
Role of Domain Ignorance in Software Development:
How Domain Ignorance Helps Immigration to Software Development Projects

Gaurav Mehrotra and Daniel M. Berry
Cheriton School of Computer Science

University of Waterloo
Waterloo, ON, Canada

gaurav.iiita@gmail.com, dberry@uwaterloo.ca

Abstract—A companion paper has yielded a list of software
development activities that are thought to be at least helped
by domain ignorance. This paper reports on an examination
of transcripts from fourteen interviews of presumably-domain-
ignorant immigrants to new software development projects at
one large company to determine if the activities performed by
those with the most successful immigrations were the activities
that are at least helped by domain ignorance. The conclusions
are that ignorance can play an important role in software
development but there are a lot of other factors that influence
immigration success.

Keywords-assigned software engineering tasks, domain
awareness, domain ignorance, immigration success, immigra-
tion to a new project, importance of ignorance, new hires,

I. INTRODUCTION

This paper is the second of two companion papers that
explore the role of domain ignorance in software devel-
opment. The first paper [1] determines, with the help of
a survey conducted among software development managers
of varying experience, what software development activities
they thought are at least helped by ignorance of the do-
main of the software system under development, hereinafter
called simply “domain ignorance”. The opposite of domain
ignorance is domain awareness. Moreover, it is assumed that
ignorance in the development personnel is restricted to the
domain of the software system under development. That is,
it is assumed that all personnel involved in the development
are competent in the skills required for their tasks in the
development.

This second paper examines transcripts from fourteen
interviews of presumably-domain-ignorant immigrants to
new software development projects at one large company
to determine if the activities performed by those with the
most successful immigrations were activities that are at least
helped by domain ignorance.

Ignorance of the domain is thought by some to be helpful
in software development activities that require some critical,
out-of-the-box thinking [2] [3, p. 18].

A new hire in an organization or an immigrant to a
software system development project within an organization

could use her1 domain ignorance to perform tasks of the
development that are helped or at least not hindered by
her ignorance. New hires and immigrants to a project are
collectively called “newbies” in this paper.

A newbie is often clueless about the domain into which
she is thrust upon arrival in the new environment and does
not possess the skills necessary to be productive immediately
[4], [5]. She is left to wander on her own and learn the
tasks by trial and error or, in some cases, a senior member
of her new team, a mentor is assigned the job of training
her, but the mentor spends a lot of his time training rather
than doing his normal activities for the team [6]. Despite
her ignorance about the new domain, there seem to be some
software development activities that a newbie can perform
effectively even better than a seasoned expert in the same
domain. An expert takes many things as assumed or implied
that an ignorant newbie would have to explicitly think about
and evaluate from first principles.

A review of the existing literature (See Section II) shows
that that newbies who perform specific activities seem to
have more successful start ups than newbies who perform
other activities [7]. Here “more successful” is used as in
the vernacular to mean that the start up occurred with much
more positive than negative events so the newbie reports
feeling good about the start up and regarding it as a success.
Perhaps the activities done by newbies with more successful
start ups require or are helped by some level of domain
ignorance. The review showed also that some activities seem
to yield better results when performed by a domain ignorant
than by a domain aware.

These two observations lead to the hypothesis that a
newbie who starts with software development activities that
are thought to be helped by domain ignorance has a more
successful start up than a newbie who starts with other
activities. The first step was to collect data about the
effect of domain ignorance in various software development
activities. The results of this first step were reported in the
companion paper [1]. The main result of that paper was a

1The gender of the first general individual in any discourse toggles with
each section. The gender of the second general individual in any discourse
is the opposite of that of the first.



list of software development activities thought to be at least
helped by domain ignorance:

• requirements gathering,
• analyzing requirements,
• identifying project risks,
• creating high-level software design,
• user interface design,
• developing black box test cases,
• analyzing defects to find common trends,
• identifying security risks,
• writing user manuals/release notes,
• inspecting/reviewing design documents,
• inspecting/reviewing test plans,
• inspecting/reviewing requirement documents,
• inspecting/reviewing user manuals,
• reading user manuals/design documents/other product

documentation, and
• learning processes/technology/practices used in the

project.
The main contributions of the present paper are
1) an examination of the histories of some newbies’

start ups to obtain additional lists, of the software
development activities performed by those newbies
with successful start ups and

2) a comparison of these lists of software development
activities to find any correlations.

Specifically, the research reported in this paper aimed to
answer one important research question:

RQ2: Can the presumed domain ignorance of a newbie
in a software system development be used to an
advantage in the development?

Related work is discussed in Section II. Section III reports
the results of the comparison of the lists of activities. Section
IV discusses the threats to all conclusions in Section III.
Section V describes applications of the results, and Section
VI summarizes the conclusions and discusses future work.

II. RELATED WORK

Begel and Simon observed eight graduate students during
their first months of work at Microsoft [4]. They found
that most of the difficulties encountered by the new hires
came from their inexperience with a corporate environment.
However, employers recognize that students entering the
workforce directly from university training often do not
have the complete set of software development skills that
they will need to be productive, especially in large software
development companies [8].

Sim and Holt interviewed four recently hired developers
at a big software company and identified seven integra-
tion patterns [5]. Based on the patterns they drew sev-
eral conclusions regarding the strengths and weakness of
the naturalization process within an organization. Some of
their important findings were: mentoring is an effective

although inefficient way to train newbies, administrative and
environmental issues were a major frustration during the
immigration, and initial tasks assigned to newbies were often
open-ended problems.

Dagenais et al. [7] categorized the project landscape that
newbie need to learn and also identified the obstacles and
orientation aids encountered by newbies in the context of
various integration factors.

Schein proposed that there were three main aspects to
introducing newbies to organizations: function, hierarchy,
and social networking [9]. Function represents the tasks
and technical requirements of a position. Hierarchy is the
organizational command structure, and social networking is
the movement of the newcomer from the periphery of the
network towards the centre as new personal connections are
made.

DeMarco and Lister [6] observed, “We all know that a
new employee is quite useless on day one or even worse
than useless, since someone else’s time is required to begin
bringing the new person up to speed.”

Fred Brooks observed that adding a new person to a late
project makes it even later [10].

III. COMPARISON OF LISTS OF ACTIVITIES

At ICSE 2010, prior to the beginning of the work on
the thesis leading to this paper, author Berry had heard the
presentation of a paper by Barthélémy Dagenais, Harold
Ossher, Rachel Bellamy, Martin Robillard, and Jacqueline de
Vries [7] studying the immigration of newbies into software
development projects, with an aim to determine how to
make these immigrations more successful. Based on the one
example presented in the talk of a successful immigration,
and aware of his earlier work [2] on the importance of
ignorance in requirements engineering, Berry offered the
hypothesis that

an immigrant’s immigration was most successful
when the immigrant was put to work doing a task
for which domain ignorance is helpful.

The example newbie who had a successful immigration had
been assigned the task of fixing bugs, and Berry’s experience
told him that fixing bugs is an activity that benefits from
domain ignorance2.

Armed with the list of software development tasks that are
believed to benefit from domain ignorance, the next step was
to try to test the hypothesis by re-examining the data from
the immigration study [7] to determine the tasks performed
by the immigrants with the most successful immigrations.

Mehrotra and Berry approached Dagenais et al. for ac-
cess to their raw data, transcripts describing their newbies’
immigration experiences. After some discussions, Mehrotra

2Note that the results of the survey say otherwise, but this hypothesis
was formed long before the survey was even written, and it prompted the
research leading to this survey.



and Berry signed a non-disclosure agreement and obtained
the transcripts about the immigrations of 14 newbies. These
transcripts contained information regarding the tasks a new-
bie was assigned during her initial days and the difficulties
faced by her in doing those tasks.

A. Analyses of Transcripts

To do the analysis, Mehrotra decided to examine the
transcripts and group the activities performed by the 14
newbies into two lists,

1) a positive list that contains each activity for which
at least one newbie said that the activity helped him
immigrate, and

2) a negative list which contains each activity for which
at least one newbie said that the activity did not help
him immigrate.

If an activity were initially in both lists, then Mehrotra would
put it finally in the positive list if it helped more people
than it did not help, and Mehrotra would put it finally in the
negative list if it did not help more people than it helped.
As it turned out, no activity was initially in both lists. The
results are summarized in the two lists below. For each entry
in each list, the number in the parentheses is the number of
newbies mentioning the activity for the list, and the text in
the square brackets at the end of the entry denotes the mode
of domain ignorance of the entry’s activity in the results of
the survey presented in Sections III.C–E of the companion
paper [1].

The activities in the positive list are:
• Reading product documentation (4) [enhances]
• Inspecting test plans, design documents (1) [enhances]
• Fixing bugs (1) [impedes]
• Learning processes/practices/technology (4) [neutral]
• Coding simple features (1) [neutral]
• Reviewing trace information (1) [neutral]
• Attending code/project walkthroughs (1) [neutral]
• Compiling project code (2) [neutral]
The activities in the negative list are:
• Installing/configuring development environment (2)

[neutral]
• Source/version control tasks (1) [neutral]
• Writing design documents/software architecture (1)

[impedes]
• Attending formal project meetings (3) [neutral]
If the activities that are thought to be neutral are elimi-

nated from the two lists,
• the positive list is left with a majority of activities that

domain ignorance is thought to enhance, and
• the negative list is left with one activity that domain

ignorance is thought to impede.
Therefore, there is very marginal support for the hypothesis.

A drawback of the transcripts is that they did not contain
any data about how successful the immigrations were. It

would be very nice to be able to correlate these results with
such data. Recognizing that the best judge of the success
of a newbie’s immigration is the newbie himself, Mehrotra
decided to request additional data from Dagenais et al.
Mehrotra asked Ossher to send the following question to
each of the 14 participants of his study, whose transcripts
Mehrotra had received:

Rate your immigration experience using the scale:
Torture, Painful, Neutral, Smooth, Ecstatic

As the immigration study was done a long time ago,
Ossher was reluctant to contact the participants again and
did not agree to send the question to the 14 participants. He
did offer instead some additional data derived by Dagenais
during the study for each participant, a binary classification,
successful or non-successful, of her immigration experiences
and the reason for the classification. Note that this classifica-
tion was performed by an independent third party using some
definition that he chose. Mehrotra decided to accept this
classification at face value, taking Dagenais’s “successful”
to have the vernacular meaning of “successful”.

Out of the total 14 participants, Participants 6, 7, 11, and
14 reported an overall non-successful immigration. Some of
the reasons given for the non-successful immigration are:

• Participant 63 got assigned to a job for which she was
not qualified; her colleagues told her in various indirect
ways that she should not have this position; and she got
assigned to critical tasks with insufficient support. C

• Participant 7 was a team leader and her team was
supposed to take over a project from another team, but
the original team did not want to relinquish the project;
the original team put a lot of obstacles in her way,
including rude comments, outdated documentation, and
long delays in answering e-mail.

Mehrotra divided the newbies into two groups:
1) one of those who had a successful immigration and
2) and another of those who did not have a successful

immigration.
Mehrotra then decided to build two lists of activities.

1) one of all activities done by anyone who had a
successful immigration and

2) and another of all activities done by anyone who did
not have a successful immigration.

If an activity were initially in both lists, then Mehrotra would
put it finally in the successful immigration activities list if
more people in the successful immigration group performed
the activity than people in the other group, and Mehrotra
would put it in the non-successful immigration activities
list if more people in the non-successful immigration group

3Recall that the gender of the first arbitrary individual in a discourse
toggles for each section, but remains constant in a section. Thus, the use
of the female gender in this odd numbered section does not imply that the
referenced participant is necessarily a female.



performed the activity than people in the other group. As it
turned out, no activity was initially in both lists.

The activities in the successful immigration list are:
• Reading product documentation (4) [enhances]
• Inspecting test plans, design documents (1) [enhances]
• Fixing bugs (1) [impedes]
• Learning processes/practices/technology (4) [neutral]
• Coding simple features (1) [neutral]
• Reviewing trace information (1) [neutral]
• Attending code/project walkthroughs (1) [neutral]
• Installing/configuring development environment (2)

[neutral]
The activities in the non-successful immigration list are:
• Writing design documents/software architecture (1)

[impedes]
• Inspecting Code (2) [impedes]
• Source/version control tasks (1) [neutral]
• Attending formal project meetings (3) [neutral]
If the activities that are thought to be neutral are elimi-

nated from the two lists,
• the successful immigration list is left with two activities

that domain ignorance is thought to enhance, and
• the non-successful immigration list is left with two

activities that domain ignorance is thought to impede.
Therefore, here too, there is very marginal support for the
hypothesis.

Mehrotra now had two pairs of lists that should be the
same if the hypothesis held and the transcripts provided full
information. While the two pairs of list are not exactly the
same, there is good overlap

• between the positive and the successful immigration
activities lists and

• between the negative and the non-successful immigra-
tion activities lists.

The activities that ended up in only one of the pairs of lists
are:

1) Compiling project code [neutral]: only in the posi-
tive group in the first pair of lists,

2) Installing/configuring development environment
[neutral]: only in the negative group in the first pair
of lists,

3) Inspecting Code [impedes]: only in non-successful
immigration activities group in the second pair of lists,
and

4) Writing design documents/software architecture
[impedes]: only in the negative group in the first pair
of lists.

Nevertheless, if the activities that are thought to be neutral
are eliminated from the two pairs of lists,

• the combined positive and successful immigration lists
are left with a majority of activities that domain igno-
rance is thought to enhance, and

• the combined negative and non-successful immigration
lists are left with only activities that domain ignorance
is thought to impede.

Therefore, in the end, there is very marginal support for the
hypothesis.

It is somewhat ironic that the original task that prompted
Berry to suggest the hypothesis, the task of fixing bugs,
that Berry’s experience told him benefited from domain
ignorance, ended up being thought as one that is impeded by
domain ignorance. Alan Wecker believes that “fixing bugs”
is too big a task. If it were divided into its constituent
subtasks, (1) finding the defect and then (2) fixing the
defect, then different Likert values can be assigned to each
subtask. Possibly, finding the defect would be viewed as
being helped by domain ignorance while fixing the defect
would be viewed as impeded by domain ignorance but
helped by domain awareness.

B. Discussion

That the support for the hypothesis, that immigration was
most successful when the immigrant was put to work doing
a task for which domain ignorance is thought to helpful,
is only very marginal is not surprising. In real life, there
are many factors affecting the success of one’s immigration,
including her personality. There are not enough data in the
immigration study to determine root causes of the outcome
of any immigration. The ultimate cause of a successful
or non-successful immigration could be any of the other
factors, some combination of factors, or yet other factors
not even considered. Without doing a controlled experiment,
which perhaps will not simulate real life, we cannot isolate
any factor. The best that can be said is:

All other factors being equal, there is some support
that a newbie should be assigned an activity that
is helped by domain ignorance.

A newbie should be assigned an activity that is helped by
domain ignorance, even if for no other reasons than that

• she becomes useful to her project immediately, and
• she learns the domain of the project in a more leisurely

natural manner with less pressure to apply her knowl-
edge prematurely.

IV. THREATS

The main conclusion of this paper is that the immigration
of a newbie is the most successful if a newbie is assigned
a task which is thought to be helped by domain ignorance.
The threats to the validity of this conclusion can be divided
into two classes,

1) threats to internal validity that concerns how well the
case study was executed and

2) threats to external validity that concerns whether the
conclusion obtained is generalizable.

The threats to internal validity of the conclusion are:



• the lack of control over variables:
Because Mehrotra used transcripts supplied by a third
party from a study in which they controlled the vari-
ables they needed for their study, he had no control
over the data that transcripts reported. All he could
do was hope that he would be able to see evidence
of the variables he needed in the transcripts provided.
Fortunately, he was able to find some usable evidence
in all of the 14 transcripts provided.

• the methods of determining positive, negative, suc-
cessful, and non-successful activities:
There may be other possible methods for doing the
categorization, but they did not present themselves.
Note however, that the positive–negative activities clas-
sification was done in a direction different from that of
the successful–non-successful activities classification.
Moreover, the successful–non-successful activities clas-
sification was based on an independent classification of
immigration success. That the two pairs of lists result-
ing from the classifications agreed so well strengthens
confidence in the correctness of the methods and the
validity of the conclusions.

The threats to external validity of the conclusion are:
• representativeness of the sample:

The threat to the present study is the same as to the
Dagenais et al. study [7].

• number of respondents:
The threat to the present study is the same as to the
Dagenais et al. study.

The threats described in the companion paper [1], partic-
ularly those about

• the survey questions and
• the method to compute the results using modes,

and the threats, described above, about
• the lack of control over variables and
• the methods of determining positive, negative, success-

ful, and non-successful activities
could easily have conspired to make it impossible to draw
any conclusions. After all, what are the chances of drawing
any conclusion if people do not agree on the meanings of the
descriptions of the activities? For example, deciding whether
the hypothesis is supported depends on the

1) survey respondents’,
2) Mehrotra’s,
3) Dagenais et al.’s subjects’, and
4) Dagenais et al.’s

all agreeing enough on the meaning of the descriptions of the
activities, e.g., that one person’s, “eliciting requirements/re-
quirements gathering” is similar enough to all others’. The
fact that these four independent sources of data have come
together to support the hypothesis even marginally when
there are so many other variables that could have affected the

results is something of a miracle. Nevertheless, each reader
must decide for himself whether to believe the conclusions.

V. APPLICATIONS OF RESULTS

A software development manager can use the results of
this study as a guide to help assign suitable roles to a newbie
in any team. The tasks that appear to be more suitable for a
newbie are the ones that are thought to be helped by domain
ignorance, listed in Section I.

There are two aspects to a newbie’s immigration within a
project. The first is productivity during the immigration and
the second is learning about the new domain. By assigning
the right task to a newbie, a manager can ensure that she will
be productive earlier because her ignorance is put to good
use while she learns the domain, i.e., to not be ignorant.
Moreover, she is not draining the productivity of the rest of
the team by her needing close mentoring. As a result, her
immigration into the new project is likely to be much more
successful, thereby increasing the productivity of the team
as whole.

VI. CONCLUSION AND FUTURE WORK

The conclusion of this paper is that the immigration of
a newbie into a software system development project may
be more successful than otherwise if the newbie is assigned
a development task that is thought to be helped by domain
ignorance. A manager can use the results of this research in
order to assign the right tasks to a newbie in his team. A
newbie in turn can use his domain ignorance to be productive
right from the start while beginning to learn the domain
under less pressure to do it too quickly. The productivity of
the entire team is increased, and the precious time of other
experienced team members is saved.

There is a lot of scope for future work in this area.
It would be useful to perform a study in a real work
environment where newbies can be observed working on
the assigned tasks during their immigration.

ACKNOWLEDGEMENTS

The authors thank Chrysanne DiMarco, Mike Godfrey,
and Jo Atlee for their comments on the thesis on which this
paper is based. They thank also and particularly Barthélémy
Dagenais, Harold Ossher, Rachel K. E. Bellamy, Martin
P. Robillard, Jacqueline P. de Vries, and their anonymous
subjects for agreeing to share the data obtained from their
research for comparison purposes.

REFERENCES

[1] G. Mehrotra and D. M. Berry, “Role of domain ignorance in
software development: Software development tasks benefiting
from domain ignorance,” School of Computer Science, Uni-
versity of Waterloo, Tech. Rep., 2012, http://se.uwaterloo.ca/
∼dberry/FTP SITE/tech.reports/MehrotraBerrySurvey.pdf.

[2] D. M. Berry, “The importance of ignorance in requirements
engineering,” Journal of Systems and Software, vol. 28, 1995.



[3] J. N. Buxton and B. Randell, “Software engineering tech-
niques: Report on a conference,” 1969, http://homepages.
cs.ncl.ac.uk/brian.randell/NATO/nato1969.PDF.

[4] A. Begel and B. Simon, “Novice software developers, all over
again,” in Proceeding of the Fourth international Workshop
on Computing Education Research (ICER), 2008, pp. 3–14.

[5] S. E. Sim and R. C. Holt, “The ramp-up problem in software
projects: A case study of how software immigrants natu-
ralize,” in Proceedings of the International Conference on
Software Engineering (ICSE), 1998, pp. 361–370.

[6] T. DeMarco and T. Lister, Peopleware: Productive Projects
and Teams. Dorset House Publishing, 1987.

[7] B. Dagenais, H. Ossher, R. K. E. Bellamy, M. P. Robillard,
and J. P. de Vries, “Moving into a new software project
landscape,” in Proceedings of the International Conference
on Software Engineering (ICSE), Volume 1, 2010, pp. 275–
284.

[8] A. Begel and B. Simon, “Struggles of new college graduates
in their first software development job,” SIGCSE Bulletin,
vol. 40, pp. 226–230, 2008.

[9] E. H. Schein, “The individual, the organization, and the
career: A conceptual scheme,” The Journal of Applied Be-
havioral Science, vol. 7, no. 4, pp. 401–426, 1971.

[10] F. P. Brooks, The Mythical Man-Month: Essays on Software
Engineering. Addison-Wesley, 1975.


