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Abstract—[Context and Motivation] A hairy requirements or
software engineering task involving natural language (NL) docu-
ments is one that is not inherently difficult for NL-understanding
humans on a small scale but becomes unmanageable in the large
scale. A hairy task demands tool assistance. Because humans
need help in carrying out a hairy task completely, a tool for a
hairy task should have as close to 100% recall as possible. A
hairy task tool that falls short of close to 100% recall that is
applied to the development of a high-dependability system may
even be useless, because to find the missing information, a human
has to do the entire task manually anyway. For a such a tool
to have recall acceptably close to 100%, a human working with
the tool on the task must achieve better recall than a human
working on the task entirely manually. [Problem] Traditionally,
many hairy requirements and software engineering tools have
been evaluated mainly by how high their precision is, possibly
leading to incorrect conclusions about how effective they are.
[Principal Ideas] This paper describes using recall, a properly
weighted F-measure, and a new measure called summarization
to evaluate tools for hairy requirements and software engineering
tasks and applies some of these measures to several tools reported
in the literature. [Contribution] The finding is that some of these
tools are actually better than they were thought to be when
they were evaluated using mainly precision or an unweighted
F-measure.

Index Terms—abstraction finding, ambiguity finding, F-meas-
ure, false negatives, false positives, hairy task, manual task,
natural language documents, precision, recall, summarization,
tool-assisted task, tracing

I. INTRODUCTION

A hairy1 requirements or software engineering (RE or SE)
task involving natural language (NL) documents is one that
requires NL understanding [1] and is not difficult for humans
to do on a small scale but is unmanageable when it is done
to the documents that accompany the development of a large
computer-based system (CBS) [2]. Any hairy task mentioned
in the rest of this paper is assumed to be done in and for
the development of a large CBS. Examples of hairy tasks
include: finding abstractions and similar artifacts [3]–[8], find-
ing trace links [9]–[13], consolidating multiple requirements
specifications [14], merging multiple versions of a module

1This author chose the word “hairy” to evoke the metaphor of the hairy
theorem or proof.

[15], classifying requirements [16], analyzing app reviews
[17], [18], synthesizing models from NL text [19], finding
ambiguities in a requirements specification [20]–[24], and its
generalization, finding defects in a requirements specification
[25]–[27]. Such a hairy task is burdensome enough that tool
assistance is needed to help a human to do complete job [28].

Humans understand NL well enough that a human has the
potential of achieving for the hairy task close to 100% correct-
ness, i.e., finding close to all and only the desired information.
The two components of “correctness” are recall, that all the
desired information is found, and precision, that only the
desired information is found. Of these two components, for
a hairy task, recall is more in need of tool assistance. For any
task for which tool assistance is truly needed, finding a unit of
desired information among the many documents available for
the CBS’s development is generally significantly harder than
dismissing a found unit of information that is not desired. It
is like finding needles in a haystack when one does not know
how many needles the haystack has. If recall were not the
harder component of correctness, we would not be building a
tool to search for correct information. Therefore, for a hairy
task, if close to 100% correctness is needed, then close to
100% recall is needed.

Not every instance of a hairy task needs close to 100%
recall, and it may be enough for a tool for it to achieve only
some recall. For example, if the task is to determine from NL
app reviews whether a particular app has been actively used,
finding any review that describes the app as being used suffices
[17]. In such a case, it would be more important for the tool to
achieve high precision, so that the user does not have to wade
through many nonsense answers to find the correct answers
that are buried in the output. The rest of this paper is about
hairy tasks that require close to 100% recall.

Even for a hairy task that often requires close to 100%
recall, not every application of it during the development of a
CBS needs to achieve close to 100% recall. However, if the
CBS being developed has high-dependability (HD) require-
ments, then recall for the task must be as close as possible to
100% in order to ensure that the needed dependability will be
achieved [28]. For example, 100% of all trace links must be



found in order to ensure that all the effects of any proposed
change can be traced [29]. In this HD circumstance, if a tool
for the task achieves less than close to 100% recall, then the
task must be done manually on the whole of the documents
to find the answers that the tool does not deliver. Therefore,
in the last analysis, in this HD circumstance, such a tool is
really useless2.

Just how close to 100% must the recall of a tool for a hairy
task be? First, recognize that

• achieving 100% recall is probably impossible, even for a
human, as is finding all bugs in a program, particularly
because the task is hairy, and

• we have no way to know if a tool has achieved 100%
recall, because the only way to measure recall for a tool
is to compare the tool’s output against the set of all correct
answers, which is impossible to obtain, even by humans.

Let us call what humans can achieve when performing the task
manually under the best of conditions the “humanly achievable
high recall (HAHR)” for the task, which we hope is close to
100%. If a tool can be demonstrated to achieve better recall
than the HAHR for its task, then a human will trust the tool
and will not feel compelled to do the tool’s task manually to
look for what the human feels that the tool failed to find.

Thus, the real goal for any tool for a hairy task is to
achieve the HAHR for the task. Therefore, a tool for a hairy
task must be evaluated by empirically comparing the recall of
humans working with the tool to carry out the task with the
recall of humans carrying out the task manually [3], [8], [30].
Empirical studies will be needed to estimate the HAHR and
other key values that inform the evaluations. See Section VI
for a description of how this study can be performed as part
of the construction of the gold standard for evaluation of the
tools for a task.

In the rest of this paper, Section II defines recall, precision,
and the F -measure, the traditional measures to eveluate tools,
and Section III describes the circumstances under which recall
should weighted more than precision. Section IV discusses
other recent sightings of need to weight recall more than
precision in SE tools and in text retrieval. Section V defines
the weighted F -measure, as a way to adjust the relative
weights of recall and precision in the F -measure, and Section
VI summarizes an empirical method to evaluate hairy tools,
based on the weighted F -measure. Section VII introduces
summarization as a new measure that deals with the recall vs
precision tradeoff and its conundrum. Section VIII categorizes
related tool evaluation work by how its tools are evaluated, and
Section IX applies the empirical evaluation method of Section
VI to redo some of the evaluations categorized in Section VIII.
Section X observes that sometimes, it is necessary to evaluate

2Of course, one can argue that such a tool is useful as a defense against a
human’s less-than-100% recall when the tool is run as a double check after
the human has done the tool’s task manually. However, it seems to this author,
that if the human knows that the tool will be run, he or she might be lazy in
carrying out the manual task and not do as well as possible. Empirical studies
are needed to see if this effect is is real, and if so, how destructive it is of
the human’s recall.

not just a tool, but a tool as it is used by humans, and Section
XI discusses how low human tolerance for a tool with low
precision affects the tool’s evaluation. Section XII concludes
the paper.

II. TRADITIONAL MEASURES TO EVALUATE TOOLS

The traditional measures by which a tool for a hairy task,
and for that matter any NLP-based tool, is evaluated are [11],
[30]

• recall, the percentage of the correct answers that the tool
finds, and

• precision, the percentage of the tool-found answers that
are correct.

To define these measures precisely, it is necessary to con-
sider in Figure 1 the universe of a tool for a hairy task. The
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Fig. 1. The Universe of a Tool for a Hairy Task

circle represents the space of all possible answers, relevant,
i.e., correct, or not, for the task that any tool might find or
not. The space can be partitioned by two independent axes,

1) one separating the answers that the tool finds, fnd, from
those that the tool does not find, ∼ fnd, and

2) one separating the answers that are relevant for the task,
rel, from those that are not relevant, ∼ rel.

These two partitions create four regions in the space, consist-
ing of the

• true positives, TP, that are the relevant answers that are
found,

• false negatives, FN, that are the relevant answers that are
not found,

• true negatives, TN, that are the not relevant answers that
are not found,

• false positives, FP, that are the not relevant answers that
are found

by the tool.
With these subspaces, it is possible to give precise defini-

tions of recall, R, and precision, P :

R =
|fnd ∩ rel|
|rel|

=
|TP|

|TP|+ |FN|
(1)

P =
|fnd ∩ rel|
|fnd|

=
|TP|

|FP|+ |TP|
(2)

The composite of recall and precision that is often called
“correctness” is captured by the F -measure:

F = 2× P ×R

P + R
, (3)



the harmonic mean of recall, R, and precision, P .

III. RECALL VS. PRECISION

For a typical hairy task, manually finding a missing correct
answer, a false negative, is significantly harder than rejecting
as nonsense an incorrect answer, a false positive3, because
finding a missing correct answer generally requires examining
all the input documents in detail, while rejecting an incorrect
answer generally requires understanding only the incorrect
answer and the input documents at only a general level. For
example, Kong, Huffman Hayes, Dekhtyar, and Holden show
that humans are much better at validating tool-proposed trace
links than they are at finding links in documents [10]. See
the end of Section V for numerical empirical evidence, for a
variety of hairy tasks, that manually finding a correct answer
requires more time than rejecting as nonsense an incorrect
answer.

Therefore, the evaluation of a tool for a hairy task should
probably weight recall more than precision. However as
demonstrated in Section VIII-C, a lot of the RE and SE
literature about tools for hairy tasks weights precision the same
as or more than recall to evaluate tools for hairy tasks.

Why is there such an emphasis on precision? Precision is
important in the information retrieval (IR) area from which
are borrowed many of the algorithms used to construct the
tools for hairy tasks [11], [28]. In IR, users of a tool with
low precision are turned off by having to reject false positives
more often than they accept true positives. In some cases, only
a few or even only one true positive is needed. Perhaps the
force of habit drives people to evaluate the tools for hairy
tasks with the same criteria that are used for IR tools. Also,
“precision” sounds so much more important than “recall”, as
in “This output is precisely right!”.

In fact, the most senior author of each of two of the works
cited in VIII as having used the F -measure, which weights
recall and precision equally, or as having emphasized precision
more than recall, expressed surprise when I told him personally
that his paper had done so. Each knew that recall was more
critical than precision for his paper’s task, and each claimed
that his paper reflected or accounted for that understanding.
However, after I showed each the relevant text in his paper,
he agreed that a reasonable reader would interpret the text
as I had. Apparently, some other author of his paper had
just followed the evaluation convention inherited from IR in
writing parts of the paper.

When I asked one author of each of two other papers why
his paper had used the F -measure, he replied that doing so
was conventional. When I asked him if he and his co-authors
had considered the possibility that recall should be weighted
more than precision, he said simply “No.” One of the two

3It seems reasonable to even include in the definition of a hairy task the
proviso that manually finding a true positive or false negative is significantly
harder than rejecting a proposed answer that is a false positive. Any task for
which this difficulty difference is not true does not satisfy the unmanageability
criterion of the definition.

added that he and his co-authors had enough else to worry
about in conducting their tool evaluation.

In summary, a careful consideration of the requirements for
tools for hairy RE and SE tasks makes it clear that measures
that may be proper in IR may not apply when making tools
for hairy RE and SE tasks. The requirements for each hairy
task must be considered carefully, and if these requirements
say that close to 100% recall is needed, then the main goal
for its tools is achieving high recall.

IV. OTHER SIGHTINGS OF THE SAME IDEAS

There is another sighting of the concept of hairy task, albeit
not with the same name. Menzies, Dekhtyar, Distefano, and
Greenwald [31] discuss recall versus precision in the context
of tools for detection of defects in CBS development. They
describe industrial tool-use situations in which high recall is
needed, and not only is low precision acceptable, but it may
be needed in order to achieve high recall in an algorithmic
tradeoff (See Section VII about this tradeoff.). Briefly, these
situations are when

• the cost of missing a true positive is prohibitive,
• the true positives constitute only a small fraction of the

input presented to the tool, and
• there is little or no cost to deciding that an answer from

the tool is a false positive,
The first point captures the situation when the CBS has HD
requirements, The second point captures both the unmanage-
ability of the tool’s hairy task and the difficulty of finding
a true positive, and the third point captures that manually
rejecting a false positive presented by the tool is cheap
compared to manually finding a true positive. They observe
that the second point characterizes many SE datasets. If this
observation is correct, then it is clear that many SE tasks are
unmanageable and are therefore hairy.

Not all instances of hairy tasks for which close to 100%
recall is needed are in RE or SE. The annual Text REtrieval
Conference (TREC) [32] has a Total Recall Track [33],
whose statement of purpose lists three such tasks [34], [35]
(enumeration not in the original).

The primary purpose of the Total Recall Track is
to evaluate, through controlled simulation, methods
designed to achieve very high recall — as close as
practicable to 100% — with a human assessor in the
loop. Motivating applications include, among others,
[1] electronic discovery in legal proceedings . . . , [2]
systematic review in evidence-based medicine . . . ,
and [3] the creation of fully labeled test collections
for information retrieval (“IR”) evaluation . . . .

V. WEIGHTED F -MEASURE

For situations in which recall and precision are not equally
important, there is a weighted version of the F -measure,

Fβ = (1 + β2)× P ×R

(β2 × P ) + R
, (4)



called the Fβ-measure. Some authors use a non-squared β4 in
the formula,

fβ = (1 + β)× P ×R

(β × P ) + R
. (5)

In this paper, this variation of Fβ is called “fβ”.
Note that the simple F -measure is F1 = f1. Note also that

the formula for Fβ ends up multiplying P by the dominating
β2 in both the numerator and the denominator. Thus, as
β grows, very quickly Fβ approaches R, and P becomes
irrelevant in computing Fβ . When β is as little as 5, and P is
large enough relative to R, P is already essentially irrelevant.
As β grows, fβ grows, but not as dramatically as Fβ ; f1 = F1,
f25 = F5, and f100 = F10.

In these formulae, β is the ratio by which it is desired to
weight R more than P . How should β be determined? It should
be calculated as the ratio of

• the time for a human to manually find a true positive in
the original documents and

• the time for a human to reject a tool-presented false
positive5.

Some want to adjust this β according to the ratio of two other
values,

• an estimate of the cost of the failure to find a true positive
and

• an estimate of the cost of the accumulated nuisance of
dealing with tool-presented false positives.

For any particular hairy task and a tool for it, a separate
empirical study is necessary to arrive at good estimates for
these values.

There is empirical evidence for any of a variety of hairy
tasks that β is greater than 1, and in many cases, significantly
so. For example, Section IX-A shows an estimate for β for
the tracing task and one tracing tool [36] as 73.60. Section
IX-B shows estimates for βs for the three hairy tasks [17] the
section discusses as 10.00, 9.09, and 2.71. Tjong, in doing her
evaluation of SREE, an ambiguity finder, found data that give
a β of 8.7 [24].

Cleland-Huang et al calculate the returns on investment and
costs vs. benefits of several tracing strategies ranging from
maintaining full traces for immediate use at any time through
tracing on the fly. To come to their conclusions, they estimated,
probably based on their extensive experience with tracing, that
manually finding a trace link between two documents takes
on average 15 minutes [37]. Even though one of their tracing
strategies involves use of a tool to generate traces on the fly,
they give no estimate at all for the time to vet a tool-reported
potential link, and estimate total costs of strategies without
considering any costs associated with tool use. Therefore, they
must regard that time as negligible. To be conservative, let us
assume that the time to vet a single potential link is 1 minute.
These two estimates yield an estimated β for tracing of 15.

4A discussion of which formula is more appropriate to evaluate tools for
hairy tasks is outside the scope of this paper.

5on the assumption that the time required for a run of the tool is negligible
or other work can be done while the tool is running on its own.

Heindl and Biffl timed manual after-development (rather
than during-development) identifications of a variety of trace
links between requirements and code documents and obtained
times ranging from 10 to 45 minutes, depending on the
grainedness of the link [38]. They too give no estimate of
the time to vet a tool-reported potential link. Again, to be
conservative, let us assume that the time to vet a single
potential link is 1 minute. These two estimates yield estimated
βs for tracing ranging from 10 to 45.

VI. AN EMPIRICAL METHOD TO EVALUATE TOOLS FOR
NL RE TASK

In order to evaluate a tool t for a NL RE task T to be
performed on the documents D for the development of a CBS,
two questions need to be answered.

1) One question is the obvious: “What is the relative
importance of recall and precision, i.e., what is the
correct value of β to use in Fβ?’

2) The second is a deeper question, “What is the best
method to perform T : entirely manually, with only t,
or with some mixture thereof?” [39]

The answers to both of these questions can come only em-
pirically, e.g., by adapting IR’s cost-based evaluation mea-
sures [40] to the RE context.

To answer these questions, we need to determine:
1) numerator of β: the average time that an average human

needs to manually find a correct answer in D, and
2) denominator of β: (1) the average time that an average

human needs to manually vet any potential answer
that t returns or (2) the average time that an average
human needs to manually determine whether or not any
potential answer in D is a correct answer [41].

3) cost of a false negative: the criticality of achieving 100%
recall on T , by estimating the cost of a false negative,
an undetected correct answer,

4) cost of low precision: the criticality of high precision, by
estimating the tool-use deterrence created by each false
positive reported by t,

5) average tool recall: the average recall that t achieves on
T , and

6) HAHR: the average recall that humans achieve when
they do T manually.

Many of these data can be obtained during a multi-person
construction of a gold standard G of correct answers from
manually performing T on a representative and substantial
sampling of documents D from the construction of a repre-
sentative CBS [42]. Generally, G is constructed by a group of
people familiar with the CBS or its domain:

1) Each member of the group performs T on D indepen-
dently to produce his or her own list of answers that he
or she believes are correct.

2) The union of the group members’ lists is formed.
3) The group meets to discuss the union list and its mem-

bers’ lists in order to arrive at a mutually-agreed-upon
single list which is some variation of the union list.



The mutually-agreed-upon list is taken as G. Gold standard
construction has its own problems [15] that have to be con-
sidered to ensure that evaluations based on it are valid.

During the construction of G, each group member keeps
track of the total time he or she spent performing T on D, the
number of correct answers he or she found, and the number
of potential answers he or she examined. These data allow
estimating (1) the numerator of β and (2) the denominator
of β by the second method. The average human recall is the
average of the fractions of G that were found by the members
of the group.

Other data can be obtained during a test of a tool t applied
to D. First, the recall and precision for t can be estimated by
vetting the output of t with G. In addition, the person doing
the vetting keeps track of the time he or she spends on the
vetting. These times allow estimating the denominator of β by
the first method. Note that the second method of estimating
the denominator of β, used in the previous paragraph, gives
an estimate for β that is independent of any tool and that can
be obtained from only the gold-standard construction. Vetting
of a tool-provided answer probably is faster than considering
a potential answer during gold-standard construction, because
the tool presents actual potential answers while considering a
potential answer gold-standard construction requires looking at
the part of D from where the potential answer comes. Thus,
the second method of estimating the denominator of β likely
gives a lower bound for values obtained by the first method
of estimating the denominator.

The cost of a false negative and the cost of low precision
will have to be estimated by considering the context in which
T is performed. Cleland-Huang et al and Heindl and Biffl
suggest a number of risk-based strategies for estimating the
cost of missing link on the CBS development in which traces
are used to track down the impacts of requirements changes
[37], [38].

VII. SUMMARIZATION

For many a task for which there exists a variety of algo-
rithms to implement it, the difference between any pair of
algorithms amounts to a tradeoff between recall and precision.
Generally, one can get higher recall at the expense of lower
precision and vice versa. The extremes of this tradeoff are:

• the tool delivers the entire document for 100% recall and
C% precision, where C% is the fraction of the answers
in the document that are correct, and

• the tool delivers one correct answer for 100% precision
and ε% recall, where ε% is the reciprocal of the number
of correct answers in the document.

These extremes are useless, because in either case, the entire
document has to be manually searched in order to find the
correct answers.

However, one way out of this uselessness is offered by a new
measure, summarization, which is the fraction of the original
document that is eliminated in what the tool finds and delivers

to its user6. If for a typical run of a tool on a document d, the
size of the output o of the tool is z% of the size of d, then the
summarization of the tool is 1−z%. In terms of the subspaces
of the universe of a tool in Figure 1, summarization, S, can
be defined:

S =
| ∼ fnd|

| ∼ fnd ∪ fnd|
=

| ∼ fnd|
| ∼ rel ∪ rel|

=
|TN|+ |FN|

|TN|+ |FN|+ |TP|+ |FP|

(6)

A tool for a hairy task with 100% recall and 90% summa-
rization is very helpful. In this case, the output of the tool
contains all the sought answers. Because the tool’s output is
significantly smaller than its original input document, a manual
search of the output is significantly easier than a manual search
of the original document. Thus, the precision of the tool is
effectively irrelevant; it could just as well be 0%. So, if an
algorithm for a tool achieves high recall at the cost of low
precision, but it summarizes a lot, then we should make use
of it in building the tool.

Another, implemented, example of how summarization can
be used in considering a tradeoff is offered by Montgomery
and Damian [43]. They evaluate a machine-learning algorithm
for the hairy task of determining from the natural language
complaints of a program’s customers the probability of those
customers’ escalating their complaints. The algorithm returns
complaints called “CritSits” that it believes have a high
probability of escalation. They were able to determine that the
algorithm has 79.94% recall and 80.77% summarization. They
observe, “Simply put, if a support analyst wanted to spend time
identifying potential CritSits from PMRs, our model reduces
the number of candidate PMRs by 80.77%, with the statistical
guarantee that 79.94% of CritSits remain.”

VIII. RELATED WORK

There are lots of evaluations of tools for hairy RE and SE
tasks. Some are basing their evaluations on mainly recall. A
few have recognized the importance of recall, and recognize
that F1 is inappropriate, but are using only F2, which does
not weight recall according to its cost. However, even recently,
some are basing their evaluations on mainly precision or F1.

A. Basing Evaluation on Recall

Many developers of tools for hairy tasks have recognized
that recall is more important for their task than precision and

6Summarization for a tool is meaningful only if the output of the tool is in
the same language as its input. For example, summarization is meaningful
for an ambiguity finder which returns each sentence in the input natural
language sentence that the tool believes has an ambiguity. In this case, the
language of the input and of the output is the set of natural language sentences.
Summarization is not meaningful for a trace link finder that given multiple
documents of natural language sentences returns what it believes to be links
between related sentences in the documents. In this case, the input language
is the set of natural language sentences and the output language is the set of
links between sentences. The point of summarization is that after the tool is
finished with its attempt at a hairy task, the human user can carry out the
same task on the output of the tool, which is in the same language as the
input to the tool.



have based their evaluations on recall [9], [21], [23], [44]–
[48]. However, one such team of tool developers says that its
goal was 100% recall, but it accepted much lower recall as
satisfactory, arguing that humans do about the same [21].

B. Basing Evaluation on F2

Some developers of tools for hairy tasks have recognized
that recall is more important for their task than precision and
have based their evaluations on F2.

Cleland-Huang, Czauderna, Gibiec, and Emenecker, who
use a machine-learning rather than an NLP approach to
tracing, say [44],

In this paper, we adopt a variant of the F -meas-
ure, known as the F2-Measure, which weights recall
values more highly than precision. This weighting
is appropriate in the traceability domain where it is
essential to recall as many of the correct links as
possible.

Interestingly, their formula for F2 is that of f2.
Yang, De Roeck, Gervasi, Willis, and Nuseibeh experiment

with a machine-learning (ML) approach to recognizing nocu-
ous7 anaphoric ambiguity [23]. They had as one of their goals
the achievement of 100% recall for this kind of ambiguity,
“even at the expense of some imprecision” [23]. Thus, their
algorithm is designed to maximize recognition of nocuous
instances of anaphoric ambiguity even at the cost of delivering
more innocuous instances. They evaluate their approach using
F2 (not f2).

Arora, Sabetzadeh, Briand, Frank Zimmer first observe that
checking the conformance of NL requirements specifications
to templates is laborious [48], laborious enought that it is clear
that this checking is a hairy task. They developed an NLP-
based tool to do this checking. To evaluate this approach, they
use F2 rather than F1, which weights R and P equally, because

In [their] study, recall is the primary factor as it is
easier for analysts to rule out a small number of
false positives than to go through a large document
in search of false negatives.

They picked β = 2 because
F2-measure is standard when recall needs to be
weighted more than precision . . . .

Also their formula for F2 is that of f2.
Delater and Paech propose and implement in a prototype

tool a new tracing approach in which data from a developer’s
current task are mined to build a link between the requirements
and the code involved in the task [49].

For comparing precision and recall across exper-
iments, another metric known as F -Measure is
used. F2-Measure is a variant of F -Measure, which
weights recall values more highly than precision . . . .

while citing reference [44] of this paper. Also their formula
for F2 is that of f2.

7“Nocuous” is the opposite of “innocuous”.

C. Basing Evaluation on Precision or F1

However, even as late as in 2017, there are still some
developers of hairy task tools who appear to regard precision
as at least as important as recall, at least part of the time,
and that evaluate their tools with precision or with F1. These
include tools for

Finding Traces:
[13], [50], [51]

Finding Ambiguities in NL Requirements:
[20], [22], [52]

Extracting Various Information from NL Requirements:
[6]–[8], [17], [53]–[55]

Identifying Types of or Categorizing NL Requirements:
[56]–[58]

IX. EXAMPLE REEVALUATIONS

This section examines several recent publications in which
this author believes that F1 was used when recall should
have been weighted more than precision, and thus, that Fβ

should have been used with a β greater than 1. For each such
publication, its results are reexamined using an Fβ .

If the publication shows sufficient data or this author was
able to obtain sufficent data from the publication’s authors,
to allow calculating β, the calculated β is used. If sufficent
data are not available, and this author believes that finding a
true positive manually requires an order of magnitude more
time than rejecting a false positive manually, and thus that β
should be 10, the reexamination uses a β of 5, just to be on the
conservative side with the time estimate. In any case, for high
enough precision, F5 is close enough to R, that one does not
need F10 to make the case that the results ride on the strength
of the recall. If the original article used an F -measure that
was actually fx for some x, then the strengthening with f5 is
not as dramatic as with F5.

A. Merten et al

TABLE I
COMPUTED Fβ VALUES

Data Source P R F1 F2 F73

Related Work 0.1 0.9 0.18 0.35 0.898
Low P

Related Work 0.2 0.9 0.33 0.53 0.899
High P

Merten et al 0.02 1.0 0.039 0.093 0.990

Merten, Krämer, Mager, Schell, Bürsner, and Paech exten-
sively evaluated the performance of five different IR algo-
rithms in the task of extracting trace links for a CBS from
the data in the issue tacking system (ITS) for the CBS’s
development [36]. They calculated the recall and the precision
of each algorithm by comparing its output for any ITS with a
gold standard set of links extracted manually from the ITS. In
order that both recall and precision be taken into account in
the evaluation, they calculated F1 and F2, the latter because



it “emphasizes recall”. However, as is shown below, F2 does
not emphasize recall enough.

After Merten et al state that their goal is to “maximize
precision, recall, F1 and F2 measure”, their “Results are
presented as F2 and F1 measure in general.” They summarize
their results:

In terms of algorithms, to our surprise, no variant
of BM25 competed for the best results. The best
F2 measures of all BM25 variants varied from 0.09
to 0.19 over all projects, independently of standard
preprocessing. When maximizing R to 1, P does
not cross a 2% barrier for any algorithm. Even
for R ≥ 0.9, P is still < 0.05. All in all, the
results are not good according to [standards set by
Hayes, Dekhtyar, and Sundaram [9]] independently
of standard preprocessing, and they cannot compete
with related work on structured RAs [requirements
artifacts].

This summary is puzzling because, earlier they had said,
However, maximising [sic] recall is often desirable
in practice, because it is simpler to remove wrong
links manually than to find correct links manually.

If so, Merten et al should be ecstatic that at least one of their
algorithms is able to achieve an R of 1.0, even at the expense
of a P of 0.02! This recall is better than the best that they
gave in their “Related Work” section, that reported by Gotel
et al [12]:

“[some] methods retrieved almost all of the true links
(in the 90% range for recall) and yet also retrieved
many false positives (with precision in the low 10–
20% range, with occasional exceptions).”

That is, the best R is around 0.9 with P between 0.1 and 0.2.
Table I shows in Columns 4 and 5, the F1 and F2 values

computed from the three pairs of P and R values that they
compared. Certainly, each of F1 and F2 for the Related-Works
R = 0.9 and P = 0.1 or P = 0.2 is about an order of
magnitude bigger than that for the Merten-et-al R = 1.0 and
P = 0.02.

Merten et al give some data from which it is possible to
estimate β. Merten et al say that they manually created gold
standard trace matrices (GSTMs). From the paragraph titled
“Gold Standard Trace Matrices” in their Section 5.1, it is re-
vealed that for each project, three of the authors together made
4950 manual comparisons over 2.5 person 8-hour (confirmed
by e-mail with Merten) business days. Thus, the total time
spent on these comparisons per project is 2.5×8 = 20 person
hours = 1200 person minutes. The same paragraph reveals that
in these 1200 person minutes per project, 4950 comparisons
were done. Thus, per project, the average comparison required
1200
4950 person minutes per comparison, or 0.2424 person minutes
per comparison. So the three authors were deciding whether a
potential link was or was not a true link very quickly, in about
14.54 seconds.

Table 2 of their paper shows in the “GSTM generic” row,
the number of links found for the four projects. They are 102,

18, 55, and 94, for a total of 269 links. The total time spent
in comparisons over the four projects is 4 × 1200 = 4800
person minutes. Thus each link required 4800

269 = 17.84 person
minutes to find.

These data say that β should be 17.84
0.2424 = 73.60, much

larger than 10. Let’s round 73.60 downward to 73. Column 6
of Table I shows F73 values for the same pairs of P s and Rs
With F73, the R and P of Merten et al clearly outperform the
R and P of either of the Related Works. When β = 73, an
R of 1.0 is truly better than an R of 0.9, regardless of the P
value, if close to 100% recall is essential.

This empirically based estimate for β of 73.60 is much
larger than the 10 that this author had been using based on his
feeling that for a hairy task, manually finding a true positive
takes an order of magnitude more time than manually rejecting
a false positive. That this estimate is so high gives this author
confidence that β will be higher than expected for many hairy
tasks and that conclusions that are claimed on the basis of
even F5 or of even f25 (Recall the discussion about Formulae
4 and 5.) in this paper are valid.

B. Maalej et al

Maalej, Kurtanović, Nabil, and Stanik observe that the bil-
lions of NL app reviews written by app downloaders and users
constitute a rich source of information about the reviewed apps
that includes descriptions of app bugs, descriptions of current
app features, and ideas for new app features [17].

The majority of the reviews, however, is rather non-
informative just praising the app and repeating to the
star ratings in words.

That is, the useful information is buried in a lot of noise.
The task of extracting the useful information from the mass
of NL app reviews is surely a hairy task. This conclusion is
strengthened by estimates of β calculated using the second
method of estimating β’s denominator [41], interpreting data
from Table III of Maalej’s paper with Pagano [59], according
to the information given by Maalej et al in Paragraph 4
of Section 1 on Page 312. This method yields conservative
estimates for βs for the tasks

1) of finding bug reports in app reviews as 10.00, and
2) of finding feature requests in app reviews as 9.09

(rounded to 9),
3) of predicting user experiences from app reviews as 2.71

(rounded to 3),
4) of predicting app ratings from app reviews as 1.07

(rounded to 1).
The first two tasks are clearly hairy, the last task is equally
clearly not, and the third is only somewhat hairy. These
estimates for β are used in the discussions below about the
Maalej et al findings about tools for these tasks.

Maalej et al evaluated a number of different combinations
of probabilistic techniques to classify app reviews into four
types: bug reports, feature requests, user experiences, and app
ratings. That is, they evaluated each technique’s effectiveness
at each of the four kinds of classification tasks. Each technique



was applied to a collection of NL reviews for which manual
classification of each kind had been done to create a gold
standard for the classification task. To evaluate each technique
and task, they calculated the technique’s recall and precision
for the task relative to the task’s gold standard. They calculated
from each such recall and precision, an accuracy measure that
is none other than F1. Their paper gives tables showing for
each combination of techniques, its recall, precision, and F1,
to allow each reader to pick the combination that is best suited
to his or her context, including any in which recall is more
critical. Nevertheless, the focus in the discussion in the paper
is on F1.

Based on these F1 values, they conclude that a specific set
of techniques are the best for the four tasks.

We achieved the highest precision for predicting user
experience and ratings (92 %), the highest recall, and
F -measure for user experience (respectively, 99 and
92 %). For bug reports we found that the highest
precision (89 %) was achieved with the bag of
words, rating, and one sentiment, while the highest
recall (98 %) with using bigrams, rating, and one
score sentiment.

Their discussions, task by task are:

Finding bug reports:
Maalej et al do observe that

For predicting bug reports the recall might be
more important than precision. Bug reports are
critical reviews, and app vendors would proba-
bly need to make sure that a review analytics
tool does not miss any of them, with the com-
promise that a few of the reviews predicted as
bug reports are actually not (false positives).

Even though they say that recall might be more
important than precision for at least the finding-bug-
reports task, they conclude that

For a balance between precision and recall com-
bining bag of words, lemmatization, bigram,
rating, and tense seems to work best,

with F1 = 88%, and they do not consider what
might work best when recall is emphasized.

When F10 is used to evaluate the techniques, then
instead, combining bigram, rating, and one sentiment
works best, with F10 = 98%.

Finding feature requests:
Maalej et al make no statement for the feature-re-
quest finding task about the relative importance of
recall and precision. They conclude from their data,

Concerning feature requests, using the bag
of words, rating, and one sentiment resulted
in the highest precision with 89 %. The best
F -measure was 85 % with bag of words,
lemmatization, bigram, rating, and tense as the
classification features.

When F9 is used to evaluate the techniques, then
instead, bigram works best, with F9 = 96%.

Predicting user experiences:
Maalej et al make no statement also for the user-
experiences predicting task about the relative impor-
tance of recall and precision. They conclude from
their data,

The results for predicting user experiences
were surprisingly high. We expect those to
be hard to predict as the basic technique for
user experiences shows. The best option that
balances precision and recall was to combine
bag of words with bigrams, lemmatization, the
rating, and the tense. This option achieved a
balanced precision and recall with a F -measure
of 92 %.

When F3 is used to evaluate the techniques, then
instead, combining bigram, rating, and one sentiment
works best, with F3 = 96%.

Predicting app ratings:
Maalej et al make no statement also for the app-
rating predicting task about the relative importance
of recall and precision. However, it seems to Maalej
(in conversation in person), that for this task, pre-
cision and recall are equally important. Indeed, the
estimated β is 1.07. They conclude from their data,

Predicting ratings with the bigram, rating, and
one sentiment score leads to the top precision
of 92 %. This result means that stakeholders
can precisely select rating among many reviews.
Even if not all ratings are selected (false neg-
atives) due to average recall, those that are
selected will be very likely ratings. A common
use case would be to filter out reviews that
only include ratings or to select another type
of reviews with or without ratings.

For every one of the three at least somewhat hairy tasks, the
maximum F1 that any combination of techniques achieves is
92%, while the minimum Fβ , with the estimated β, that any
combination of techniques achieves is 96%, which is greater
than 92%, and the maximum such Fβ that any combination
of techniques achieves is 98%. Table II shows the values for
each evaluation measure for each hairy task. If one considers

TABLE II
COMPUTED Fβ VALUES

Task: F1 Fβ

Finding or Predicting

Bug reports 88% 98%
Feature requests 85% 96%
User experiences 92% 96%

the use of F1 as one treatment and the use of Fβ as another



treatment, then among the three hairy tasks, the differences
between the F1 and Fβ values in the three data rows of
Table II) is significant; a two-tailed T -test yields a T -value of
−3.90434 with a P -value of 0.017477, which is significant at
P < 0.05. Thus, the use of Fβ with an empirically estimated
β to evaluate the techniques produces stronger results than
does the use of F1 to evaluate the techniques.

Whenever, as with Maalej et al’s work, there is a collection
of more than one tool for the same hairy task, some additional
possibilities present themselves.

• If the task is one for which summarization is meaningful,
i.e., the output is in the same language as the input, then
if one tool, HR, has very high recall and summarizes, but
another, HP, has very high precision, then run HR first,
and run HP on HR’s output. This composition of HR and
HP should have both high recall and high precision.

• If no tool for the task has 100% recall, and each tool’s
output differs from that of all others in the collection,
then the union of the tools’ outputs should have higher
recall than any one tool, particularly if each tool’s false
negatives are different from those of the other tools in
the collection.

C. Quirchmayr et al

Quirchmayr, Paech, Kohl, and Karey [60] describe a semi-
automatic approach for the task of identifying and extracting
feature-relevant information about a CBS from NL users’
manuals about the CBS. Since the task “requires huge manual
effort”, which is “cumbersome, error-prone, and costly”, the
task is clearly hairy. They use recall, precision, and F1, called
“accuracy”, to evaluate the approach8.

Quirchmayr et al describe several multiti-step processes for
achieving the task. Most steps in the process are automatic, but
a few are manual. Thus, a process is basically a composition of
automatic tools with some human intervention. The empirical
study was to see which process, i.e., which composition
of automatic tools and manual intervention give the highest
precision and accuracy relative to a gold standard9, a document
for which the features are known. Quirchmayr et al appear
ready to accept a decrease in recall as the cost of achieving
higher precision and accuracy.

For feature identification, Quirchmayr et al consider first a
process, Id-E #1, which uses only the domain terms determi-
nation step. Then, they consider a process, Id-E #2, which uses
the sentence type determination step in addition to the domain
terms determination step. For feature extraction, they consider
a process, Ex-E #1, that is based on only Id-E #1. Then, they
consider a process, Ex-E #2, that is based on only Id-E #2.
Finally, they consider a process, Ex-E #3, that is based on Id-E

8The formula for F1 that they give in their paper lacks the multiplier 2
in the numerator. So one would expect the reported values to be one half of
what they should be, but the reported values lie, correctly, between those of
recall and precision. Moreover, they match the values computed by this author
for building Table III. Therefore, they probably used the correct formula to
compute the F1 values.

9There are not enough data in the paper to estimate β from the construction
of the gold standard.

#2, with the addition of the syntactical relevancy determination
step. Their paper’s Table 1 shows the R, P , and F1 values for
each process, Id-E #1, Id-E #2, Ex-E #1, Ex-E #2, and Ex-E
#3.

For feature identification, in going from Id-E #1 to Id-E
#2, the increase in precision and accuracy is achieved with
no change to recall. For feature extraction, in going from Ex-
E #1 to Ex-E #2, the increase in precision and accuracy, of
7.0% and of 3.8%, respectively, is achieved with no change
to recall, but in going from Ex-E #2 to Ex-E #3, the second,
additional increase in precision and accuracy, of 11.7% and of
5.4%, respectively, is achieved at the cost of a 2.1% decrease
in recall. For each identification task, the paper reports the
process with the highest accuracy as the one to use. Thus,
they recommend Id-E #2 for feature identification and Ex-E
#3 for feature extraction.

The irony of all this effort to increase precision and accuracy
is that it was largely unnecessary. For feature identification,
the recall of Id-E #1 was already at the maximum, at 98.75%,
and for feature extraction, the recall of Ex-E #1 was already
at the maximum, at 99.06%. Each of these recalls probably
beats the HAHR for its task! For feature identification, each
of the precision and the accuracy of Id-E #2 is higher than
that of Id-E #1, while the recall of Id-E #2 unchanged from
that of Id-E #1. For feature extraction, each of the precision
and the accuracy of Ex-E #2 is higher than that of Ex-E #1,
while the recall of Ex-E #2 unchanged from that of Ex-E #1.
In other words, for each task, going from the first process to
the second yielded increased precision and accuracy without
decreasing recall. So, these second processes should be used;
there’s no harm in increasing precision and accuracy if recall
is not sacrificed.

However, for feature extraction, each of the precision and
the accuracy of Ex-E #3 is higher than that of Ex-E #2, while
the recall of Ex-E #3 is less than that of Ex-E #2. So, Ex-E
#3 should not be used. Had Quirchmayr et al used as their
accuracy measure even F5, they would have seen that Ex-E
#2 is the process to use for feature extraction.

Table III shows for Each Task, FI (Feature Identification)
and FE (Feature Extraction), for each process, Id-E #1, Id-E
#2, Ex-E #1, Ex-E #2, and Ex-E #3, the values of P , R, F1,
F5, and F10. Observe how close F5 and F10 are to R in each
row of the table.

TABLE III
COMPUTED Fβ VALUES

Task P R F1 F5 F10

FI Id-E#1 0.7354 0.9875 0.8430 0.9746 0.9842
FI Id-E#2 0.8069 0.9875 0.8881 0.9791 0.9853
FE Ex-E#1 0.7723 0.9906 0.8679 0.9799 0.9878
FE Ex-E#2 0.8302 0.9906 0.9033 0.9833 0.9887
FE Ex-E#3 0.9406 0.9694 0.9548 0.9683 0.9691

D. Related Work Basing Their Evaluations on F2

The results of each of the related work cited in Section
VIII-B, which used f2 or F2 to come to a favorable conclusion



about its tool can be strengthened by the use of fβ or Fβ ,
respectively, with β being 5, 10, or even larger.

For example, consider the results of Arora et al that were
considered mediocre [48]. Their results are actually very good,
with recall in the range of 0.91 to 1 and precision in the range
of 0.85 to 0.94. Table IV extends their Table 6, which uses
f2, with f5, f10, F5, and F10 values. Each f2 value lies about
2
3 of the way from its P value to its R value. Each f5 value
is a bit closer to its R value, and each f10 is yet even closer
to its R value. Each F5 = f25 value is already very nearly its
R value, and each F10 = f100 value is almost exactly its R
value. Given the empirically estimated β of 73.60 for a tracing
tool, these high βs may not be unrealistic.

In a similar fashion, the results of each of Cleland-Huang
et al [44], Yang et al [23], and Delater and Paech [49] are
improved when f5 or F5 is used instead of its f2 or F2,
respectively.

X. TOOLS USED BY HUMANS

There is evidence that many a tool developer is correctly
evaluating not just the tool he or she develops, but also how
well do humans use the tool to achieve higher recall than the
tool itself is able to.

Cuddeback, Dekhtyar, Hayes [61] have developed several
tools for the hairy task of identifying trace links between
utterances in the set of documents, many of which are NL
documents, for the development of a CBS. They consider the
role of the user of these tools and how the user’s perceptions,
knowledge, and behavior affect recall and precision. When
comparing two tools whose recall differs, they have noticed
that the RAs vetting the poorer of the two tools did a better job
and achieved an overall higher recall than the RAs vetting the
better of the tools. It is as though the RAs using the poorer tool
can sense the poor quality of the tool and rise to the occasion.
So perhaps a good approach would be to run a high-recall
tool to get a list of proposed links, divide the list randomly
into two equal-sized lists, that will necessarily look as though
they came from a low-recall tool, let one group of RAs vet
one list, let another group vet the other list, and then combine
their vetted links. This method is an attempt to get the best of
both worlds.

Along the same line, Zeni, Kiyavitskaya, Mich, Cordy, and
Mylopoulos [8] have shown in an experiment that a high-
precision, low-recall tool for annotating laws helps novices
achieve 96% recall relative to legal experts’ gold annotations,
which establishes, in essence, the task’s HAHR. Perhaps the
high precision helped the novices learn what is right, so that
each could use his or her intelligence correctly to achieve high
recall.

More and more builders of tools for hairy tasks are evalu-
ating their tools by comparing humans working with the tool
on documents with humans working manually on the same
documents [30], [56], [62], [63].

XI. HUMAN FACTORS IN TOOL EVALUATION

The evaluation of a tool needs to consider the willingness
of humans to use the tool. Huang et al do warn that [44]

Unfortunately, prior studies have demonstrated that
users lose confidence in a traceability tool that
returns imprecise results. Furthermore human error
is introduced when human analysts are asked to
evaluate a long list of candidate links . . . .

while citing [64].
This clear drawback to tools with any appreciable impre-

cision will have to be addressed. The cost of low precision
in Section VI is an attempt to measure this drawback. It may
be necessary to repeatedly remind the user of any high-recall,
low-precision tool for a hairy task being applied to a CBS
with HD requirements of

• the relative costs for this task of finding a true positive
manually and of rejecting a tool-provided false positive,

• the tool’s empirically validated high recall, and if it is
higher than the empirically validated HAHR for the task,
that he or she has no other work to do other than rejecting
false positives,

• the tool’s empirically validated summarization, so that if
he or she has some more work to do, then it is with a
smaller document, and

• the costs of the manual alternatives.
In any case, if an important hairy task is to be performed
on NL documents for a life-critical CBS; there is a tool
for the task whose empirically determined β is, say, 50; the
tool’s recall is significantly higher than the task’s HAHR, as
measured by domain experts; but the tool’s precision is low,
then the developers’ failure to use the tool, even in the face of
loud complaints about its low precision, is unethical and leaves
the developers liable for malpractice for failure to apply known
best practices when human lives are at stake.

XII. CONCLUSIONS

Most RE and SE tasks involving NL documents are hairy
tasks, and therefore, they beg for tool support. Some of these
tools must achieve the task’s HAHR, close to 100% recall,
especially when the task is being conducted on the documents
of a CBS with HD requirements.

Without carefully considering the requirements for a tool
for a hairy RE or SE task, we, in the RE and SE fields, have
evaluated many of these tools with the same recall, precision,
and F -measure that are used in the NLP and IR fields. In
those fields, for many a task, precision is more important. For
a different many a task, precision is as important as recall; so
F1 is the correct composite of recall and precision. However,
there are hairy RE and SE tasks that might be performed in the
context of a HD CBS, and for many of them, recall is critical.
Moreover, for the typical of these tasks, the ratio of the time
to manually find a true positive over the time to manually
reject a false positive is probably at least 10. Even better is
to empirically determine this ratio for the task and to use this
value as β in Fβ .

Our habit of using traditional measures by default must stop.
We, in effect, must do RE for each hairy task, to understand
which measures are appropriate to evaluate any tool for the



TABLE IV
COMPUTED Fβ VALUES

With Glossary Without Glossary

Case P R f2 f5 f10 F5 F10 P R f2 f5 f10 F5 F10

Case-A 0.94 0.91 0.92 0.92 0.91 0.92 0.91 0.94 0.91 0.92 0.92 0.91 0.92 0.91
Case-B 0.93 1 0.98 0.99 0.99 0.99 0.99 0.93 1 0.98 0.99 0.99 0.99 0.99
Case-C 0.91 0.98 0.96 0.97 0.97 0.98 0.98 0.91 0.98 0.96 0.97 0.97 0.98 0.98
Case-D – – – – – – – 0.85 0.96 0.92 0.94 0.95 0.96 0.96

task. We must then do the empirical studies that are needed to
obtain all values, including the HAHR for the task, β for the
task or for the tool, the various costs, the times for steps of the
gold-standard construction process, etc., that are used in these
measures. Finally, we must use these measures to evaluate the
tool. If, in the end, F10 is determined to be appropriate, then
using F2 is only a step in the right direction.
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P. Grünbacher, and G. Antoniol, “The quest for ubiquity: A roadmap
for software and systems traceability research,” in 2012 20th IEEE
International Requirements Engineering Conference (RE), 2012, pp. 71–
80.

[13] V. Gervasi and D. Zowghi, “Supporting traceability through affinity
mining,” in Proceedings of the IEEE International Requirements En-
gineering Conference (RE), 2014, pp. 143–152.
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