G and D Requirements Overview

Daniel M. Berry
Marcia Lucena
Victoria Sakhnini

Realities About Software
Development Projects

Everyone says

“We know that we should work out all the
requirements before we start to code,

but we don’t have time!

We gotta get started coding; otherwise we will
not finish in time!”

Wrong!

The problem is that if you start coding before
you work out all the requirements, then the cost
of correcting the code when a missing
requirement is finally discovered is 10-200 times
— depending on when the defect is found — the
cost of writing the code with that requirement
already specified.

The Data Show

200

150

=
|

o
o
|

30

Relative cost to fix fault

4 10
1, 2 8 2 |

Reqgs Specs Plan Design Code Integ Maint

o

Phase in which fault is detected and fixed

Start Coding Later, Save Time!

A: Starting coding before all the requirements
are worked out and specified completely means
that you finish coding much later than if you had
delayed the starting of the coding until after all

the requirements are worked out and specified
completely!

Start Coding Later, Save Time!

A: In other words:

e start coding later, finish earlier

e start coding earlier, finish later

This truth goes against every manager’s guts, so
no one delays coding until after the

requirements are completely specified (even
though the data are clear!).

But But But...

B: But but but.. requirements keep coming with
no end in sight. Users think of new requirements
all the time. So what difference does it make?
We're going to have to deal with new
requirements after the coding is done anyway?

That’s absolutely right. In fact, both A and B are
right! So, now what?

Two Different Kinds of
Requirements

You see, each of A and B is talking about a
different set of requirements!

* Scope DetermininG Requirements (G
requirements) that keep coming and
phenomenon B

» Scope DetermineD Requirements (D
requirements) that are expensive to fix and
phenomenon A

Pocket Calculator Example

* Pocket calculator: with +, -, *, and /

 Grequirements: +, -, *, /, and **

* Drequirement: NZD: “in /, the denominator
cannot be 0”

If You Start Coding Too Soon

So if you start coding the G requirement /, and
you are not aware of its D requirement, NZD,
you will write code that will break if ever / is
presented with a 0 denominator.

At that point fixing the code will cost 10-200
times what it would have cost to have just
specified NZD upfront so that coding takes it
into account from the beginning.

The G Requirements Are Different

* Yes, if you now add a new G requirement,
particularly one that is not anticipated, there
is a chance that it will clash with the existing
architecture, and you’ll have to do an
expensive restructuring.

e But that’s unavoidable. And that’s the sort of

thing iterative and agile methods are designed
to deal with.

The G Requirements Are Different

* And, if you have to restructure, it will cost 10-
200 times more than it would have cost if you

had included the G requirement from the
beginning.

* There is evidence that throwing out the code

and starting all over with all the requirements
is much cheaper.

 But no manager’s guts permits doing that!

Inescapable Fact Affecting D
Requirements

The basic fact is that there is no way that you
can write any code without knowing what its
requirements are, i.e., what it is supposed to do,
even if you have to decide what the
requirements are as you are coding.

It’s inevitable, like death and taxes.

So the nature of D requirements is:

Once you have picked a scope for your next
sprint or iteration, i.e., a particular set of G
requirements, the D requirements associated
with the chosen G requirements are there even
if you have not written them down.

The Nature of D Requirements:

If you start coding with them missing from the
specification, and you discover their existence
during coding, you will have to specify the
missing D requirements before you can finish
the coding, at 10 times the cost of having
determined them before coding.

So the nature of D requirements is:

This is a stupidly expensive way to discover and
specify D requirements, because they were

already apparent when specifying them was
much cheaper.

Worse Comes to Worst

If worse comes to worst, and as very typically,
you deliver the code before a D requirement is
discovered, then a user — the best defect finder
in the universe — will eventually discover it, ...

and it will cost 100 times more to fix it than
having written it down up front.

More Detailed Example

In a system for processing payments and taxes
from and for a national insurance plan (e.g.,
social security in the US),

* any place in the requirements a person's
national insurance number (NIN) is used, the
requirement will be assuming that each
person has a unique NIN.

Exceptions - D Requirements

There are a number of exceptions that have to
be guarded against:

* the NIN is not unique

* the NIN is invalid in some way

* (perhaps you can think of more)

Exceptions - D Requirements,
Cont’d

* the NIN is not unique:

—a person has more than one NIN

—a person has no NIN
—the NIN is shared by at least two people

Exceptions - D Requirements,

Cont’'d

* the NIN is invalid in some way:

—the NIN has never been issued

—the NIN is not syntactically correct (has a

character t

—the NIN fai
wrong)

nat cannot be in a number)

s validity check (check sums are

Exceptions - D Requirements,
Cont’d

For each of these exceptions, E, one D
requirement is that £ has not happened.

Examples of G Requirements for
this System

 Requirements arising from using the NIN as an
income tax payer identification number

* Requirements arising from using the NIN as a
vaccination certificate identification number

See how these requirements are independent of
the G requirements of the original system.

D and G Requirements Partition
Requirements

Every requirement of a system should be either
a D ora Grequirement, ...

Because every requirement is dependent or
independent of the requirements that form the
scope of the system.

Classifying Defect Tickets for the

Development of a System S
Each defect ticket should be about either

* a defective implementation of some
requirements

* missing requirements, each of which is either
a D or G requirement

Classifying Defect Tickets for S,
Cont’d

Examples of defects from an incorrect
implementation of some requirements:

* checking thaty !=letter O instead of number O

* used the wrong variable in an expression

Classifying Defect Tickets for S,
Cont’d

Examples of defects from a missing D
requirement

e system crashes when user enters a
nonexistent NIN

e system crashes when user enters a short NIN

e user that enters a wrong NIN gets into another
person's account

Classifying Defect Tickets for S,
Cont’d

Examples of defects from a missing G
requirement

* system crashes when user tries to request a
tax refund from er income tax account

e system crashes when user tries to add a new
jab to er vaccination record

Alternative Names for D and G

Requirements
Use Case: Variation/Exception Use Case: New/Independent
Internal External
Non-E-Type E-Type
Req Needed to Build the System Right Req Needed to Build the Right System
Dependent/Implied/Interacting Independent/Axiom/Orthogonal
Update New Release
Revision (Vx.Rn = Vx.Rn+1) New Version (Vx.Rn - Vx+1.R1)
Maintain Consistency Add New Feature
System Req Environment/World Req

White Box Req Black Box Req

Questions?

