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Abstract. Context: This article concerns requirements for an artificial intelli-
gence (AI) that does a non-algorithmic task that requires real intelligence. Prob-
lem: The literature and practice of AI development does not clarify what is a
requirements specification (RS) of an AI that allows determining whether an im-
plementation of the AI is correct. Principal ideas: This article shows how (1)
measures used to evaluate an AI, (2) criteria for acceptable values of these mea-
sures, and (3) information about the AI’s context that inform the criteria and
tradeoffs in these measures, collectively constitute an RS of the AI. Contribu-
tion: This article shows two related examples of how such an RS can be used and
lists some open questions that will be the subject of future work.
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1 Introduction: Background and Some Related Work

The desire is to develop an artificial intelligence (AI)1 that does a non-algorithmic task
that requires real intelligence (RI), i.e., from a human, e.g., to recognize a stop sign in
an image. In general, a task is to find correct answers in a space of answers, some of
which are correct and the rest of which are incorrect. This AI might be

– a classical AI, which is an algorithmic attempt to simulate a human’s thinking as
E2 does the task, perhaps with the help of logic, or

– a learned machine (LM)3, which is the result of an instance of machine learning
(ML) or deep learning, whether the LM is taught, self-taught, or both with relevant
real-world (RW) data.

1 Glossary of Non-Standard Acronyms:
HAP humanly achievable precision RI real intelligence
HAR humanly achievable recall RW real world

LM learned machine ZJVF Zave–Jackson Validation Formula
2 “E”, “em”, and “er” are gender non-specific third-person singular pronouns in subjective, ob-

jective, and possessive forms, respectively.
3 a.k.a.“ML component (MLC)” [18]



2 D. M. Berry

This article uses the term “an AI” to mean any of these possibilities, as well as any other
that may be discovered or invented in the future.

It has been my observation that no AI worker expects to be able to describe an AI’s
behavior completely, and everyone works around this limitation to describe an AI’s be-
havior in imprecise terms, such as “usually”, “probably”, “approximately”, etc., giving
only empirically determined probabilities. An AI is evaluated with vague4 measures,
such as recall and precision. While there might be a simple specification of a task, e.g.,
“Return only images that contain stop signs.”, there is no actionable specification that
identifies all and only images containing stop signs. Thus, there is no possibility of a
formal mathematical specification. And yet, it is desired to be able to say with some
certainty whether an implementation of an AI for a task does indeed do the task, at least
well enough [1, 2, 9, 10, 12, 14, 17, 18, 20, 22, 24, 25].

Some have asked a key question that seems not to be satisfactorily answered in the
literature [1, 13, 25].

How does one write a requirements specification (RS), S, for an AI, A, for a
task, T , in a way that S can be used to decide whetherA correctly implements
T , by asking whether A satisfies S?

If A is an LM, which is a data-centric system, S includes the RW data with which A
learned to do what it does [1, 2, 5, 10, 12].

2 Basic Approach

Fundamentally, an AI for a task must mimic humans who are using their RI to perform
the task [10, 22, acknowledged Alessio Ferrari]. Lacking any complete specification of
the task, we accept that what humans do in practice, while trying to avoid bias [15, 26],
is correct. The mimicry will rarely, if ever, be perfect. Thus, an RS for an AI doing the
task must describe this mimicry in a way that allows measuring how well the AI mimics
humans [25]. These measures are vague and whether their values are satisfactory will
not have binary, “yes” or “no”, answers. Thus, the decision about how well the AI
mimics humans will be a matter of judgment. One such set of measures is recall and
precision, measures of the frequency of correctness w.r.t. a human-determined gold set.
There are other sets of measures that achieve the same objective [16]. See Section 8
about future work concerning other measures.

2.1 Zave–Jackson Validation Formula (ZJVF)

The measures are vague and not binary, and human performance in the RW is part of the
decision. Thus, the truth of the claims that the evaluation criteria are met and, thus, an

4 I.e., there is little certainty on what values of the vague measure are good and are bad. Even
when there is certainty that some value is good and another value is bad, there is no certainty
about what value in between is the boundary between the good and the bad.
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RS is satisfied, is not logical, but is empirical, just as with the Zave–Jackson Validation
Formula (ZJVF)5,

D,S ` R,

which is about any computer-based system (CBS) that interacts with the RW [27, 8].
The ZJVF assumes that the RW in which a CBS operates has been divided into an

environment, Env, and a system, Sys, that intersect at their interface, Intf, as is shown in
Figure 1.

World

InterfaceEnvironment System
Shared

Fig. 1. The ZJVF Worldview of a CBS

The Env is the part of the world that is affecting and is affected by Sys, and Sys is the
CBS that is desired by the stakeholders who provide the requirements. The elements of
the ZJVF, D,S ` R, where “`” is “entailment”, are assertions D, S, andR:

– D, domain assumptions, written in the vocabulary of Env, is what Sys is allowed to
assume about Env in its execution in Env;

– S, specification, written in the vocabulary shared by Env and Sys, i.e., the vocabu-
lary of Intf, is a description of the behavior of Sys; and

– R, requirements, written in the vocabulary of Env, is a description of the stakehold-
ers’ requirements for Sys in terms of Sys’s effect on Env.

The validation formula, D,S ` R says that Sys meets its requirements in Env if the
empirical truth of D in Env in the RW is enough for S to entailR.

In this diagram, the RW for an AI is Env, and the learning data, LD with which an
LM learns is in Intf. D must include that LD is true and representative of the RW. Thus,
even though

1. the AI’s code, which is written in a programming language, is a formal object, and
the truth of the claim that the code implements S is logical, and

2. the whole formula looks formal,

sinceD andR are about the RW, the truth of the whole formula is empirical. In addition,
if S is about an LM then S includes LD, data about the RW, then the truth of S becomes
empirical as well.

5 The S in the ZJVF could very well be the S mentioned in the key question that seems not to
be satisfactorily answered in the literature, at the end of Section 1. So it’s OK that they have
the same typeface!
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2.2 Running Examples

As running examples, this article uses two different AIs, A1 and A2, for the task of
finding stop signs in images, in two different contexts that impose different needs on
the measures. Each AI is to classify each input image as to whether or not the image
has at least one stop sign, and is to output only those images that do. The difference
between A1 and A2 is in the way the outputs are used. A1 finds the images that contain
stop signs in order to produce a set of images, with which to train A2 to identify stop
signs in real time for an autonomous vehicle (AV). This article describes these two
different AIs with the same base functionality to demonstrate the necessity of including
in an RS for the AI, the context of the AI’s use. The use of the same algorithm and the
same RW training data for these AIs would yield the same recall and precision values,
not distinguishing the AIs. Only the context distinguishes them and allows determining
whether the recall and precision values are acceptable for the AI’s use.

2.3 Plan for the Rest of the Article

This article tries to show that any set of measures that is used to evaluate an AI in an
attempt to convince the AI’s stakeholders that the AI is what they want [23] can be
the basis of an RS of the AI if added to this basis is all the information from the AI’s
context that the stakeholders need about the meanings of the values of the measures, to
be able to decide whether the AI is satisfactory for their needs.

In the rest of this paper, Section 3 reminds the reader about recall, precision, and
summarization. Section 4 describes the two AIs, A1 and A2, and how they may be
evaluated, allowing Section 5 to abstract to a general framework for an RS for an AI.
Section 7 summarizes related work, and Section 8 points to future work.

3 Recall, Precision, Summarization

In the interest of conserving space in this article, this article merely reminds the reader
of the meanings of recall, precision, and summarization, which are described fully else-
where [3]6. For an AI, A

– recall (R): percentage of the correct answers that are returned by A,
– precision (P ): percentage of the answers returned by A that are correct, and
– summarization 7 (S): percentage of the input to A that are removed in the output

that A returns, i.e., (100%− (
size(output)
size(input) )).

Informally, the output of an AI is correct if it has all and only correct answers. R and P
are the two sides of “all and only”: R measures how close to all correct answers are in
the output. P measures how close to only correct answers are in the output. S measures

6 It was a total surprise that the cited work was so applicable to RSs for AIs.
7 ALERT: This summarization is not what is usually called “summarization” in the context of

AI. It is not what the AI does, but a measure about the sizes of the input and output to the AI.
So please look carefully at what the definition says.
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how much of the task that the AI is supposed to do is done and is not left to be done by
humans.

To clarify the measures, the importance of context, and the importance of summa-
rization, consider an application of one of the running examples, A1, to a set of 1000
images, of which 200 contain stop signs. With this distribution of correct answers, im-
ages with a stop sign, among the answers, the images, in a manual search for correct
answers, on average 5 answers will have to be examined to find one correct answer.
Thus, finding a correct answer costs 5 times what examining an answer costs. Suppose
that A1 returns 400 images of which 190 truly have stop signs. Then,

R = 190
200 = 95%,

P = 190
400 = 47.5%, and

S = 100%− 400
1000 = 60%.

These particular measure values are not bad, particularly if the average human has
poorer than 95% recall in the same task. Because the output of A1 is being used to
train A2, it is essential to get as close as possible to having all and only images that
contain stop signs. Because P = 47.5% means that more than half of A1’s output is
false positives, A1’s output must be manually searched, i.e., vetted, to find them and
remove them. The 60% summarization says that the manual vetting search of the only
400 images returned by A1 will be considerably faster than a manual search of the
original 1000 images. Thus, the poor precision of 47.5% does not matter that much,
because the tedium of a manual search has been cut by 60%. As observed by a reviewer
of the conference paper that is based on this article, any way of ensuring that vetting
is fast is OK, e.g., that a human’s correctness decision for an item in the AI’s output is
considerably faster than for an item in the AI’s input [3].

4 Evaluation of A1 and A2 with the Measures

If we decide to use recall and precision as the basis for the evaluation and, thus, specifi-
cation of an AI, then the process of determining if an implementation meets the speci-
fication involves (1) evaluating and comparing the recall and precision of the AI and of
humans doing the same task and (2) using the context of the task, which is thus part of
the specification, as the basis for deciding what the comparison means.

For A1 and A2, each AI is evaluated by its R and P , with respect to a manually
developed gold set of classified images. Each human expert in the domain of the AI that
participates in developing the gold set computes er own R and P , and the averages of
their R and P values are

– the humanly achievable recall (HAR) and
– the humanly achievable precision (HAP)

of the stop-sign recognition task. Each of these HAR and HAP is probably about 99%8.

8 This claim needs to be tested empirically, but probably there are very accurate data at www.
captcha.net.
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One possibility is to require an AI for a task to at least mimic people doing the same
task. Otherwise, especially for a life-critical task, we’re better off leaving the task to
humans [4]. So, one possibility for an AI for a task is

– for the AI’s R to achieve or beat the task’s HAR and
– for the AI’s P to achieve or beat the task’s HAP.

In the case of A2, achieving or beating HAR and HAP is acceptable; accidents are
inevitable, particularly if humans are doing the task. If A2’s R and P achieve or beat
the task’s HAR and HAP, then A2 will have no more accidents than does a human doing
the task. While no accident is good, society can accept an AI’s doing this task in this
circumstance.

In any AI for a life-critical task, regardless of how important a high P is, a high R is
very critical. Finding all correct answers is often very necessary. Lives depend on doing
so. However, if achieving high R is important, there may be no choice but to accept low
P , because in many algorithms for tasks that require RI, recall and precision trade off.
That is, a higher R can be achieved only at the cost of lowering P , and vice versa.

For each of A1 and A2, achieving or beating the task’s HAR is essential. However,
for A1, a low P means that there are lots of false positives among the output of A1.
Fortunately, for A1’s specific context, these false positives are not really dangerous, be-
cause there is plenty of time for vetting to find the false positives and remove them from
the output. However, lots of false positives among the output of A1 can discourage the
human vetters. If S is high, then the vetters can be reminded that manually vetting A1’s
output is a lot faster than manually searching A1’s entire input. Unless S is actually
zero, A1 does reduce the manual searching that needs to be done. In a vetting context,
the R and P of the AI is determined only after the vetting, because vetting does gener-
ally improve P . In the end, for A1, if the R after vetting beats the task’s HAR, and the
time to vet A1’s output is less than the time to do the classification task manually, then
A1 is considered to meet its requirements. After all, since the task of A1 is essential,
the alternative to running A1 is to do the task completely manually at the cost of a lot
more tedious, boring grunt work!

A2 runs in an AV, making vetting impossible, because there is not enough time be-
tween recognition of a stop sign and the need to press the AV’s brakes. Also, the AV
would not be autonomous if a human vetter were present in the vehicle. Therefore, low
P means lots of unnecessary stops by the AV, that could very well lead to dangerous
rear-end collisions, caused by the surprised drivers of the vehicles following the AV!
Therefore, for A2, low P is definitely not tolerable, and reusing A1 as A2 is not accept-
able. Another A2 must be found that makes both R and P high enough to achieve or
beat the task’s HAR and HAP [6].

This example has suggested one particular set of measures, — R, P , and S — and
one particular set of criteria — R’s and P ’s achieving HAR and HAP, possibly with the
help of vetting assisted by a high S. However, any set of measures and any criteria that
make sense to an AI’s stakeholders can be used as the RS for the AI.

Even in a vetting situation, there are different contexts. For example, if an AI is to
identify the image of a cancerous tumor in a radiograph for one patient, then the time to
vet is not a factor at all. The examining domain expert can take all the time E needs to
make correct decision. If, however, the AI is to identify the same for a large number of
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patients, then the total time to vet is an important factor in deciding whether the AI is
satisfactory. The total time to vet depends on the time to vet one item and on the number
of items to vet, and the number of items to vet depends on S, the summarization, of the
AI.

My son’s start up is developing an AI that will make life-critical medical decisions
from data, decisions that are difficult for humans to make because of the large volume
of data that are relevant. We want both R and P to be 100%, or at least beating the task’s
HAR and HAP, for the patients’ sakes. The start up has several high-P AIs, each with
a P very close to the task’s HAP, but none has an R better than 50%. Fortunately, the
region of the recall of each pair of AIs overlaps only a little. So, the recommendation is
to try running them all to see if the union of their outputs has an R that beats the task’s
HAR! After all, computers and running software are cheap.

5 What an RS for an AI is

It is now clear that an RS for an AI needs more than just whatever measures M1, . . . ,
and Mn are used in evaluating the AI. The RS needs also criteria for acceptable values
of these measures, e.g.,

– minimum, or maximum, threshold values of M1, . . . , and Mn, which may be the
humanly achievable values of M1, . . . , and Mn for the AI’s task, with which to
compare the AI’s M1, . . . , and Mn values, respectively;

– the relative importance of the individual measures M1, . . . , and Mn to help evaluate
any needed tradeoff between M1, . . . , and Mn [6];

– in a case in which vetting is possible or required, (1) the S of the AI and (2) the
times for a human to decide the correctness of an item in the AI’s input and in the
AI’s output; and

– any data, e.g., training data, that are needed for the AI to function correctly.

Calculating the relative importance of, and thus the tradeoffs between, the measures
M1, . . . , and Mn in the context of the AI requires a full understanding of the context in
which the AI is being used, including the cost of achieving a high value in each of the
individual measures M1, . . . , and Mn, in the context [6]. Non-functional requirements
will help define the context and decide the tradeoffs [9, 25].

Finally, the decision of whether the AI satisfies its RS and meets its requirements
will involve engineering judgement and evaluation of tradeoffs in the AI’s context, and
will not be a simple “yes” versus “no” decision, because of all of the vague elements
in the RS. The RS for an AI is as vague as are fitness criteria for vague qualitative,
non-functional requirements, e.g., “fast response time” or “friendly user interface”. For
examples:

1. What should be done if the value of any measure just misses its threshold while all
the others beat their thresholds?

2. How critical must the task be in order that an acceptable alternative to an AI that
does not satisfy its RS is doing the task manually?

3. How fast must vetting be for vetters to tolerate having to vet?
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Questions like these can interact in an engineering way. For example, what should be
done in the situation in which the task is only fairly critical, the AI just misses achieving
the task’s thresholds, and vetting is somehat slow?

To place this form of RS in the milieu of the ZJVF, consider each of A1 and A2.
For each,

– the non-actionable specification of the shared task of A1 and A2
Return only images that contain stop signs, as well as a human would.

would be theR in D,S ` R;
– all the measures and criteria described in Section 4 as being part of the RS for A1

or A2 would be the S in D,S ` R; and
– assertions about all facts about the RW that are needed for the entailment of R by
S would be the D in D,S ` R;

Observe how the criteria embedded in S are directed at ensuring that the AI do its task
as well as a human would.

6 RE for AI

All of this information is what requirements engineering (RE) for an AI must elicit or
invent, and therefore, potentialy all of RE’s methods must be applied to elicit or invent
the context and its description for inclusion into the RS. All of the judgements and
tradeoffs mentioned in the last paragraphs of Section 5 are therefore parts of the RE for
AI [11]. In this sense, RE for AI is not very different from RE for any complex CBS
that interacts with the RW.

7 Related Work

Most of the related work is cited at any point in this article where an observation or
contribution made by the work is mentioned.

Salay and Czarnecki observe that the ISO 26262 standard does not prescribe a single
complete specification for partially or fully autonomous vehicles, describing only a
collection of specifications for development processes and individual properties of an
AV [20]. They address the difficulties, including some mentioned in Sections 1 and
2 of this article, with these specifications by providing improvements to each of the
specifications of the standard. The RS framework suggested by this article will need to
incorporate their improvements. See Section 8.

Kästner observes that the engineering of the RW training data to yield the de-
sired behavior corresponds to RE rather than implementation of the resulting LM [12].
Checking with the customer that the training data yields the correct behavior is valida-
tion. Thus, these training data end up being part of the specification of the LM.

There are methods to test whether an AI does what it is supposed to do [2, 21, 28].
Implicitly, whatever the test data test are the requirements of the AI.

Ribeiro, Ribeiro, and Castro conducted a systematic literature review of the topic of
RE for AVs [19].
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Rahimi et al use “machine learned component (MLC)” to describe what this article
terms “LM” [18]. They too attempt to explain what a requirements specification for a
MLC is or at least to improve the process of specifying a CBS that contains an MLC.
Their approach “extracts a universally accepted benchmark for hard-to-specify concepts
(e.g., ‘pedestrian’) and can be used to identify gaps in the associated dataset and the
constructed machine-learned model.”

They observe that the typical specification of many a MLC is not what this article
calls “actionable”:

For example, the requirement for the automated pedestrian collision avoidance
system might specify that “the position of the pedestrian should be detected
within an accuracy of 0.5m”. However, decomposing such high level specifi-
cations to lower-level verifiable ones is difficult, if not impossible.

while citing [22].
Their approach involves use of component-level specification to define the behavior

of an MLC. They facilitate unambiguous specification of MLCs by building a bench-
mark on the Web for domain concepts that are hard to specify. They offer S = “The
pedestrian detector component shall be able to detect pedestrians on foot, on a scooter
and on a wheelchair” as a suitable specificatioon for a pedestrian detector component.
They then claim that are able to systematically verify an MLC against the set of derived
specifications: “For example, we can verify whether the component is able to correctly
classify a pedestrian on a wheelchair or a scooter.”

It is not clear to me either

– how they can derive S from “ a pedestrian detector component” or
– how S is more actionable, decomposable, and verifiable than “the position of the

pedestrian should be detected within an accuracy of 0.5m”.

Perhaps, in getting the paper down to 4 pages, they have left out essential informa-
tion. Nevertheless, I do not see anything in the paper that can serve as an actionable
specification for a LM.

There is a lot of somewhat related work in the proceedings of the AIRE Workshops
(https://ieeexplore.ieee.org/xpl/conhome/1803944/all-proceedings) and of the RE4AI
Workshops (http://ceur-ws.org/Vol-2584/, http://ceur-ws.org/Vol-2857/). Papers from
these workshops that address the topic of this article are cited in this article.

8 Future work

Section 5 shows only a first attempt at abstracting from what was learned from the run-
ning example to a general framework for RSs for AIs. The details of this framework
changed a lot prior to submission of this article and as a result of the reviewers’ com-
ments. It is, thus, clear that the main future research will be to examine more AIs to
understand their measures, criteria, and contexts in the hopes of arriving at a statement
of the framework that works for all AIs. Also, Section 4 considered only one possible
meta-level requirement, that an AI for a task at least mimic people doing the same task.
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Are there other possibilities? These need to be explored. Of course the meta-level re-
quirement, which is used to inform the criteria for the measures, becomes a requirement
for the AI. Nevertheless, the basic idea remains: The RS for an AI consists of a descrip-
tion of all measures and criteria plus all information about the AI’s context of use that
are necessary for the AI’s stakeholders to decide if the AI meets their needs.

Some specific topics include:

– Are there measures, other than recall and precision, on which an RS for an AI can
be based? Examples include
1. other measures calculable from a confusion matrix [16],
2. especially, sensitivity (the same as recall) and specificity (recall of the true

negatives), which are used in medical situations in which a true negative is just
as important as a true positive [7], and

3. interrater agreement between the AI and some humans using their RI.
– What is the role in an RS of the representativeness of the data with which an LM is

trained in the RS of the LM [1, 2, 5, 12]?
– What is the role in an RS of existing industrial standards such as the ISO 26262

standard for AVs [20]?
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