
An	Empirical	Study	from	a	Quality	Perspective	on	the	Impact	of	
Switching	from	Waterfall	to	Agile		

Anzira Rahman, Luiz Marcio Cysneiros 
School of Information Technology 

York University 
Toronto, Canada 

cysneiro@yorku.ca 
 
 

Abstract— Agile Methods are characterized as flexible and 
readily adaptable. The need to keep up with multiple high-
priority projects and shorter time-to-market demands could 
explain their increasing popularity. It also raises concerns of 
whether or not the use of these methods jeopardizes quality. This 
study compared the impact of software development methods on 
quality using software development projects worked on by a 
company comprised of several sub-teams that provide innovative 
solutions for mortgage and loan related services to Canadian 
Financial Institutions.  The company switched from Waterfall to 
Agile methods in 2012. This work used real life data from real life 
projects and focused on the registered number of defects for each 
project. Our results suggest that the adoption of Agile methods 
may negatively impact quality, in the long run. The results also 
suggest that Non-Functional Requirements may play an 
important role in this adverse effect. 

 
Index Terms—Agile Methods, Waterfall, Quality, Non-

Functional Requirement. 

I. INTRODUCTION  

 
In information-intensive societies, technological solutions 

have become a popular trend.  Such societies have a high 
expectation of generating economic growth, innovation, and 
creating new ways to distribute knowledge.  As a result, more 
efficient ways of software development are being applied and 
evaluated in team settings in companies across the globe.  
Although efficiency and faster turnaround are expected, 
software quality should not be compromised.  

Many different software development methods have been 
introduced and used by the software engineering community 
since the late 1960’s [25][29].  These methods have been 
improved and refined over time [25].  Some of them have been 
in existence longer than others and reached a more stable level 
and are referred to as “traditional” software development 
methods.  

The Waterfall method is one of them, and it is divided into 
linear stages [25].  In contrast, the Agile software development 
method is a more modern approach and comprised of a group 
of activities that encourages dynamic planning, development, 
and frequent delivery of artefacts to meet client satisfaction [3] 
[19] [14].   

Since Agile software development methods focus on 
minimal documentation, Paetsch et al. [25] have suggested that 
Agile and Waterfall software method seem contradictory.  In 
fact, they are similar with respect to the performance of 
primary activities, such as elicitations, management, and 
validations, but differ in terms of when and how these activities 
are executed.  More specifically, waterfall is dependent on 
documentation for knowledge sharing, whereas Agile methods 
are less document-centric and prioritize face-to-face 
collaboration.  In Agile methods, teamwork is conducted 
within a short timeframe to gather requirements, develop, test, 
and deliver [19].  Overall, abilities such as accommodating 
changes, enhancing customer relationships, greater return on 
investment, and shorter development periods are identified as 
key factors for the increasing demand for agile practices [30] 
[24].  Thus, one well-recognized benefit of Agile has been the 
ability to create more satisfactory relationships with customers 
due to its quick delivery of high business value features and 
easier accommodation for changes in requirements [31].  
Though, in Agile methods, validations happen throughout the 
process to ensure quality [14] [25], the easier accommodation 
of changes in Agile is typically completed without sufficient 
documentation, which may lead to challenges in keeping up 
with the evolution of requirements while maintaining software 
quality. 

 According to anecdotal reports, Agile methods, such as 
Scrum, are unable to produce high-quality products due to its 
volatile nature, however, the Agile process has been described 
by the Standish group as the “universal remedy for software 
development project failure [31].  To date, there has not been 
sufficient study regarding the actual practices of software 
professionals for software activities using Agile methods [18].  
Also, empirical comparisons between different software 
development processes have been minimal [26].  Perhaps most 
importantly, most of the works are based on the perception of 
software developers instead of real data. In this work, we used 
data extracted from logs of defects collected from several 
software development projects. It compared the impact of 
software development methods on quality using software 
development projects carried out by a company comprised of 
several sub-teams that provide innovative solutions for 
mortgage and loan related services to Canadian Financial 
Institutions.  The company switched from Waterfall to Agile 



methods in 2012. The log of defects reflects all the defects that 
were found and corrected after the software was deployed.   

The goal of this study is not to advocate one method or 
another.  The primary objective is to use data extracted from 
several real life projects to contribute to understanding if the 
adoption of Agile methods impact quality negatively or not. By 
extension, this study can contribute to other company’s 
decision-making process when choosing what methods to adopt 
and apply. Although our results reflect only Agile and 
Waterfall methods, they can be used to infer possible 
consequences on other methods such as spiral or rational 
unified process. It is important to note that since considerations 
regarding budget and time are hard to be generalized, the focus 
was put on the number of defects as a more stable parameter to 
be measured. Given that the log of defects contained 
explanations describing each defect, we also used the study to 
test if there was a significant difference in the number of 
defects due to missed or wrongfully specified Functional 
Requirements and Non-Functional Requirements (NFR) when 
comparing defects in Agile projects and defects in Waterfall 
projects, 

The rest of this work is structured as follows. Section II will 
introduce some background positioning the reader on the 
subject. Section III will present the research method used in 
this work. Section IV will present our results, which will be 
discussed in Section V. Finally, Section VI will conclude the 
work and point out to future work. 

 

II. BACKGROUND 

 
Though the purpose of Requirements Engineering (RE) is 

the same in all software methods, how RE is performed in 
Agile and Waterfall methods is opposing in nature [3] [24].  RE 
in both Agile and Waterfall methods place importance upon 
stakeholder involvement, face-to-face collaboration, and 
delivering high-quality products [14] [24].  However, while 
customer collaboration and communication are crucial for 
achieving a good quality product [4] [6] [14] [19], Agile and 
Waterfall methods differ in terms of when customers are 
consulted.  In Waterfall, customers are involved during the 
initial phases of requirement gathering and analysis, whereas, 
in Agile, customers are involved throughout the entire process 
[24].  

Agile and Waterfall methods are also different with respect 
to their use of Non-Functional Requirements.  In Agile 
approaches, NFRs are not properly identified, modeled or 
linked during the early requirement analysis phase [11] [12].  
Due to the nature of evolving requirements, NFRs such as 
maintainability, portability, safety or performance are often 
overlooked in Agile [25].  In addition, NFRs are not often seen 
as crucial or highly critical by teams using Agile methods [26] 
[10].  

Perhaps most importantly, Agile and Waterfall methods 
differ in terms of their use of documentation.  Agile methods 
are more code-oriented [26] than Waterfall method and 
therefore requirement knowledge is not captured in 

comprehensive documentation.  According to Chapin [9], the 
vast majority of Agile methods accomplish software 
maintenance without documentation.  User stories do not 
become part of the complete documentation of the system [19] 
[14] and are only used to accommodate change at any time 
during the short development cycle.  In contrast, plan-driven 
traditional methods such as Waterfall do not make such 
changes during the development cycle [14], and documentation 
is used to share knowledge [3] [24]. 

A. Software Quality Assurance  

The objective of any software development process is to 
implement a quality product with no defects. Software Quality 
Assurance (SQA) is an integral part of this process [15] 
regardless of the software development method employed [16].  
Sommerville [29] defines software quality as a management 
process concerned with ensuring the software has a small 
number of defects and that it reached the required standards of 
maintainability, reliability, and portability among others [29].  
It also refers to the process of evaluating software to ensure 
compliance with software requirements [3] [28]. SQA activities 
include auditing, testing of the software and an awareness 
checkpoint to examine the project’s status [27].  According to 
Bohem [5], these activities are usually performed to determine 
the fitness or worth of a software product for its operational 
mission. Due to the nature of software, it is challenging to 
assess the quality using the same set of guidelines for all the 
goods in all industries [2]. 

The use of SQA in Agile and Waterfall methods is different 
in terms of the initiation, frequency and focus of the activities.  
In Agile, SQA activities start from the very beginning whereas, 
in Waterfall, SQA activities typically do not begin until all 
developments are completed.  In the field study conducted by 
Manjunath, Jagadeesh, and Yogeesh [23], the ability to detect 
issues earlier was noted to provide chances to fix them at a 
previous stage. 

A second difference between Agile and Waterfall methods 
lies in how frequently the SQA activities are performed.  
According to Cao and Ramesh [17], early and constant 
validation and frequent review meetings are used to validate 
requirements in Agile. Also, Mnkandla and Dwolatzky [26] 
concluded that quality assurance occurs more frequently in 
agile methods than in Waterfall.  Many metrics have been 
included, such as sprint wise issues, escapes per sprints, 
impediments count per sprint, and sprint health boards have 
been introduced to measure quality in Agile to accommodate 
its dynamic nature [1].  However, controversies exist with 
respect to the flexibility of these metrics to accommodate the 
changing requirements and whether the quality of the 
customers is satisfactory or not [16]. 

The focus of SQA activities is also different in Agile and 
Waterfall methods.  The primary focus in Agile testing is to 
validate only the items for the particular iteration.  In contrast, 
Waterfall method usually concentrates on testing the full 
requirements of the project.  In Agile, unit testing and 
acceptance testing are the primary focus [17].  In general, there 
seems to be a lack of significance put in for Non-functional 
requirement [10] in Agile than Waterfall.  According to 



Taehoon et al., previous research with Agile approaches did not 
focus on non-functional aspects and suggested that identifying 
non-functional requirements early in the project can contribute 
to achieving improved quality [32].   

Aspects related to issues such as the length of the project 
and cost could be considered when one is evaluating the quality 
of software. However, since those are attributes that are rated 
very differently from one company to another a statistical 
treatment for this would not be effective and therefore we 
focused on the number of defects as our primary item for 
comparison.   

III. RESEARCH METHOD 

 
Qualitative research methods are useful for exploring and 

understanding any emerging research problem. Previous 
studies have employed qualitative research methods, such as 
field observation and interviews, to measure the impact of RE 
in Agile Methods on software quality [14].  Many of the 
qualitative studies that were completed helped to gain an 
understanding of the complex underlying reasons, opinions, 
and motivations for using one method over another [19].  They 
investigated the why rather than the how many [3].  In contrast, 
a quantitative approach can be used to quantify the problem by 
way of generating numerical data to transform into useable 
statistics and to evaluate and analyze the findings.   

While reviewing the literature, it is evident that there are 
many studies on understanding the characteristics of the Agile 
and Waterfall software development methods and their nature 
of requirements for quality assurance.  However, no 
quantitative studies had been found that focused on the impact 
of adopting Agile methods on software quality, especially 
comparing the number of defects as part of the quality 
assessment.   

In addition, a quantitative approach was selected due to the 
availability of data from an organization that had made use of 
both software methods (Agile and Waterfall) in recent years.  
Since this history had been documented, it provided an 
opportunity to measure and compare certain features of the 
completed projects. Statistical models could be constructed to 
test hypotheses about Agile and Waterfall method that might 
have usefulness in real life decision-making.   

In this work, a multiple-case (completed for multiple 
organizations) with an exploratory method was selected. With 
respect to the selection of an organization, a company 
specialized in transaction management for mortgage processing 
was chosen as the identified case.  The primary reason for 
selecting this organization was because it provided an 
opportunity to examine two RE methods (e.g., Agile and 
Waterfall) that were employed at different times in the history 
of the company as well as the fact that one of the authors works 
there.  This company had undergone a well-demarcated shift 
from Waterfall to Agile method that provided an opportunity to 
evaluate data from each period clearly in terms of its outcomes, 
challenges, and benefits.  The transition between methods 
occurred in 2012, and, therefore, all projects completed after 

2012 followed Agile method, whereas pre-2012 projects 
followed Waterfall method. 

The aim of this case study was to determine whether there 
is a difference in the number of defects between Agile and 
Waterfall methods.  Two hypotheses for this project are 
described below: 

Hypothesis 1: Number of defects in Agile and Waterfall 
projects is same. 

µAgile No. of Defects = µWaterfall No. of Defects   
 
Alternative Hypothesis: Number of defects in Agile and 

Waterfall projects is different. 
µAgile No. of Defects ≠ µWaterfall No. of Defects   
  
[Where µAgile No. of Defects is population mean for the number 

of defects on Agile Projects and µWaterfall No. of Defects  is the 
population mean for the number of defects on Waterfall 
Projects] 

 
Hypothesis 2: Number of NFR-related defects in Agile and 

Waterfall projects is same. 
µAgile No. of NFR Defects = µWaterfall No. of NFR Defects   
 
Alternative Hypothesis: Number of NFR-related defects 

in Agile and Waterfall projects is different. 
µAgile No. of NFR Defects ≠ µWaterfall No. of NFR Defects   
 
[Where µAgile No. of NFR Defects is population mean for the 

number of NFR-related defects on Agile Projects and µWaterfall 

No. of NFRDefects is the population mean for a number of NFR- 
related defects on Waterfall Projects] 

A. Data Collection Strategy 

This section describes the strategies of data sampling. In the 
first phase of the study, the objective was clearly defined and 
the data collection method was formalized. It was important to 
understanding which data was to be collected, from where and 
why it was required for testing the hypotheses. 

 
1) The Organization 

A financial organization with a medium-sized software 
team was selected as the source of data.  This organization 
typically offers support to financial institutions such as banks 
and mortgage lenders, and has a software department known to 
provide technological solutions to a diverse range of clients 
over a number of years under Waterfall and Agile methods.  
This particular department worked in an industry that is both 
fast-paced and dynamic, and so, this selected company was 
perceived to be a good representation of a medium-sized 
Information Technology organization. 

2) Formation of the Agile and Waterfall Group  
A method was needed to identify and form two distinct 

groups (e.g., Agile, Waterfall) for the purpose of testing the 
hypotheses.  Since the software department adopted the Agile 
method in 2012, any projects that started after 2012 were 
assigned to the Agile group.  Projects that were initiated before 
2012 were allocated to the Waterfall group.  The year of 



initiation of a project was used to assign a project to each 
group. All projects were double-checked to assure they were 
correctly classified. 

 
3) The Source of Data 

Once the groups had been formed, additional information 
had to be retrieved.  An application lifecycle management 
system, called Team Foundation Server (TFS), was used to 
track and store the information for this company.  TFS is a 
product that provides source code management, reporting, 
requirements management, and project management for Agile 
and Waterfall methods.  This system kept a detailed history of 
all projects including the number of requests (user stories and 
work items). It also kept track of the number of defects 
detected during the software life cycle.  

For the purpose of this work, the data from TFS was 
accessed and collected using several steps.  First, the number of 
requests was captured to understand the size of a project.  
Then, the time and effort put into each request was also 
obtained to come up with the duration of the project. In this 
process, the name and number of people involved in 
completing the requests were also recorded.  Lastly, the 
number of defects found in testing and the description of the 
defects were also collected.  Table 1 shows a sample report of 
defects from TFS. 

Table 1: Sample report of defects in a project 

ID Type 
Hours 
Spent 

Title 
Found 
During 

676 Defect 7.5 

Admin approved 
users are getting 
managerUserIDs 
overridden by 
CurrentSystemUserID 

Dev/ 
Functional 
Testing 

683 Defect 5 

Portal Self 
Registration for Sales 
Force and Mortgage 
Closing Officer- 
Should not be able to 
register without a 
Branch Manager 

Stage/ 
Internal 
Acceptance 
Testing 

616 Defect 3 

Self Registration 
"Manage Pending 
User" link having 
translation issue 

Prod/ 
Deployment 

 
 
The selected projects allowed comparisons to be made 

between Agile and Waterfall methods to understand the overall 
impact of each method in terms of quality. 

 
4) Criteria for Case Selection: 

 
In order to select the cases, the characteristics of the project 

and teams were important. According to the survey done by 

Vijayasarathy and Butler [33], it is evident that organizations 
with methods such as Agile, Traditional, Iterative, and Hybrid 
exhibit different characteristics in terms of team size, project 
size, revenues and project criticality.  Since the purpose of the 
project was to compare the quality of Agile and Waterfall 
methods, three selection criteria were used to standardize effort 
or reduce bias in each of the two groups. In the end, our sample 
was composed of 8 Agile projects and 8 Waterfall projects. 

 The criteria used for selection were: project size, team size, 
and duration of the project.  

  
a) Project Size:  

 
The size of a project was the most important factor when 

selecting projects for inclusion in the analysis.  The size of the 
project was determined using the number of work items or the 
number of user stories for each project.  Work items and user 
stories represent the number of features/functionalities that a 
project required throughout the project.  An explanation of 
what user stories and work items mean in this organization is 
presented below: 
     User Stories:  

Each project under Agile method was reviewed by 
the number of requests, called user stories, in which 
software requirements are documented in a less 
formal way as the primary unit [3] [23].  A user story 
is structured in concise format that describes in natural 
language the “Why” and “How” of a project [13].  
The user stories are typically written in the form of 
“As a (Role), I want (Something) so that I can 
(Benefit)”.  Acceptance criteria are also included in 
order for the software quality to be considered 
fulfilled. ‘Acceptance Criteria’ are written in ‘Given,' 
‘When’ and ‘Then’ format. 

Work Items:  
In projects completed under the Waterfall method, 

a traditional format was presented that included a 
Business Requirement Specification Document 
(BRSD).  The BRSD is a written plan completed 
before beginning the software design and 
implementation phase. Requirements in the 
specification documents are broken down into change 
requests called ‘Work Items’ that are primarily based 
on system feature/functionality.  Unlike user stories, 
work items are not in any consistent format, but they 
are broken down by feature and functionalities 

 
  In the end, requests in the form of a user story represent 

how a feature will need to be used from a user perspective, and 
work items represent how a feature will be used, in general. 

After collecting the user stories and work items for a 
project, dispersion graphs were used to select cases to analyze 
projects in the Agile and Waterfall group (Figure 1 and Figure 
2). 



 
Fig. 1: Size of selected projects using an Agile method 

 

Fig. 2: Size of selected projects using an Agile method 

 
b) Team Size:  

 
 It was determined that team size may be a factor that could 

bias the comparison between Agile and Waterfall methods and, 
therefore, dispersion measures of this variable were also taken 
into consideration when selecting cases.  Upon inspection, it 
was determined that the software department consisted of 35-
40 members throughout the years that the projects used in this 
study were developed. This number was broken down into 
smaller sub-teams to complete various projects.  For example, 
for a medium sized project, a team typically consisted of a 
project manager, a product owner, 2-6 developers, and 1 
quality assurance analyst.  It was observed that some projects 
had small teams comprised of 2-4 members while other 
projects had large team size (12-18 members).  Thus, the goal 
was to select cases that had similar sized teams given that 
success with Agile method is heavily dependent on team 
collaboration and communication.  A moderate team size was 
given priority for selecting the projects. This was also an 
attempt to minimize bias towards either Agile or Waterfall. 

 
c) Duration: 

 
Project duration was considered an important factor in case 

selection.  Longer durations for a small sized project suggest 
that more time was permitted to comprehend and complete 

tasks relative to a project completed within shorter timeframes.  
Duration was calculated by examining the time that elapsed 
between project initiation and project completion.  Possible 
exclusions were based on how the department sees small, 
medium and long projects. Within the fifteen randomly 
selected projects in the Agile group and the fifteen randomly 
chosen in the Waterfall group, duration ranged from one month 
to two years. Projects that had duration of three-nine months 
(considered medium projects) were found to be suitable for 
inclusion, and cases with a smaller duration (one-two months) 
and longer durations (ten-twenty four months) were excluded.   

B. Dependable Variables: 

The variation between expected and actual results during 
software quality assurance phase is known as defects. Different 
organizations have different names to describe this variation, 
but commonly used terms to describe defects include bugs, 
problems, incidents or issues. In order to analyze the data and 
test the hypotheses, the following outcome variables were 
selected based on the particular interests of this research 
project. 

1) Total Number defects:  
This is the number of defects that were found during the 

quality assurance phase of the project and was a measure of 
quality in the project. More defects meant more issues were 
found and needed to be corrected before the project could be 
considered completed.   

2) Number of NFR related defects: 
Defects that after analyzed were considered caused by a 

missing or wrongfully defined Non-Functional Requirement. 
3) Number of FR Related defects:  

Defects that after analyzed were considered caused by a 
missing or wrongfully defined Functional Requirement. 

C. Statistical Approach 

The study objective was to examine the difference between 
Agile and Waterfall method with respect to software quality.  
In order to analyze the data, descriptive statistics were 
calculated (mean, standard deviation and standard error of the 
mean) for the following variables: Project Size (Number of 
User stories or Work items) and Number of Defects in each of 
the two group (Agile and Waterfall).  Statistical testing was 
used to determine the significance of the difference between 
the two groups. In order to compare the difference between the 
means, a t-test was performed on two independent groups 
(Agile and Waterfall) for each dependable variable. While 
exploratory studies are useful to examine novel trends in small 
group, a conservative alpha level can introduce bias toward 
type II error (failure to detect a significant finding) and so 
effects may be hard to detect in small samples. Given the small 
sample size (n= 8 per group), a more liberal alpha level was 
chosen (α =0.10). All statistical analyzes were completed using 
IBM SPSS Statistics Version 22. 

 
 
 



IV. RESULTS  

 
A within-group analysis was performed first to evaluate the 

project size and effort in each of the two groups.  Then, this 
work examined whether Waterfall and Agile software methods 
differed with respect to quality, using the number of defects as 
a measure of quality.  Quality comparison from the perspective 
of duration of the project and budget implications was left to be 
carried out on future work.   

A. Analysis of User Stories and Defects in Agile Group 

The mean of all Agile projects’ user stories was 21.9 (SD 
14.2) and mean of the defects was 12.5 (SD 4.9).  Figure 3 
illustrates the proportion of user stories and defects for each of 
the Agile projects.  Defects comprised between approx. 30%-
60% compared to the user stories in the Agile group.  

 
Fig. 3: Agile Projects: Proportion of User Stories and Defects 

 
Further analysis was conducted on the defects related to 

non-functional and functional requirements.  In the Agile 
group, the mean number of NFR-related defects was 8.6 (SD 
3.8), whereas 3.9 (SD 1.7) defects were FR-related.  Figure 4 
illustrates the proportion of NFR and FR defects in each Agile 
project.  It shows that more than 60% were NFR related defects 
in this group. 

 

 
Fig. 4: Agile Projects: Defects with proportion of NFR and FR 

related defects 

B. Analysis of Work Items and Defects in Waterfall projects: 

 
The mean of all work items in Waterfall projects was 39.1 

(SD 16.5) work items and 8 (SD 4.2) defects.  Figure 5 shows 
the proportion of defects in each of the Waterfall projects, 

which fell in the range of 8-33% compared to the user stories 
and work items. 

 

Fig. 5: Waterfall projects: Proportion of work items and 
defects 

 
Next, when the defects were analyzed and grouped into 

non-functional and functional requirements related categories, 
in the Waterfall group, the mean number of NFR-related 
defects was 4.1 (SD 1.7), whereas 3.9 (SD 3.7) defects were 
FR-related.  Figure 6 illustrate the proportion of NFR and FR 
defects in each Waterfall project.   

 

Fig. 6: Waterfall projects: Defects proportion of NFR and FR 
related defects 

C.  Comparison between Agile and Waterfall Projects 

 
This section compares the projects from Agile and 

Waterfall group in terms of number of defects and examines 
the hypotheses.   

 
1) Hypothesis 1:  

 
There was a significant difference in the number of defects 

for Agile (M=12.5, SD=4.9) and Waterfall (M=8, SD=4.2); t 
(14) =1.971, p = 0.069. Projects using Agile method had 
significantly more defects than projects using Waterfall 
method.  The alternative hypothesis was accepted, in this case. 

 
 
 



2) Hypothesis 2: 
 
There was a significant difference in the number of defects 

for Agile (M=8.6, SD=3.8) and Waterfall (M=4.1, SD=1.7); t 
(14) = 3.039, p =0.009. Agile had more NFR-related defects 
than Waterfall method that suggested that the non-functional 
requirements are harder to be correctly elicited ad dealt with in 
Agile methods. Hence, the alternative hypothesis was selected.  

D. Strengths of the Research 

Although there are general studies on Requirement 
Engineering and Software Quality Assurance regarding Agile 
methods, there are only a few empirical studies conducted to 
understand the impact RE has on SQA in Agile.  Therefore, 
these findings contribute to the impact of RE on SQA in Agile. 

One of the strengths of this work lies in its examination of 
materials in the real world (i.e., ecological validity).  This has 
practical applications that are relevant and useful to be applied 
by companies.  This type of research is hard to duplicate in a 
controlled environment with limited resources.  

Secondly, this study accessed a combination of projects that 
catered to different clients in the financial industry.  While we 
cannot be certain our results can be extrapolated to other 
sectors we believe that many other domains share enough 
similarities with the financial area to use our findings as 
guideline for future decisions.  Also, having different clients 
for each project offers feedback from multiple sources.   

Lastly, we had the rare opportunity to extract data that 
could allow us to analyze the defects and to differentiated the 
type of defects between those related to Functional 
Requirements and those due to Non-Functional Requirements. 
Despite the lack of works in how to deal with NFR during 
Agile projects, companies adopting Agile methods may be able 
to include NFR elicitation and modeling in an ad-hoc manner. 
They may also try to adapt existing proposal to deal with NFR 
in non-agile methods to their Agile processes.  Otherwise, 
savings due to faster development process and lower budget 
may end up being reversed after deployment as a result of more 
time and money spent to fix defects that could have been 
avoided.    

 

E. Limitations of the Research 

The aim of this work was to examine empirically whether 
Agile method produces a better quality product.  The case 
study method was chosen so that the information could be 
useful in similar settings to better understand which of the two 
methods, Agile, and Waterfall, might be adopted.  

The first limitation is related to the selection of the projects.  
As it may happen in most of the situations where such a study 
may be carried out, the developers were not the same for all the 
projects.  However, these developers belonged to smaller sub-
teams, which were part of a one big team under the same 
management.  This fact may mitigate any selection bias 
considerations.  

Next, data collection regarding the number of defects might 
have a little bias towards Agile method.  Unlikely in the 
Waterfall process, during the Agile projects some of the defects 

may not even be registered as such. They might have been 
detected during an interaction to solve another defect, and since 
Agile has a policy of documenting as less as possible, no 
annotation regarding this new defect would have been made.  
However, from observing and participating in similar projects 
in the same organization (not used in this study), it is possible 
to state that the numbers of defects that might have been not 
logged would not be significant enough to alter the results.  In 
fact, it could only enforce the results obtained in this work. 

We recognize that the sample size is not the ideal, but a 
scenario as the one that we encountered to extract our data is 
rare and should not be dismissed due to a non-optimal sample 
size. Although we could have used fifteen projects of each type 
instead of eight, we understand that the gain in sample size 
would not compensate the benefits of obtaining a sample that 
would be less prone to bias and more representative of a 
general case scenario that we might face in most companies. 

V. DISCUSSION 

 
We found one significant prior study showing that Waterfall 

method provided better quality than Agile method. It was 
performed by The Standish Group, which has been collecting 
case information on real-life IT environments and software 
development projects since 1985. They have examined project 
success and failure in more than 90,000 IT projects and 
reported that, of the projects completed between 2003 and 
2012, 48% of Agile projects were ‘challenged’ compared to 
43% of Waterfall projects. ‘Challenged’ projects were defined 
as those that were delivered late, over budget, and with less 
than the required features and functions [31].   

On the other hand, some studies have suggested that Agile 
methods have advantages over Waterfall method.  For 
example, in an analysis, Ming et al. [25] evaluated the 
differences in quality between Waterfall and Agile methods 
under conditions of time pressure and an unstable requirements 
environment.  They concluded that the SQA abilities, 
frequency and the time of implementation could contribute to 
the success of the Agile method under these conditions.  They 
also acknowledge that comparing the quality resulting from the 
use of Waterfall and Agile is difficult due to the difference in 
initial development conditions and costs [25].   

Another case study [20] that compared two releases of the 
same product completed by the same personnel, revealed a 
65% improvement in pre-release quality and a 35% 
improvement in the post-release quality was noted in methods 
using XP compared to Waterfall.  Though the number of 
defects was used as a measure of quality, the size of the new 
release was one fifth of the old release that was compared to 
this work.  Significantly smaller release may have contributed 
towards quality improvement of XP over Waterfall.  However, 
our findings suggest that when using a more inclusive and less 
biased sample, Agile may deliver projects with a significant 
larger number of defects than waterfall. 

Other studies regarding the quality of Agile and Waterfall 
methods have not shown the superiority of one method over 
another.  No reliable result was found for quality in the study 



done by Benediktsson et al. to investigate the impact of 
software development approach [7]. Macias reported no 
significant difference when comparing XP and traditional 
software development (pilot study completed by 2nd year 
undergraduate students) approaches in terms of quality and size 
of the product the time [22].  

Our results suggest that, in fact, the adoption of Agile 
methods may lead to higher number of defects and in 
consequence, to higher cost to maintain the software that could 
offset the gains of productivity during development. While our 
study cannot be used to explain why the number of defects was 
greater in Agile it was not our goal to do so. We believe that 
the qualitative works mentioned before have already discussed 
the possibilities. Taking into consideration that many defects in 
Agile projects may not have been registered in TFS due to the 
minimum documentation principle, the impact of adopting 
Agile in quality might be even higher than what we have 
measured. Considering also that fixing a problem later, rather 
than sooner, in the software development life cycle can be two 
hundred times more expensive, it seems probable that a future 
work that can measure all these facts together may conclude 
that the final costs of projects adopting Agile may be higher 
that Waterfall. It is also important to register that we compared 
Agile with Waterfall a relatively rigid approach. It would be 
interesting to see results if we can replicate this experiment in 
an environment where Agile can be compared with other 
methods such as Spiral or Rational Unified Process. It is 
important to emphasize that during the selection of projects to 
be included in our samples we focused on medium-size-
complexity projects. Small projects might produce a different 
result, but we did not have enough samples to run any 
statistical work tackling this scenario.  

Some works support that Agile methods deal less with 
NFRs when compared to the Waterfall method [11][12][32].  
One of the suggested reasons for this is that NFRs are not 
always apparent when dealing with requirements in increments 
having functionality as the focus [21].  Although the ISO 9126 
series provided quality measurement metrics and various 
quality evaluation guidelines for a general software project, 
these approaches were on the basis of well-defined documents, 
which is not present in Agile [32].  Also, Agile have not 
adequately modeled Non-Functional Requirements (NFRs) and 
their potential solutions (operationalization) in early 
development phases [11].  However, Farid has supported the 
idea that Agile processes can still benefit from capturing NFRs 
as first-class artifacts early on and not treating them as an 
afterthought process.  He proposed visualization tools to be 
used to modeling NFR in Agile.  

Though there have not been any empirical research studies 
that directly compared NFR defects in various software 
development methods, Kassab found from his empirical study 
[18] that 68% of Agile projects reported the use of NFR during 
estimation compared to 40% for Waterfall.  These data suggest 
that Agile methods involve more NFRs than might be expected 
from current understanding when compared to Waterfall 
method.  However, our results, as shown above, seem to 
contradict the findings of Kassab’s work.  One possible 

explanation may be that even if Agile pays more attention to 
NFR while estimating size/effort as indicated in [18], Agile 
projects might indeed not deal with NFR as well as Waterfall 
projects do.  Possible reasons for that could be a) the fast pace 
of Agile method do not meet the need for carefully eliciting 
and modeling NFR. b) NFR operationalization typically 
involves negotiations among several stakeholders and 
compromises to be made in requirements. The fast pace of 
Agile development and the minimal documentation principle 
may prevent developers to address all the possibilities to 
implement comprehensive and equitable solutions to satisfice 
NFR.   

The findings of this work support the need for continued 
attention to understanding, documenting and communicating 
requirements in the software development process.  As 
mentioned before, the documentation of comprehensive and 
complete requirements is present at the outset of a Waterfall 
project, but in Agile, the requirements are communicated in 
increments and in a less formal way.  Though Agile methods 
have gained popularity, many practitioners and researchers are 
unclear about how the requirements are dealt with in Agile [24] 
and doubt the benefits [16].  Although Paetsch [25] suggested 
that using practices that improve the adoption of RE in Agile 
projects is important, no evidence had been provided to 
demonstrate that these suggestions have been tested in actual 
projects.  The findings from this study show that the method 
that employed complete and stable requirements at the outset of 
a project (i.e., Waterfall) produced fewer requirement-related 
defects, and thus, supports the value of understanding 
requirements early in the software development process. 

One day before concluding this paper, we were notified that 
the company from where the data was extracted is considering 
keeping Agile development only for small projects and return 
to waterfall for medium and large projects.   

 

VI. CONCLUSION  

 
This study compared the impact of switching from 

Waterfall development process to an Agile one. It used a 
company where the software development department 
comprised of several sub-teams that provide innovative 
solutions for mortgage and loan related services to Canadian 
Financial Institutions.  The company switched from Waterfall 
to Agile method in 2012.  Thirty projects from this 
organization were initially chosen. To minimize selection bias, 
medium sized projects that were worked on by medium-sized 
teams, and spanned between three and nine months in length 
were identified as project for inclusion. We used the number of 
defects as the variable to define quality in these projects. An 
application lifecycle management system, called Team 
Foundation Server (TFS), was used to track and store the 
information for this company such as the number of requests 
and the number of defects.  

 Two significant findings were noted.  First, Agile projects 
had significantly greater number of defects.  Second, when the 
defects were categorized into non-functional and functional 



requirements, comparisons between the two groups revealed 
that Agile projects had significantly more NFR-related defects 
than Waterfall. The expressive larger number of defects in 
Agile point out the possibility that gains due to a faster and 
leaner development process may be offset later due to the time 
and effort necessary to fix resulting defects. 

As future work, studies using larger sample size will be 
performed, which may offer findings that can help to confirm 
current findings.  Another possible future work is to collect 
data from various organizations based on company size, team 
size, and different type of industry. A framework to deal with 
NFR in Agile Methods will also be one of our priorities.  

 

References 

 
[1] Agarwal, A.; Garg, N.K.; Jain, A., "Quality assurance for Product 

development using Agile," 2014 International Conference on 
Optimization,  Reliability, and Information Technology 
(ICROIT),  pp.44,47, 6-8 Feb. 2014 doi: 
10.1109/ICROIT.2014.6798281" 

[2] Alsultanny, Y.A.; Wohaishi, A.M., "Requirements for Software 
Quality Assurance Model," Second International Conference on 
Environmental and Computer Science, 2009. ICECS '09., pp.19-
23, 28-30 Dec. 2009 doi: 10.1109/ICECS.2009.43 

[3] Araujo, J.; Ribeiro, J.C., "Towards an aspect-oriented agile 
requirements approach", Eighth International Workshop on 
Principles of Software Evolution, 5-6 Sept. 2005, pp.140-143 
doi: 10.1109/IWPSE.2005.31  

[4] B. Boehm, “Requirements That Handle Ikiwisi, COTS,and Rapid 
Change,” Computer, July 2000, pp. 99–102. 

[5] B. W. Boehm, "Verifying and Validating Software Requirements 
and Design Specifications," IEEE Software, vol. 1, pp. 75-88, 
1984. 

[6] B. W. Boehm; J. R. Brown; M. Lipow, "Quantitative evaluation 
of software quality, " ICSE '76 Proceedings of the 2nd 
international conference on Software engineering, pp. 592-605 

[7] Benediktsson, O.; Dalcher, D.; Thorbergsson, H., "Comparison 
of software development life cycles: a multiproject experiment," 
Software, IEE Proceedings - , vol.153, no.3, pp.87,101, June 
2006 

[8] Bo Wei; Zhi Jin; Lin Liu, "A Formalism for Extending the NFR 
Framework to Support the Composition of the Goal Trees," 
Software Engineering Conference (APSEC), 2010 17th Asia 
Pacific , vol., no., pp.23,32, Nov. 30 2010-Dec. 3 2010 
doi: 10.1109/APSEC.2010.13 

[9] Chapin, N., "Agile methods' contributions in software 
evolution," 20th IEEE International Conference on Software 
Maintenance, 2004. Proceedings. pp.522,, 11-14 Sept. 2004 doi: 
10.1109/ICSM.2004.1357864 

[10] Cysneiros, L.M.; Sampaio do Prado Leite, J.C., "Nonfunctional 
requirements: from elicitation to conceptual models," IEEE 
Transactions on Software Engineering, vol.30, no.5, pp.328,350, 
May 2004 doi: 10.1109/TSE.2004.10 

[11] Farid, W.M.; Mitropoulos, F.J., "NORMATIC: A visual tool for 
modeling Non-Functional Requirements in agile processes,", 
2012 Proceedings of IEEE Southeastcon,  pp.1,8, 15-18 March 
2012 doi: 10.1109/SECon.2012.6196989" 

[12] Farid, W.M.; Mitropoulos, F.J., "Novel lightweight engineering 
artifacts for modeling non-functional requirements in agile 
processes," 2012 Proceedings of IEEE Southeastcon, pp.1,7, 15-
18 March 2012 doi: 10.1109/SECon.2012.6196988 

[13] Gallardo-Valencia, R.E.; Olivera, V.; Sim, S.E., "Are Use Cases 
Beneficial for Developers Using Agile Requirements?," Fifth 
International Workshop on Comparative Evaluation in 
Requirements Engineering, 2007. CERE '07. pp.11-22, 16-16 
Oct. 2007 doi: 10.1109/CERE.2007.2 

[14] Gallardo-Valencia, R.E.; Sim, S.E., "Continuous and 
Collaborative Validation: A Field Study of Requirements 
Knowledge in Agile”, Second International Workshop on 
Managing Requirements Knowledge (MARK), pp.65-74, 1-1 
Sept. 2009 doi: 10.1109/MARK.2009.3 

[15] Gu Hongying; Yang Cheng, "A customizable agile software 
Quality Assurance model," 2011 5th International Conference 
on New Trends in Information Science and Service Science 
(NISS),  vol.2, no., pp.382,387, 24-26 Oct. 2011 

[16] Hashmi, S.I.; Jongmoon Baik, "Software Quality Assurance in 
XP and Spiral - A Comparative Study," ICCSA 2007. 
International Conference on Computational Science and its 
Applications, 2007. , vol., no., pp.367, 374, 26-29 Aug. 2007 
doi: 10.1109/ICCSA.2007.65 

[17] Hellmann, T.D.; Chokshi, A.; Abad, Z.S.H.; Pratte, S.; Maurer, 
F., "Agile Testing: A Systematic Mapping across Three 
Conferences: Understanding Agile Testing in the XP/Agile 
Universe, Agile, and XP Conferences," Agile Conference 
(AGILE), 2013 , pp.32,41, 5-9 Aug. 2013 doi: 
10.1109/AGILE.2013.10 

[18] Kassab, Mohamad, "An Empirical Study on the Requirements 
Engineering Practices for Agile Software Development,"  2014 
40th EUROMICRO Conference on Software Engineering and 
Advanced Applications (SEAA) , pp.254,261, 27-29 Aug. 2014 
doi: 10.1109/SEAA.2014.77 

[19] Lan Cao; Ramesh, B., "Agile Requirements Engineering 
Practices: An Empirical Study," IEEE Software,  vol.25, no.1, 
pp.60-67, Jan.-Feb. 2008 doi: 10.1109/MS.2008.1 

[20] Layman, L.; Williams, L.; Cunningham, L., "Exploring extreme 
programming in context: an industrial case study," Agile 
Development Conference, 2004, pp.32,41, 22-26 June 2004 doi: 
10.1109/ADEVC.2004.15 

[21] Lopez, C.; Cysneiros, L.M.; Astudillo, H., "NDR Ontology: 
Sharing and Reusing NFR and Design Rationale Knowledge," 
Managing Requirements Knowledge, 2008. MARK '08. First 
International Workshop on , vol., no., pp.1,10, 8-8 Sept. 2008 
doi: 10.1109/MARK.2008.7 

[22] Macias, F “Empirical Assessment of Extreme Programming,” 
PhD thesis, Department of Computer Science, University of 
Sheffield, 2004. 

[23] Manjunath, K.N.; Jagadeesh, J.; Yogeesh, M., "Achieving 
quality product in a long term software product development in 
healthcare application using Lean and Agile principles: Software 
engineering and software development," 2013 International 
Multi-Conference on Automation, Computing, Communication, 
Control and Compressed Sensing (iMac4s),  ,  pp.26,34, 22-23 
March 2013 doi: 10.1109/iMac4s.2013.6526379 

[24] Martakis, A.; Daneva, M., "Handling requirements dependencies 
in agile projects: A focus group with agile software development 
practitioners," 2013 IEEE Seventh International Conference on 
Research Challenges in Information Science (RCIS), pp.1,11, 
29-31 May 2013 doi: 10.1109/RCIS.2013.6577679 

[25] Ming Huo; Verner, J.; Liming Zhu; Babar, M.A., "Software 
quality and agile methods,” Proceedings of the 28th Annual 
International Computer Software and Applications Conference, 
2004. COMPSAC 2004., pp.520-525 vol.1, 28-30 Sept. 2004 
doi: 10.1109/CMPSAC.2004.1342889 

 



[26] Mnkandla, E.; Dwolatzky, B., "Defining Agile Software Quality 
Assurance," International Conference on Software Engineering 
Advances, pp.36, 36, Oct. 2006 doi: 
10.1109/ICSEA.2006.261292 

[27] Scharff, C., "Guiding global software development projects 
using Scrum and Agile with quality assurance," 2011 24th 
IEEE-CS Conference on Software Engineering Education and 
Training (CSEE&T), pp.274,283, 22-24 May 2011 
doi: 10.1109/CSEET.2011.5876097 

[28] Singh, B.; Kannojia, S.P., "A Review on Software Quality 
Models," 2013 International Conference on Communication 
Systems and Network Technologies (CSNT), pp.801, 806 , 6-8 
April 2013 doi: 10.1109/CSNT.2013.171 

[29] Sommerville,I; Software Engineering (9th Edition) Harlow, 
England; New York Addison- Wesley, Mar 3 2010  

[30] Soundararajan, S.; Arthur, J.D., "A Soft-Structured Agile 
Framework for Larger Scale Systems Development," 16th 
Annual IEEE International Conference and Workshop on the 
Engineering of Computer Based Systems, 2009. ECBS 2009., 
pp.187-195, 14-16 April 2009 doi: 10.1109/ECBS.2009.21  

[31] STANDISH GROUP - 2013 The CHAOS Manifesto–Think Big, 
Act Small 

[32] Taehoon Um; Neunghoe Kim; Donghyun Lee; Hoh Peter In, "A 
Quality Attributes Evaluation Method for an Agile Approach," 
Computers, Networks, Systems and Industrial Engineering 
(CNSI), 2011 First ACIS/JNU International Conference on , 
pp.460,461, 23-25 May 2011 doi: 10.1109/CNSI.2011.93 

[33] Vijayasarathy, L.; Butler, C., ""Choice of Software 
Development Methodologies - Do Project, Team and 
Organizational Characteristics Matter?,"" IEEE Software,  
vol.PP, no.99, pp.1,1 doi: 10.1109/MS.2015.26 

[34] Wieringa, R., "Towards a unified checklist for empirical 
research in software engineering: first proposal," 16th 
International Conference on Evaluation & Assessment in 
Software Engineering (EASE 2012), pp.161,165, 14-15 May 
2012 doi: 10.1049/ic.2012.0020 


