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Abstract—A hairy requirements or software engineering task
involving natural language (NL) documents is one that is not
inherently difficult for NL understanding humans on a small
scale but becomes unmanageable in the large scale. A hairy task
demands tool assistance. Because humans need far more help in
carrying out a hairy task completely than they do in making the
local yes-or-no decisions, a tool for a hairy task should have as
close to 100% recall (that the tool finds all desired information)
as possible, even at the expense of high imprecision (that not all
the information that the tool finds is desired). A tool that falls
short of 100% recall may even be useless, because to find the
missing information, a human has to do the entire task manually
anyway.

Any such tool based on NL processing (NLP) techniques
inherently fails to achieve 100% recall, because even the best
parsers are no more than 91% correct. Therefore, to achieve
100% recall in a tool for a hairy task, it needs to be based on
something other than traditional NLP.

The reality is that a tool’s achieving exactly 100% recall, which
may be impossible anyway, may not be necessary. It suffices for
a human working with the tool on a task to achieve better recall
than a human working on the task entirely manually.

This paper describes research whose goal is to discover and
test a variety of non-traditional approaches to building tools for
hairy tasks to see which, if any, allows a human working with
with the tool to achieve better recall than a human working
entirely manually.

Index Terms—abstraction finding, ambiguity finding, F -
measure, false negatives, false positives, hairy task, manual task,
natural language documents, precision, recall, tool-assisted task,
tracing

I. INTRODUCTION

A hairy requirements or software engineering (RE or SE)
task involving natural language (NL) documents is one that
requires NL understanding and is not difficult for humans on
a small scale but is unmanageable when it needs to be done to
the documents or artifacts that accompany the development of
large software systems. [1]. Examples of hairy tasks include
finding abstractions, ambiguities, or trace links [2].

Humans understand NL well enough that a human has the
potential of achieving for the hairy task 100% correctness, i.e.,
finding all and only the desired information. While a hairy
task itself is generally not overly complex, the sheer size of
the documents for a real-life software development makes the
task burdensome enough that tool assistance is needed for a
human to do complete job [3]. Such a tool is a tool for a hairy
task.

The rest of this paper assumes that the tool at hand is being
used to carry out a hairy task for the development of a large
real-life system [1].

II. LIMITATIONS OF TOOLS FOR HAIRY TASKS

The typical tool for a hairy task is built using NL processing
(NLP), i.e., with parsers and parts-of-speech taggers [2], [3].
Even the best parsers are no more than 85–91% accurate [4].
No NLP-based tool can be better than its parser. Thus, when
faced with the inherently ambiguous and anomalous NL text
that is found in real-life software development documents, no
NLP-based tool will achieve more than 85–91% correctness.
This limitation is termed the fundamental limitation of NLP-
based tools for hairy tasks.

III. RECALL AND PRECISION TO EVALUATE TOOLS

The measures by which a tool for a hairy task is evaluated
are recall (the percentage of the correct answers that the tool
finds) and precision (the percentage of the found answers that
are correct). Thus, “correctness” in Section I, capturing all
and only the desired information, is a composite of recall and
precision. Often, the F -measure,

F = 2× P ×R

P + R
, (1)

the harmonic mean of recall, R, and precision, P , is used as a
single summary measure. It captures the notion of correctness
in Section I.

Because an NLP-based tool’s finding a correct answer in
NL text depends on parsing the text correctly, the fundamental
limitation of NLP-based tools for hairy tasks means that an
NLP-based tool for a hairy task cannot achieve better than
85–91% recall.

IV. RECALL VS. PRECISION

Many a tool for a hairy task is reported in the literature as
having more precision than recall [5]. Sometimes, that a tool
has a precision of greater than 85% while having a recall of
as low as 65% is reported as satisfactory [6]. (See Section IX
for more details.) However, for a typical hairy task, finding a
missing correct answer (a false negative) is at least an order
of magnitude harder than rejecting as nonsense an incorrect
answer (a false positive). Finding a missing correct answer
generally requires examining all the input documents in detail,



while rejecting an incorrect answer generally requires under-
standing only the incorrect answer and the input documents
at only a general level. For example, Kong, Huffman Hayes,
Dekhtyar, and Holden show that humans are much better at
validating tool-proposed trace links than they are at finding
links in documents [7]. In this author’s experience, for a typical
hairy task, recall is at least an order of magnitude more difficult
than precision and should be weighted accordingly.

There are weighted variations of the F -measure,

Fβ = (1 + β2)× P ×R

(β2 × P ) + R
, (2)

called the Fβ-measure. Here, β is the ratio by which it is
desired to weight R more than P . Therefore, for a hairy
task in which finding a true positive requires n times the
time required to reject a false positive, β should be n. Note
that the simple F -measure is F1. Note also that the formula
for Fβ ends up multiplying P by the dominating β2 in both
the numerator and the denominator. Thus, as n grows, very
quickly Fβ approaches R, and P becomes irrelevant.

Why is there such an emphasis on precision? Precision is
important in the information retrieval area from which are
borrowed many of the algorithms used to construct the tools
for hairy tasks [3], [8]. In information retrieval, users of a
tool with low precision are turned off by having to reject
false positives more often than they accept true positives. In
some cases, only a few or even only one true positive is
needed. Perhaps the force of habit drives people to evaluate
the tools for hairy tasks with the same criteria that are used for
information retrieval tools. Also, “precision” sounds so much
more important than “recall”, as in “This output is precisely
right!”.

V. REQUIREMENTS FOR 100% RECALL

When a hairy task is applied to the development of software
with high dependability requirements, 100% recall is essential.
If a tool for the task achieves less than 100% recall, then the
task must be done manually on the whole of the documents
to find the answers that the tool does not deliver. Therefore,
in the last analysis, such a tool is really useless1.

VI. TRUE RECALL GOAL FOR A TOOL FOR A HAIRY TASK

While 100% recall for a hairy task is nice in theory, there
are several problems that get in the way of achieving 100%
recall for a tool for the hairy task:

1) Achieving 100% recall is probably impossible, even for
a human, as is finding all bugs in a program.

2) Even if achieving 100% recall were possible, we have
no way to know if we have succeeded, because the only
way to measure recall for a tool for is to compare the

1Of course, one can argue that such a tool is useful as a defense against a
human’s less-than-100% recall when the tool is run as a double check after
the human has done the tool’s task manually. However, it seems to this author,
that if the human knows that the tool will be run, he or she might be lazy in
carrying out the manual task and not do as well as possible. Empirical studies
are needed to see if this effect is is real, and if so, how destructive it is of
the human’s recall.

output of the tool against totally correct output, which
can be made only by humans, who may miss some, for
the very reason that a tool is needed. It is like knowing
that the last bug has been found.

Let us call what humans can achieve when performing the task
manually under the best of conditions the “humanly achievable
high recall (HAHR)”. So, all that is really necessary is to show
that the tool for the task measurably achieves better recall than
the HAHR. If this achievement can be demonstrated, then a
human will trust the tool and will not feel compelled to do
the tool’s task manually to look for what the human feels that
the tool failed to find. Thus a tool for a hairy task must be
evaluated by comparing the recall of humans working with
the hairy tool with the recall of humans carrying out the task
manually [9], [10].

VII. NEW APPROACH NEEDED FOR TOOLS

Since an NLP-based tool cannot achieve better than 85–91%
recall, perhaps it is time to try other approaches to design a
tool for a hairy task:

1) One possible approach is to partition the task into two
parts [11]:

a) a clerical part that can be done algorithmically with
100% recall

b) a hard part that must be done manually.
The hope is that the remaining manual task is signif-
icantly easier than the original or that it can be done
on significantly reduced documents. The tool and people
cooperate to achieve higher overall recall than is possible
for either working alone [12].

2) Another possible approach is to build a tool for the
inverse task, which returns for removal, parts of the input
that cannot possibly be relevant. The hope is that the
inverse tool has 100% precision (so that only irrelevant
stuff is removed) and that what is left for manual
processing is significantly smaller than the original [11],
[13], [14].

Part of the research is to identify other approaches.

VIII. RECENT AND NOT SO RECENT PROGRESS

Leading up to this research were several discoveries often
made in the process of doing other work.

Goldin built AbstFinder, a tool to help identify abstractions
in NL text for use in the initial stages of RE [9]. The two
lessons learned from this work that impact the proposed
research are:

1) As Goldin had worked in signal processing in the past,
she used, not an NLP approach, but a signal processing
approach and treated each sentence, not as a sequence
of space-character-separated words, but as a sequence
of characters, some of which happen to be spaces.
She proved, in effect, that an NLP approach was not
absolutely essential for such a tool.

2) Goldin evaluated AbstFinder by comparing her operat-
ing AbstFinder for 8 hours on an industrial RFP she



had not seen before to three domain expert requirements
analysts’ (RAs’) examining the same RFP over one
month. She found all abstractions that the three RAs had
found and then some; i.e., her recall in 8 person hours
was better than that of the three domain expert RAs in 3
person months, about 65 times longer. Of course, there
is no way to know the absolute recall.

Tjong built SREE, a tool to help find ambiguities in NL text,
for use on requirements specifications in the analysis stages of
RE [11]. The three lessons learned from this work that impact
this proposed research are:

1) Tjong divided the ambiguity identification task into two
parts:

a) a clerical part that can be done algorithmically
with 100% recall, but probably with a lot less than
100% precision, with SREE, a lexical-analysis-
based tool. SREE finds 100% of all ambiguities
that cannot be present without the occurrence of
specific keywords, e.g., the “only” ambiguity can
occur only when the word “only” is used. A tool
that finds every sentence with “only” finds 100% of
the “only” ambiguities, but has high imprecision,
because not every sentence with “only” suffers the
“only” ambiguity. These kinds of ambiguities are
said to be in SREE’s scope.

b) a hard part that must be done manually by a human
RA who is attuned to spotting ambiguities in NL
text. The RA is left to find manually all instance of
only those ambiguities, e.g., the plural ambiguity,
that are not in the scope of the lexical-analysis-
based tool.

2) She realized that manually rejecting as a false positive a
tool-found potential ambiguity — necessarily in SREE’s
scope — that is not actually ambiguous is an order of
magnitude faster than manually finding any true positive
ambiguity outside SREE’s scope. Moreover, a tool-found
potential ambiguity can be manually rejected as a false
positive with more certainty than can a true positive
ambiguity be manually found. Therefore, if a tool for
a hairy task has 100% recall, it is OK that it has also
low precision.

3) Her method to evaluate SREE was to to do a post-hoc
analysis of how a SREE-assisted search for ambiguities
in an industrial SRS (software requirements specifica-
tion) compares with a totally manual search for ambi-
guities in the same SRS. She determined that the time
to use SREE to find ambiguities in its scope, including
rejecting false positives plus the time to manually find
the remaining ambiguities outside SREE’s scope is less
than the time to manually find all ambiguities.

Berry, Gacitua, Sawyer, and Tjong recognized the gist of
the argument (but using a slightly different vocabulary) given
in Sections I–VII of this paper and asked that RE or SE tool
developers report to the authors any tools that they thought

met the goals stated in the publication [3]. The last paragraph
of Section IX lists these reported tools.

Lan empirically compared the recall of six WordNet-based
and two context-based algorithms for finding synonyms in
requirements documents to determine that word co-occur-
rence-based methods came the closest, but not all the way,
to achieving 100% recall [15].

IX. LITERATURE REVIEW AND IDEAS FOR APPROACHES

Some of the relevant literature is that cited in Sections I–
VIII.

A. Tracing and other RE Tools

Many developers of tracing tools have recognized that recall
is more important for a tracing tool than precision [16]–[20].
In fact, Cleland-Huang, Czauderna, Gibiec, and Emenecker,
who use a machine-learning rather than an NLP approach to
tracing, have stated explicitly that recall is more important
than precision for tracing by their use of F2 rather than F1

for evaluation of their approach. However, there are still some
developers of tracing tools and similar tools who appear to
regard precision as equally or more important than recall, at
least part of the time, or that use an F -measure that equates
precision and recall [6], [10], [21]. In addition, developers of
tools for other hairy tasks such as a NL abstraction finder,
a NL requirements finder, a NL requirements categorizer, a
NL sentiments finder, a NL term finder appear to be favoring
precision over recall, use an F -measure that equates precision
and recall, or describe a recall less than 95% as acceptable
[5], [22]–[30]. Gleich, Creighton, and Kof say that their goal
was 100% recall, but they accepted much lower recall as
satisfactory, arguing correctly that humans do about the same
[31].

Delater and Paech propose and implement in a prototype
tool a new tracing approach in which data from a developer’s
current task are mined to build a link between the requirements
and the code involved in the task [32]. An empirical evaluation
of the approach and the tool achieves 90–94% recall compared
to human-determined gold links, not quite the 100% recall
that they had aimed for. Hübner, also working with Paech, is
building on the work of Delater and Paech. He proposes two
additional sources for link-building data:

1) to link a pair of specific artifacts, existing links in the
context of the artifacts are examined, and

2) to discover artifacts that are likely to need a link between
them, each developer’s interaction logs are examined to
discover the artifacts that he or she touched during a
task [33].

Moreover, he suggests that links be proposed to developers
as they are doing a task, for immediate vetting. Immediate
vetting improves both recall and precision, as vetting occurs
right when the task suggesting the link is being done. Also, it
makes the links available for use during the development by
the very developers who are causing them, thus increasing the
motivation of the developers to do the link vetting immediately
[34]. Hübner is only in the early stages of his research and



has not yet evaluated the recall and precision of his proposed
tool. However, the approach he is taking is new, and it looks
promising for improving on Delater and Paech’s 90–94%
recall.

B. Tools used by Humans

Cuddeback, Dekhtyar, Hayes [35] have developed several
tools for the hairy task of identifying trace links between utter-
ances in the set of artifacts, many of which are NL documents,
for the development of a software system. Typically, such a
tool uses NLP methods to find different utterances in one or
the set of artifacts that appear to be talking about the same
thing. For each such pair of utterances, a human RA is shown
the utterances and is asked to vet the pair as being worthy of
a link. Each such tool has a recall, the percentage of all links
that it finds, and a precision, the percentage of the pairs it
found that were vetted to be links. The precision of a typical
of these tools is higher than its recall, which is contrary to the
goal of the HAHR.

Cuddeback et al. have recently begun to consider the role
of the user of these tools and how the user’s perceptions,
knowledge, and behavior affect recall and precision. When
comparing two tools whose recall differs, they have noticed
that the RAs vetting the poorer of the two tools did a better job
and achieved an overall higher recall than the RAs vetting the
better of the tools. It is as though the RAs using the poorer tool
can sense the poor quality of the tool and rise to the occasion.
So perhaps a good approach would be to run a high-recall
tool to get a list of proposed links, divide the list randomly
into two equal-sized lists, that will necessarily look as though
they came from a low-recall tool, let one group of RAs vet
one list, let another group vet the other list, and then combine
their vetted links. This method is an attempt to get the best of
both worlds.

Along the same line, Zeni, Kiyavitskaya, Mich, Cordy, and
Mylopoulos [10] have shown in an experiment that a high-
precision, low-recall tool for annotating laws helps novices
achieve 96% recall relative to legal experts’ so-called gold
annotations, which establishes, in essence, the HAHR. Perhaps
the high precision helped the novices learn what is right, so
that each could use his or her intelligence correctly to achieve
high recall.

More and more builders of tools for hairy tasks are evaluat-
ing their tools by comparing humans working with the tool on
artifacts with humans working manually on the same artifacts
[26], [36], [37].

C. Nocuous Ambiguity Finding

Yang, De Roeck, Gervasi, Willis, and Nuseibeh experi-
ment with a machine-learning (ML) approach to recognizing
nocuous2 anaphoric ambiguity [38]. They had as one of
their goals the achievement of 100% recall for this kind of
ambiguity, “even at the expense of some imprecision” [38].
Thus, their algorithm is designed to maximize recognition of

2“Nocuous” is the opposite of “innocuous”.

nocuous instances of anaphoric ambiguity even at the cost of
delivering more innocuous instances. In addition, to evaluate
their approach, they use F2, in which recall is weighted twice
what precision is, as their Fβ measure. Their ML algorithm
achieves 99.37% recall, very close to the 100% goal, while
paying 82.01% precision. Their algorithm achieves this recall
in part by by having two thresholds, playing off against each
other, rather than only one. Perhaps, ML should be considered
as basis for constructing tools with the HAHR for hairy tasks.
Experience with ML has shown that it is very successful for
some tasks and very unsuccessful for others [39].

D. Finding Privacy Violating Disclosures

Finding unauthorized disclosures of private information in
the code of mobile applications, i.e., in apps, is a hairy task.
Moreover, for someone whose job is to find and prevent
all such disclosures, this task must be done with 100%
recall. The traditional approach, taint analysis, searches the
code for an app for transmissions to the outside world. If a
transmission point is transmitting information derived from
internal information that is known to be privacy sensitive, the
transmission is flagged as illegitimate.

Tripp and Rubin observe that taint analysis yields false
positives since a derivative of sensitive information is not
necessarily sensitive itself [40]. Moreover, release of sensitive
information is often essential for an app’s functionality [41].
The result of this observation is that taint analysis yields many
false positives that require manual inspection and thus has low
precision. In addition, taint analysis may not have good recall,
having achieved only 51% when applied to some real-life apps.
Tripp and Rubin use the F -measure, combining recall and
precision, as the measure of accuracy; thus, taint analysis has
low accuracy. Finally, taint analysis is expensive to run. Thus,
over all, Tripp and Rubin consider taint analysis not to be very
useful.

To solve this low-accuracy problem, Tripp and Rubin pro-
pose and test a Bayesian (machine-learning) approach to learn
which transmissions are sending truly sensitive information.
This approach appears to be faster than taint analysis and
ends up achieving high recall and high precision, and thus
high accuracy. When they compared taint analysis with their
Bayesian approach on the 65 most popular apps from Google
Play, they found that

• taint analysis achieved 100% precision and 51% recall,
and thus an accuracy of 67%, and

• the Bayesian approach achieved 96% precision and 100%
recall, and thus an accuracy of 98%,

a significant improvement in recall and accuracy with a minor
drop in precision.

However, this author believes that manually finding a true
positive sensitive transmission takes significantly more time
than manually inspecting and rejecting a false positive. His
guess is that manually finding a true positive requires about
5 times the time that manually rejecting a false positive. If
this guess is true, then the Fβ-measure that should be used to
evaluate the taint analysis and the Bayesian approach is F5,



which is very close to the recall value. With F5, the Bayesian
approach fares even better than taint analysis than with F1.

E. Reports of Tools with Close to 100% Recall

As a result of the publication by Berry, Gacitua, Sawyer,
and Tjong [3], people e.g., Rene Meis [13] and Garm Lucassen
[42], have begun reporting to the author that work that they
had done is what the publication is calling for.

X. RESEARCH OBJECTIVE

The long-term research objective is to find and validate the
effectiveness of new approaches for building tools for a variety
of hairy RE or SE tasks, tools that achieve better than the
HAHR.

The near-term objective is to build a working prototype tool
for one hairy RE or SE task, identified by the research, and
to empirically validate that the tool achieves better than the
HAHR. It will be necessary to show that humans using the tool
to do the task achieve a higher overall recall than do humans
doing the task completely manually.

Achieving the near-term objective is a reasonable first step
for achieving the long-term objective.

XI. RESEARCH PLAN

The research plan consists of four steps.
1) A systematic literature survey will be conducted to find

a) recall-tested tools for hairy RE or SE tasks and
b) alternative tool and task architectures for hairy RE

or SE tasks that have the potential of achieving the
recall objectives.

Section IX of this paper is a very preliminary pilot for
the systematic survey.

2) Based on what is learned in that survey, a hairy RE or
SE task will be chosen for further investigation, namely
that judged most likely to be doable with a tool with
better than the HAHR.

3) Then, prototype tools will be developed for the identified
hairy task. These prototypes will need to be adjusted
until they meet the recall requirement.

4) Finally, humans conducting the task manually will be
compared empirically with humans conducting the same
task with the help of the prototype tools.

XII. CONCLUSIONS

This paper has described the concept of hairy RE or SE
tasks and has argued that tools for hairy tasks need to have
as close to 100% recall as is humanly possible, what is called
the HAHR. It has observed that an NLP-based tool, being
based on an imperfect parser, can never achieve better recall
than its parser’s accuracy, which is at best 85–91%. Therefore,
to achieve the HAHR for a tool for a hairy task, we need
to consider other bases for the tool. The paper describes a
research program to find these bases.

If the research is successful, a number of benefits will arise:
1) We will have available new methods with which to build

tools for hairy RE or SE tasks that provide greater recall

than current tools and which, when used properly, help
the human user to do a demonstrably better job at a
hairy RE or SE task than he or she can by doing the
task manually.

2) Researchers building tools for hairy RE or SE tasks
will be more likely to evaluate their tools with the
more relevant recall metric than with the less relevant
precision metric.

3) RE or SE practitioners will have better tools to use in
their daily work, which consists of many hairy tasks.
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