITLE, which is common to both relations,
appears twice, prefixed with the relation name. ♦

A.3 Relational Data Languages A-11

ENO ENAME TITLE PNO

E1 J. Doe Elect. Eng.

M. SmithE2 Syst. Anal.

E3 A. Lee Mech. Eng.

E4 J. Miller Programmer

E6 L. Chu Elect. Eng.

E7 R. Davis Mech. Eng.

E8 J. Jones Syst. Anal.

EMP
EMP.ENO=ASG.ENO

ASG

ENO ENAME TITLE

E1 J. Doe Elect. Eng

E2 M. Smith Syst. Anal.

E3 A. Lee Mech. Eng.

E4 J. Miller Programmer

E5 B. Casey Syst. Anal.

E6 L. Chu Elect. Eng.

E7 R. Davis Mech. Eng.

E8 J. Jones Syst. Anal.

EMP

E9 A. Hsu Programmer

E10 T. Wong Syst. Anal.

(a)

RESP DUR

M. SmithE2 Syst. Anal.

E3 A. Lee Mech. Eng.

E5 J. Miller Syst. Anal.

P1 Manager 12

P1 Analyst 12

P2 Analyst 12

P3 Consultant 12

P4 Engineer 12

P2 Programmer 12

P2 Manager 12

P4 Manager 12

P3 Engineer 12

P3 Manager 12

(b)

Fig. A.7: The Result of Join

𝜃-Join.

Join is a derivative of Cartesian product. There are various forms of join; the primary
classification is between inner join and outer join. We first discuss inner join and its
variants and then describe outer join.
The most general type of inner join is the 𝜃-join. The 𝜃-join of two relations R and

S is denoted as

R Z𝐹 S

where 𝐹 is a formula specifying the join predicate. A join predicate is specified
similar to a selection predicate, except that the terms are of the form R.A𝜃S.B, where
A and B are attributes of R and S, respectively.
The join of two relations is equivalent to performing a selection, using the join

predicate as the selection formula, over the Cartesian product of the two operand
relations. Thus

R Z𝐹 S = 𝜎𝐹 (R × S)

In the equivalence above, we should note that if 𝐹 involves attributes of the two
relations that are common to both of them, a projection is necessary to make sure
that those attributes do not appear twice in the result.

Example A.7. Let us consider the EMP relation in Figure A.3 and add two more tuples
as depicted in Figure A.7(a). Then Figure A.7(b) shows the 𝜃-join of relations EMP
and ASG over the join predicate EMP.ENO=ASG.ENO.
The same result could have been obtained as

EMP ZEMP.ENO=ASG.ENO ASG =
ΠENO, ENAME, TITLE, SAL (𝜎EMP.ENO=PAY˙ENO (EMP × ASG))

A-12 A Overview of Relational DBMS

ENO ENAME TITLE SAL

E1 J. Doe Elect. Eng. 40000

M. Smith 34000E2 Analyst

E3 A. Lee Mech. Eng. 27000

E4 J. Miller Programmer 24000

E5 B. Casey Syst. Anal. 34000

E6 L. Chu Elect. Eng. 40000

E7 R. Davis Mech. Eng. 27000

E8 J. Jones Syst. Anal. 34000

EMP
TITLE

PAY

Fig. A.8: The Result of Natural Join

Notice that the result does not have tuples E9 and E10 since these employees
have not yet been assigned to a project. Furthermore, the information about some
employees (e.g., E2 and E3) who have been assigned to multiple projects appear
more than once in the result. ♦

This example demonstrates a special case of 𝜃-join which is called the equijoin.
This is a case where the formula 𝐹 only contains equality (=) as the arithmetic
operator. It should be noted, however, that an equijoin does not have to be specified
over a common attribute as the example above might suggest.
A natural join is an equijoin of two relations over a specified attribute, more

specifically, over attributes with the same domain. There is a difference, however, in
that usually the attributes over which the natural join is performed appear only once
in the result. A natural join is denoted as the join without the formula

R ZA S

where A is the attribute common to both R and S. We should note here that the natural
join attribute may have different names in the two relations; what is required is that
they come from the same domain. In this case the join is denoted as

R ZR.A=S.B S

where Aand B are the join attributes of R and S respectively.

Example A.8. The join of EMP and ASG in Example A.7 is actually a natural join.
Here is another example – Figure A.8 shows the natural join of relations EMP and
PAY in Figure A.3 over the attribute TITLE.

♦

Inner join requires the joined tuples from the two operand relations to satisfy the
join predicate. In contrast, outer join does not have this requirement – tuples exist in

A.3 Relational Data Languages A-13

the result relation regardless. Outer join can be of three types: left outer join (⊲⊳),
right outer join (⊲⊳) and full outer join (⊲⊳). In the left outer join, the tuples from the
left operand relation are always in the result, in the case of right outer join, the tuples
from the right operand are always in the result, and in the case of full outer relation,
tuples from both relations are always in the result. If there are no matching tuples
from the other relation, its attributes have “Null” values. Outer join is useful in those
cases where we wish to include information from one or both relations even if the do
not satisfy the join predicate.

Example A.9. Consider the left outer join of EMP (as revised in Example A.7) and
ASG over attribute ENO(i.e., EMP ⊲⊳ENO ASG). The result is given in Figure A.9. Notice
that the information about two employees, E9 and E10 are included in the result
even thought they have not yet been assigned to a project with “Null” values for the
attributes from the ASG relation. ♦

ENO ENAME TITLE PNO

E1 J. Doe Elect. Eng.

M. SmithE2 Syst. Anal.

E3 A. Lee Mech. Eng.

E4 J. Miller Programmer

E6 L. Chu Elect. Eng.

E7 R. Davis Mech. Eng.

E8 J. Jones Syst. Anal.

EMP
ENO

ASG

RESP DUR

M. SmithE2 Syst. Anal.

E3 A. Lee Mech. Eng.

E5 J. Miller Syst. Anal.

P1 Manager 12

P1 Analyst 12

P2 Analyst 12

P3 Consultant 12

P4 Engineer 12

P2 Programmer 12

P2 Manager 12

P4 Manager 12

P3 Engineer 12

P3 Manager 12

Null Null Null

Null Null Null

E9 A. Hsu Programmer

E10 T. Wong Syst. Anal.

Fig. A.9: The Result of Left Outer Join

Semijoin.

The semijoin of relation R , defined over the set of attributes 𝐴, by relation S, defined
over the set of attributes 𝐵, is the subset of the tuples of R that participate in the join
of R with S. It is denoted as R ⋉𝐹 S (where 𝐹 is a predicate as defined before) and
can be obtained as follows:

R ⋉𝐹 S = ΠA (R Z𝐹 S) = ΠA (R) Z𝐹 ΠA∩B (S)
= R Z𝐹 ΠA∩B (S)

A-14 A Overview of Relational DBMS

The advantage of semijoin is that it decreases the number of tuples that need to be
handled to form the join. In centralized database systems, this is important because
it usually results in a decreased number of secondary storage accesses by making
better use of the memory. It is even more important in distributed databases since it
usually reduces the amount of data that needs to be transmitted between sites in order
to evaluate a query. Note that the operation is asymmetric (i.e., R ⋉𝐹 S ≠ S ⋉𝐹 R).

Example A.10. To demonstrate the difference between join and semijoin, let us
consider the semijoin of EMP with PAY over the predicate EMP.TITLE= PAY˙TITLE,
that is,

EMP ⋉EMP.TITLE= PAY˙TITLE PAY

The result of the operation is shown in Figure A.10. We encourage readers to
compare Figures A.7 and A.10 to see the difference between the join and the semijoin
operations. Note that the resultant relation does not have the SAL attribute and is
therefore smaller. ♦

ENO ENAME TITLE

E1 J. Doe Elect. Eng.

M. SmithE2 Analyst

E3 A. Lee Mech. Eng.

E4 J. Miller Programmer

E5 B. Casey Syst. Anal.

E6 L. Chu Elect. Eng.

E7 R. Davis Mech. Eng.

E8 J. Jones Syst. Anal.

EMP
EMP.TITLE=PAY.TITLE

PAY

Fig. A.10: The Result of Semijoin

Division.

The division of relation R of degree 𝑟 with relation S of degree 𝑠 (where 𝑟 > 𝑠 and
𝑠 ≠ 0) is the set of (𝑟 − 𝑠)-tuples 𝑡 such that for all 𝑠-tuples 𝑢 in S, the tuple 𝑡𝑢 is in
R. The division operation is denoted as R ÷ S and can be specified in terms of the
fundamental operators as follows:

R ÷ S = ΠĀ (R) − ΠĀ ((ΠĀ (R) × S) − R)

A.3 Relational Data Languages A-15

where Ā is the set of attributes of R that are not in S [i.e., the (𝑟 − 𝑠)-tuples].

Example A.11. Assume that we have a modified version of the ASG relation (call it
ASG′) depicted in Figure A.11a and defined as follows:

ASG′ = ΠENO,PNO (ASG) ZPNO PROJ

If one wants to find the employee numbers of those employees who are assigned
to all the projects that have a budget greater than $200,000, it is necessary to divide
ASG′ with a restricted version of PROJ, called PROJ′ (see Figure A.11b). The result of
division (ASG′÷ PROJ′) is shown in Figure A.11c.
The keyword in the query above is “all.” This rules out the possibility of doing a

selection over ASG′ to find the necessary tuples, since that would only produce those
that correspond to employees working on some project with a budget greater than
$200,000, not those who work on all projects. Note that the result contains only the
tuple ⟨E3⟩ since the tuples ⟨E3, P3, CAD/CAM, 250000⟩ and ⟨E3, P4, Maintenance,
310000⟩ both exist in ASG′. On the other hand, for example, ⟨E7⟩ is not in the result,
since even though the tuple ⟨E7, P3, CAD/CAM, 250000⟩ is in ASG′, the tuple ⟨E7,
P4, Maintenance, 310000⟩ is not. ♦

Since all operations take relations as input and produce relations as outputs, we
can nest operations using a parenthesized notation and represent relational algebra
programs. The parentheses indicate the order of execution. The following are a few
examples that demonstrate this.

Example A.12. Consider the relations of Figure A.3. The retrieval query

“Find the names of employees working on the CAD/CAM project”

can be answered by the relational algebra program

ΠENAME (((𝜎PNAME= “CAD/CAM” PROJ) ZPNO ASG) ZENO EMP)

The order of execution is: the selection on PROJ, followed by the join with ASG,
followed by the join with EMP, and finally the projection on ENAME.
An equivalent program where the size of the intermediate relations is smaller is

ΠENAME (EMP ⋉ENO (ΠENO(ASG ⋉PNO (𝜎PNAME=“CAD/CAM” PROJ))))
♦

Example A.13. The update query

“Replace the salary of programmers by $25,000”

can be computed by

(PAY−(𝜎TITLE= “Programmer” PAY)) ∪(⟨Programmer, 25000 ⟩)
♦

A-16 A Overview of Relational DBMS

(a)

(b)

PROJ'

PNO PNAME BUDGET

P3 CAD/CAM 250000

P4 Maintenance 310000

ENO

E3

(ASG' ÷ PROJ')

(c)

ASG'

ENO PNO PNAME

E1 P1 Instrumentation 150000

BUDGET

E2 P1 Instrumentation 150000

E2 P2 Database Develop. 135000

E3 P3 CAD/CAM

E3 P4 Maintenance

E4 P2

E5 P2

E6 P4

E7 P3 CAD/CAM

E8 P3 CAD/CAM

310000

135000

135000

310000

250000

250000

Maintenance

250000

Database Develop.

Database Develop.

Fig. A.11: The Result of Division

A.3.2 Relational Calculus

In relational calculus-based languages, instead of specifying how to obtain the result,
one specifies what the result is by stating the relationship that is supposed to hold
for the result. Relational calculus languages fall into two classes: tuple relational
calculus and domain relational calculus. The difference between the two is in terms
of the primitive variable used in specifying the queries. We briefly review these two
types of languages.
Relational calculus languages have a solid theoretical foundation since they are

based on first-order predicate logic as we discussed before. Semantics is given to
formulas by interpreting them as assertions on the database. A relational database
can be viewed as a collection of tuples or a collection of domains. Tuple relational
calculus interprets a variable in a formula as a tuple of a relation, whereas domain
relational calculus interprets a variable as the value of a domain.

A.3 Relational Data Languages A-17

Tuple relational calculus.

The primitive variable used in tuple relational calculus is a tuple variable which
specifies a tuple of a relation. In other words, it ranges over the tuples of a relation.
Tuple calculus is the original relational calculus developed by Codd [1970].
In tuple relational calculus queries are specified as {𝑡 |𝐹 (𝑡)}, where 𝑡 is a tuple

variable and 𝐹 is a well-formed formula. The atomic formulas are of two forms:

1. Tuple-variable membership expressions. If 𝑡 is a tuple variable ranging over
the tuples of relation R (predicate symbol), the expression “tuple 𝑡 belongs to
relation R” is an atomic formula, which is usually specified as R.𝑡 or R(𝑡).

2. Conditions. These can be defined as follows:

(a) 𝑠[A]𝜃𝑡 [B], where 𝑠 and 𝑡 are tuple variables andA andB are components
of 𝑠 and 𝑡, respectively. 𝜃 is one of the arithmetic comparison operators
<, >, =, ≠, ≤, and ≥. This condition specifies that component A
of 𝑠 stands in relation 𝜃 to the B component of 𝑡: for example, 𝑠[SAL]
> 𝑡 [SAL].

(b) 𝑠[A]𝜃𝑐, where 𝑠, A, and 𝜃 are as defined above and 𝑐 is a constant. For
example, 𝑠[ENAME] = “Smith”.

Note that A is defined as a component of the tuple variable 𝑠. Since the range of
𝑠 is a relation instance, say S, it is obvious that component A of 𝑠 corresponds to
attribute A of relation S. The same thing is obviously true for B.
There are a number of languages that are based on relational tuple calculus, the

most popular one being SQL1 [Date, 1987]. We use SQL as the user language
in this book. SQL is now an international standard (actually, the only one) with
various versions released: SQL1 was released in 1986, modifications to SQL1 were
included in the 1987 and 1989 versions, SQL2 was issued in 1992, and SQL3, with
object-oriented language extensions, was released in 1999. There have been minor
revisions in 2003, 2006, and 2008. In 2011 another major release was made adding
temporal data support, 2016 saw a major release with JSON support, and 2019
another release with multidimensional array data type support. Although the names
SQL1-SQL3 are still used, the common convention now is to refer to these as SQLxx
where xx is the last two digits of the release year.

Domain relational calculus.

The domain relational calculus was first proposed by Lacroix and Pirotte [1977]. The
fundamental difference between a tuple relational language and a domain relational

1 Sometimes SQL is cited as lying somewhere between relational algebra and relational calculus. Its
originators called it a “mapping language.” However, it follows the tuple calculus definition quite
closely; hence we classify it as such.

A-18 A Overview of Relational DBMS

language is the use of a domain variable in the latter. A domain variable ranges over
the values in a domain and specifies a component of a tuple. In other words, the range
of a domain variable consists of the domains over which the relation is defined. The
wffs are formulated accordingly. The queries are specified in the following form:

𝑥1, 𝑥2, ..., 𝑥𝑛 |𝐹 (𝑥1, 𝑥2, ..., 𝑥𝑛)

where 𝐹 is a wff in which 𝑥1, . . . , 𝑥𝑛 are the free variables.

	Appendices
	Overview of Relational DBMS
	Basic Concepts
	Normalization
	Dependency Structures
	Normal Forms

	Relational Data Languages
	Relational Algebra
	Relational Calculus

	References
	Index

