
Role of Domain Ignorance in Software Development:
Software Development Tasks Benefiting from Domain Ignorance

Gaurav Mehrotra and Daniel M. Berry
Cheriton School of Computer Science

University of Waterloo
Waterloo, ON, Canada

gaurav.iiita@gmail.com, dberry@uwaterloo.ca

Abstract—Several have reported observations that sometimes
ignorance of the domain in a software development project
is useful for promoting the elicitation of tacit assumptions
and out-of-the-box ideas. This paper reports work putting
the observation to an empirical test. A survey was conducted
among software development managers of varying experience
to determine what software development activities they thought
are at least helped by domain ignorance. A companion paper
subjects this list to an additional empirical test.

Keywords-assigned software engineering tasks, creative ideas,
domain awareness, domain ignorance, importance of igno-
rance, questionnaire, tacit assumptions

I. INTRODUCTION

This paper is the first of two companion papers that
explore the role of domain ignorance in software devel-
opment. This first paper determines, with the help of a
survey conducted among software development managers
of varying experience, what software development activities
they thought are at least helped by ignorance of the do-
main of the software system under development, hereinafter
called simply “domain ignorance”. The opposite of domain
ignorance is domain awareness. Moreover, it is assumed that
ignorance in the development personnel is restricted to the
domain of the software system under development. That is,
it is assumed that all personnel involved in the development
are competent in the skills required for their tasks in the
development.

The second paper [1] examines transcripts from fourteen
interviews of presumably-domain-ignorant immigrants to
new software development projects at one large company
to determine if the activities performed by those with the
most successful immigrations were activities that are at least
helped by domain ignorance.

Domain ignorance is thought by some to be helpful in
software development activities that require some critical,
out-of-the-box thinking. An example is brainstorming for re-
quirement-idea generation. Domain ignorance is believed to
help one to avoid the domain’s tacit assumptions and to think
outside of the domain’s box [2] [3, p. 18]. The right kind
of ignorance helps evoke questions that expose all the tacit
assumptions that someone experienced in the domain takes

for granted. Who has not observed the phenomenon that the
one who seems to know the least about a problem seems to
come up with the best solutions in a brainstorming session?
Perhaps, there are some software development activities that
are aided by some degree of domain ignorance.

A review of the existing literature (See Section II) shows
that some activities seem to yield better results when per-
formed by a domain ignorant than by a domain expert.

The main contribution of this paper is the gathering of data
about the effects of domain ignorance in various software
development activities. The data were collected with the help
of an online survey listing various software development
activities. An invitation to participate in the survey was sent
to people having significant experience managing software
development.

Specifically, this survey aimed to answer one important
research question:

RQ1: Are there software development activities that are
helped by domain ignorance?

Related work is discussed in Section II. Section III
presents the survey design. The results of the survey are
discussed in Section IV. Section V discusses the threats
to the conclusions in Section IV. Section VI describes
applications of the results, and Section VII summarizes the
conclusions and discusses future work.

II. RELATED WORK

There is some previous literature highlighting the role of
ignorance in software engineering activities. Berry described
how ignorance helped him to come up with a requirements
document for a networking application while being very
ignorant of the domain [2]. P. Burkinshaw, an attendee of the
Second NATO Conference on software engineering in Rome
in 1969 [3, p. 18], said: “Get some intelligent ignoramus
to read through your documentation and try the system;
he will find many ‘holes’ where essential information has
been omitted. Unfortunately intelligent people do not stay
ignorant too long, so ignorance becomes a rather precious
resource.”

Carver et al. [4] studied the impact of educational back-
ground on requirement inspection. They observed that an



inspector who had a background that was unrelated to
computing was significantly more effective than others in
identifying defects during a requirement inspection task.
They observed also that an inspector who had a degree
in computer science or software engineering was the least
effective of all subjects. However, an inspector with require-
ments analysis experience was significantly more effective
in finding defects than those without such experience, but
there was no marked statistical difference between subjects
with industrial experience and those with only classroom
experience.

Fred Brooks suggested that in order to get the best out
of the developers’ efforts, it is essential to assign everyone
to the task for which he is best suited [5]. Also, the right
mix of people to do an activity is necessary to get the best
results.

Kenzi, Soffer, and Hadar conducted an exploratory study
of the perception of requirements analysts of the role of
domain knowledge in requirements elicitation [6]. Their
study identified both positive and negative effects of domain
knowledge on requirements elicitation. Their conclusions
suggest the possibility of forming requirements elicitation
teams with of analysts with different amounts of domain
knowledge, that the role played by an analysts can depend on
his1 domain knowledge, and that these different roles may
create a useful synergy in identifying requirements. Addi-
tional research is needed to follow up on this exploratory
study.

III. SURVEY DESIGN

A well-designed empirical study is the key to good and
meaningful results. Author Mehrotra decided to conduct a
survey of software development managers in order to study
the role of ignorance in software development activities. This
section discusses the design of the survey.

A cross-sectional survey design was chosen for this study,
as the goal was to determine the role ignorance plays
in various software development activities by surveying a
group a people at a given point in time. The aim of this
study was to learn the opinions of people having significant
experience managing software development regarding the
effect of domain ignorance on software development.

A five-point ordinal scale was used to categorize the
importance of or the effect of domain ignorance or domain
awareness on any software development activity. An ordinal
scale was implemented, as the goal of this research was to
study the categorization of individual software development
activities without measuring the relative ordering between
them. The categories chosen were:

1The gender of the first general individual in any discourse toggles with
each section. The gender of the second general individual in any discourse
is the opposite of that of the first.

• Required — that domain ignorance or domain aware-
ness is required in performing a software development
activity.

• Enhances — that domain ignorance or domain aware-
ness enhances the performance of a software develop-
ment activity.

• Neutral — that domain ignorance or awareness is ir-
relevant in performing a software development activity.

• Impedes — that domain ignorance or domain aware-
ness impedes the performance of a software develop-
ment activity.

• Prevents — that domain ignorance or domain aware-
ness prevents performing a software development ac-
tivity.

The scale is thus a 5-point Likert scale [7]. In the scale,
“required” and “prevents” are intended to be considered
opposing each other, as are “enhances” and “impedes”.
“Neutral” is the middle. Together, “required” and “enhances”
represent the positive, “helps” side of the scale while “im-
pedes” and “prevents” represent the negative, “hinders” side.

The same 5-point scale was applied to each of do-
main awareness and domain ignorance. Although domain
awareness is likely to be thought to enhance all activities,
participants were still asked to apply the scale to it in order
to make them think about domain ignorance in contrast
with domain awareness. In the rest of this paper, domain
awareness and domain ignorance are collectively referred to
as kinds of domain familiarity.

A. Survey Questions

The next step in the survey design was to compile a list of
all software development activities that might be performed
by any newbie in an organization. The survey would ask
about the importance or effects of domain familiarity for
each activity. A comprehensive list of all such activities
was taken from http://www.opfro.org/, the Website of the
OPEN Process Framework (OPF). The activities relating to
a particular aspect of software development such as testing,
architecting, etc. were grouped together. An activity was
included or excluded from the survey solely on the basis
of whether a newbie in an organization is likely to perform
the activity. See the survey in the Appendix of Mehrotra’s
master’s thesis [8] for the final list of activities chosen.

Mehrotra decided that the participant pool for the survey
should be limited to people having significant experience
managing software development. So, he used a snowball
sampling based on judgemental sampling [9], in which
the judgement targeted people likely to have had expe-
rience managing software development. The initial pool
of participants consisted of people in academia and the
software industry who were believed to have significant
software development experience. Each was asked to pass
the invitation on to similar people. The lack of control over
the participants who were invited at the next and subsequent



levels helped to bring some randomness to the participant
pool.

Participants were contacted through e-mail. The e-mail
invitations included a brief description of the research along
with a link to the online survey hosted by SurveyMonkeyTM.
After a reminder, a total of 40 respondents had completed
the survey. See the Appendix of Mehrotra’s thesis for the
e-mailed invitation and the complete survey.

IV. RESULTS AND DATA ANALYSIS

This section discusses the results obtained in this study.

A. Survey Respondents

A total of 40 respondents completed the online survey.
Respondents came from different countries like India, the
United States, the United Kingdom, Canada, and Israel.
Some additional facts regarding the respondent pool are:

• Type of organization:
1) Commercial — 30
2) Research — 10

• Experience in Software Development
– Maximum experience in software development —

43 years
– Minimum experience in software development —

1 year
– Average experience in software development —

14.5 years
The overall distribution of the respondents’ software devel-
opment experience is shown in the graph in Figure 1. More
than half the respondents had at least 10 years of experience
in software development.

• Experience Managing Software Development
– Maximum experience managing software develop-

ment — 35 years
– Minimum experience managing software develop-

ment — 0 year
– Average experience managing software develop-

ment — 9 years
The overall distribution of respondents’ experience manag-
ing software development is shown in the graph in Figure 2.
More than half the respondents had at least 5 years of
experience managing software development.

B. Analysis of Results

Due to the small sample size, the test of proportions [10]
[11] is used to calculate the statistical significance of the
results. This test is useful for predicting whether the ob-
served difference between different categories of responses
is statistically valid.

There is an inherent ordering in the Likert scale data, but
the distance between scale values is not clear. Therefore,
mode was used as the key data measure as both average or
median are less meaningful for this type of data.

The detailed analysis is divided into three parts, for
software development activities that are:

1) helped by domain ignorance, in Section IV.C,
2) unaffected by domain ignorance, in Section IV.D, and
3) hindered by domain ignorance, in Section IV.E.
For any activity, e.g., as in Figure 3, the distribution of

respondents’ responses is represented by column graphs with
the two domain familiarities on the x-axis and the number
of people on the y-axis. The statistical significance of the
results was calculated using a 5-sample test of proportions,
corresponding to the five values, “required”, “enhances”,
“neutral”, “impedes”, and “prevents”. A 5% error margin
was chosen, which is represented by a p-value of 0.05. The
tests for proving the statistical validity of obtained results
were omitted for activities not affected by domain ignorance
and for activities hindered by domain ignorance, because the
aim of this research was to find activities that are helped by
domain ignorance.

C. Activities Helped by Domain Ignorance

This section lists the software development activities
that are helped by domain ignorance, i.e., whose domain
ignorance mode is one of the two “helps” scale values,
“required” or “enhances”.

Below is the analysis of the survey data about one
example task, namely that called “Eliciting Requirements/
Requirements Gathering”:

Task: Eliciting Requirements/Requirements Gathering
Distribution: as shown in Figure 3
Modes:

• Mode (domain ignorance) = Enhances
• Mode (domain awareness) = Enhances

Output of test of proportions for domain ignorance: as
shown in Table I
p-value = 1.726e-07
Verdict: Since p-value < 0.05, the results are statistically
significant.

Space constraints dictate that these analyses, which can
be found in Chapter 4 of Mehrotra’s thesis, be replaced by
a single table, Table II, summarizing the analyses. Note that
all expected proportions are identically .20; so they are not
shown. Also, since each p-value in the table is less than
.05, each conclusion about the mode of domain ignorance
is statistically significant.

The results of the analysis say that the activities that the
respondents believe to be helped by domain ignorance are:

• requirements gathering,
• analyzing requirements,
• identifying project risks,
• creating high-level software design,



• user interface design,
• developing black box test cases,
• analyzing defects to find common trends,
• identifying security risks,
• writing user manuals/release notes,
• inspecting/reviewing design documents,
• inspecting/reviewing test plans,
• inspecting/reviewing requirement documents,
• inspecting/reviewing user manuals,
• reading user manuals/design documents/other product

documentation, and
• learning processes/technology/practices used in the

project.
There were a number of unexpected surprises in the

results. For example, it was surprising that for some software
development activities, both ignorance and awareness were
perceived to help the activity. These activities are:

• eliciting requirements,
• user interface design,
• developing black box test cases,
• analyzing defects to find trends,
• inspecting/reviewing user manuals,
• inspecting/reviewing test plans, and
• reading product documentation.
Another surprise was with the activity: “Inspecting/Re-

viewing Requirements Documents”. Its mode of domain
ignorance is “enhances” while its mode of domain aware-
ness is “required”. This combination of modes is unusual
given that each of the other two inspecting/reviewing ac-
tivities, “Inspecting/Reviewing Test Plans” and “Inspect-
ing/Reviewing User Manuals”, has “enhances” as the mode
of both domain awareness and domain ignorance.

D. Activities Not Affected by Domain Ignorance

This section lists software development activities that are
thought by the respondents not to be affected by domain
ignorance, i.e., whose domain ignorance mode is “neutral”.
Since none of these activities is regarded as helped by
domain ignorance, as explained in Section IV.B, Mehrotra
did not calculate the statistical significance of the mode of
domain ignorance. Hence, the summarizing Table III has
only three columns, giving only tasks and their two modes.

E. Activities Hindered by Domain Ignorance

This section lists software development activities that
are thought by the respondents to be hindered by domain
ignorance, i.e., whose domain ignorance mode is one of
the “hinders” scale values, “impedes” or “prevents”. Since
none of these activities is regarded as helped by domain
ignorance, as explained in Section IV.B, Mehrotra did not
calculate the statistical significance of the mode of domain
ignorance. Hence, the summarizing Table IV has only three
columns, giving only tasks and their two modes.

A surprise was that there was no domain awareness
mode for the software development activity “Test Planning
for a Release”. Also, none of the software development
activities in this section have “prevents” as the domain
ignorance mode. Thus, the respondents believe that domain
ignorance never prevents a newbie from performing any
software development activity, although it might impede the
performance of some activities.

V. THREATS

The conclusion of this paper is the classification of soft-
ware development activities according to whether they are
helped by, hindered by, or unaffected by domain ignorance.
The threats to the validity of this conclusion can be divided
into two classes,

1) threats to internal validity that concerns how well the
survey was executed and

2) threats to external validity that concerns whether the
conclusion obtained is generalizable.

The threats to internal validity of the conclusions are:
• the bias of the chosen sampling method:

Snowball sampling is believed to produce highly bi-
ased results [12]. This threat was mitigated by cou-
pling snowball sampling with judgemental sampling,
in which the judgement chose participants that were
likely to give usable answers.

• the survey questions:

– Were the survey questions understandable?
Mehrotra conducted a pilot study to test the un-
derstandability of the questions. The consistency
of the results and the specific comments received
from the pilot participants indicate that for the
most part the questions were understandable, and
the few that were not were changed for the actual
study.

– Were the questions interpreted correctly and
the same way by all?
Ultimately there is no way to know for sure, except
by interviewing each respondent personally and
asking follow up questions, something that is hard
to do when the respondents are anonymous. Nev-
ertheless, the high consistency among the answers
to related questions in any one response and the
fact that the results were statistically significant
indicate that the questions were probably inter-
preted correctly and in at least a similar way by
all. Moreover, the participant pool for the survey
consisted of people having significant experience
in software development who should have a fair
understanding of the terms used in the survey
questions.

– Did the length of the survey induce survey fa-
tigue, with its attendant deteriorated answers?:



That there were no incomplete questionnaires and
that the answers to related questions in any one
response were highly consistent with each other
indicate that survey fatigue was not a problem.

• the method to compute the results using modes:
Considering the type of data in the study, no other mea-
sure i.e., mean or median, made much sense. Therefore,
the mode of the data was used to determine the results.
In the future, the survey could ask the respondent how
confident she is about her answers.

The threats to external validity of the conclusion are:

• representativeness of the sample:
The judgemental part of the sampling that tried to select
people experienced in software development manage-
ment succeeded to get a collection of respondents who
were 75% commercial people with an average of 9
years of experience managing software developments.

• number of respondents:
The high confidence level of the tests for statistical
significance says that 40 respondents were enough.

A deeper question is whether a survey can be used to
test a question of fact. Any survey can report only the
opinions of the participants. Left unanswered is whether
the participants’ opinions reflect reality. We really desire
to know which software development activities are at least
helped by domain ignorance. A proper test would be to
conduct experiments with large numbers of software de-
velopers with varying domain familiarities doing a large
variety of software development activities. Each participant’s
performance on each activity would be evaluated by a team
of quality assurers. All of the data would be subjected to an
ANOVA test to determine the effect of domain ignorance
on each kind of software development activity. Such a
study would be enormously expensive and nearly impossible
to control and would be seriously challenged for external
validity, because the necessarily small sizes of the artifacts
to be able to do a controlled experiment. Therefore, as in
many similar situations, we need to rely on surveys reporting
opinions of people. The survey was designed to target people
who are in a position to have made accurate observations of
the phenomenon being tested.

VI. APPLICATIONS OF RESULTS

One use of the results is to help assign a good mix of
people for a software development activity. For example, a
task that is helped by both domain ignorance and domain
awareness should be done a team consisting of both domain
ignorants and domain awares.

The companion paper [1] describes a use of these results
to determine how the presumed domain ignorance of a new
member of a software system development team affects his
immigration into the team.

Table I
TEST OF PROPORTIONS OUTPUT

Proportion of Responses for Each Likert Value
Required Enhances Neutral Impedes Prevents

expected 0.2 0.2 0.2 0.2 0.2
observed 0.150 0.550 0.050 0.125 0.125

Table III
ACTIVITIES NOT AFFECTED BY DOMAIN IGNORANCE

Modes of Domain ...
Task Ignorance Awareness

Learning Processes/ Neutral Enhances
Practices/Technology Used

Source/Version Control Tasks Neutral Required
Coding Simple Features Neutral Required

Other Code Oriented Tasks Neutral Enhances
Automating Test Cases Neutral Enhances

Reviewing Trace Information Neutral Enhances
Attending Courses/Trainings Neutral Enhances

Attending Formal Neutral Enhances
Project Meetings
Attending Code/ Neutral Required

Project Walkthroughs
Compiling Project Code Neutral Neutral

Installing and Configuring Neutral Enhances
Development Environment

VII. CONCLUSIONS AND FUTURE WORK

This research highlights the importance of domain igno-
rance in various software development activities. A survey
has shown that there is a consensus among software develop-
ment managers on how ignorance can help the performance
of some software development activities. A manager can use
the results of this research in order to assign the right tasks
to the personnel in her team.

There is a lot of scope for future work in this area. It
would be interesting to repeat the study using a focus group
of senior managers in order to have finer grained data. A
focus group could also help eliminate any confusions that
survey participants might have regarding the survey ques-
tions. A survey’s data are only as good as the participants’
understanding of the questions. It might be useful to try a
different grouping of the software development activities to
make the participants think in a different manner.

ACKNOWLEDGEMENTS

The authors thank Chrysanne DiMarco, Mike Godfrey,
and Jo Atlee for their comments on the thesis on which this
paper is based.

REFERENCES

[1] G. Mehrotra and D. M. Berry, “Role of domain igno-
rance in software development: How domain ignorance
helps immigration to software development projects,” School
of Computer Science, University of Waterloo, Tech. Rep.,
2012, http://se.uwaterloo.ca/∼dberry/FTP SITE/tech.reports/
MehrotraBerryNewbie.pdf.



Table II
ACTIVITIES HELPED BY DOMAIN IGNORANCE

Modes of Domain ... Observed Proportions
Re- En- Neu- Im- Pre-

Task Ignorance Awareness quired hances tral pedes vents p-value
Eliciting Requirements/Requirements Gathering Enhances Enhances 0.150 0.550 0.050 0.125 0.125 1.726e-07

Analyzing Requirements Enhances Required 0.150 0.550 0.025 0.200 0.075 4.033e-08
Identifying Project Risks Enhances Required 0.0512 0.5128 0.0512 0.3076 0.0769 8.375e-08

Creating High Level Software Design Enhances Required 0.0512 0.3846 0.2307 0.2051 0.1282 0.009571
User Interface Design Enhances Enhances 0.1538 0.4358 0.1282 0.1025 0.1794 0.003268

Developing Black Box Test Cases Enhances Enhances 0.1578 0.5000 0.1578 0.1052 0.0789 3.931e-05
Analyzing Defects to Find Common Trends Enhances Enhances 0.0789 0.5000 0.1578 0.2105 0.0526 1.197e-05

Identifying Security Risks Enhances Required 0.0526 0.4736 0.1052 0.1578 0.2105 0.0001102
Writing User Manuals and Release Notes Enhances Required 0.1842 0.4736 0.0526 0.1315 0.1578 0.0001710
Inspecting/Reviewing Design Documents Enhances Required 0.1315 0.5526 0.1052 0.1315 0.0789 5.052e-07

Inspecting/Reviewing User Manuals Enhances Enhances 0.1666 0.6000 0.1000 0.1000 0.0333 2.198e-07
Inspecting/Reviewing Test Plans Enhances Enhances 0.2 0.6 0.1 0.1 0.0 8.353e-08

Inspecting/Reviewing Requirements Document Enhances Required 0.166 0.6333 0.1333 0.0000 0.0666 5.463e-09
Reading Product Documentation Enhances Enhances 0.0789 0.5263 0.1578 0.1578 0.0789 3.608e-06

Table IV
ACTIVITIES HINDERED BY DOMAIN IGNORANCE

Modes of Domain ...
Task Ignorance Awareness

Designing and Specifying Impedes Required
Software Architecture

Reviewing Software Architecture Impedes Required
Specifying Requirements Impedes Required
Validating Requirements Impedes Required

Reusing and Managing Requirements Impedes Required
Managing Builds of a Software Impedes Required

Deployment Planning Impedes Required
Risk Planning/Monitoring and Control Impedes Required
Creating Low Level Software Design Impedes Required

Identifying Design and Impedes Required
Implementation Rationale

Fixing Bugs Impedes Required
Developing Unit Test Cases Impedes Required

Developing White Box Test Cases Impedes Required
Developing Integration Test Cases Impedes Required

Determining Source of a Bug Impedes Required
Test Planning for a Release Impedes no mode

Developing System/ Impedes Enhances
Performance Test Cases

Manually Executing Test Cases Impedes Enhances
Preventing Security Threats Impedes Required

Providing Technical Support to Users Impedes Required
Inspecting Code Impedes Required

[2] D. M. Berry, “The importance of ignorance in requirements
engineering,” Journal of Systems and Software, vol. 28, 1995.

[3] J. N. Buxton and B. Randell, “Software engineering tech-
niques: Report on a conference,” 1969, http://homepages.
cs.ncl.ac.uk/brian.randell/NATO/nato1969.PDF.

[4] J. C. Carver, N. Nagappan, and A. Page, “The impact of
educational background on the effectiveness of requirements
inspections: An empirical study,” IEEE Transactions on Soft-
ware Engineering, vol. 34, no. 6, pp. 800–812, 2008.

[5] F. P. Brooks, The Mythical Man-Month: Essays on Software
Engineering. Addison-Wesley, 1975.

Figure 1. Experience in Software Development

Figure 2. Experience Managing Software Development

[6] K. Kenzi, P. Soffer, and I. Hadar, “The role of domain
knowledge in reqirements elicitation: An exploratory study,”
in Proceedings of the Fifth Mediterranean Conference on
Information Systems (MCIS), 2010, http://aisel.aisnet.org/
mcis2010/48/.

[7] Wikipedia, “Likert scale,” Viewed 1 September 2011, http:
//en.wikipedia.org/wiki/Likert scale.



Figure 3. Distribution for “Eliciting Requirements/Requirements Gather-
ing”

[8] G. Mehrotra, “Role of domain ignorance in
software development,” Master’s thesis, University
of Waterloo, Waterloo, ON, Canada, 2011,
http://se.uwaterloo.ca/∼dberry/FTP SITE/students.
theses/gaurav.mehrotra/gauravMehrotraThesis.pdf.

[9] Wikipedia, “Nonprobability sampling,” Viewed 1 September
2011, http://en.wikipedia.org/wiki/Nonprobability
sampling.

[10] R. G. Newcombe, “Two-sided confidence intervals for the
single proportion: Comparison of seven methods,” Statistics
in Medicine, vol. 17, no. 8, pp. 857–872, 1998.

[11] ——, “Interval estimation for the difference between indepen-
dent proportions: Comparison of eleven methods,” Statistics
in Medicine, vol. 17, no. 8, pp. 873–890, 1998.

[12] Wikipedia, “Snowball sampling,” Viewed 13 February 2012,
http://en.wikipedia.org/wiki/Snowball sampling.


