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ABSTRACT
As shown by recent fatal accidents with partially autonomous vehi-
cles (AVs), the responsible human in the vehicle (RHitV) can become
inattentive enough not to be able to take over driving the vehicle
when it gets into a situation that its driving automation system is
not able to handle. As shown by aviation’s experience and various
simulation studies, as the level of automation of an AV increases, the
tendency for the RHitV to become inattentive grows. To counteract
this tendency, an AV needs to monitor its RHitV for inattention and
when inattention is detected, to somehow notify the RHitV to pay
attention. The monitoring software needs to tradeoff false positives
(FPs) and false negatives (FNs) (or recall and precision) in detecting
inattention. FNs (low recall) are bad because they represent not
detecting an inattentive RHitV. FPs (low precision) are bad because
they lead to the RHitV’s being notified frequently, and thus to the
RHitV’s ignoring notifications as noise, i.e., to degraded effective-
ness of notification. The literature shows that most researchers
just assume that FPs and FNs (recall and precision) are equally bad
weight them the same in any tradeoff. However, if as for aircraft
pilots, notification techniques can be found whose effectiveness
do not degrade even with frequent repetition, then many FPs (low
precision) can be tolerated in an effort to reduce the FNs (increase
the recall) in detecting inattention, and thus, to improve safety.
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1 INTRODUCTION
Safety-critical systems in nuclear power, medicine, and transporta-
tion rely on vigilant operators to guarantee low risk. However, as
automation replaces traditional human roles, operators are forced
to adapt and develop new skills. Whether or not this transformation
will lead to greater system safety is not yet clearly established. A
National Transportation Safety Board (NTSB) report discovered
that in 31 of the 37 serious accidents involving U.S. air carriers from
1978–1990, inadequate attention played a major role [8]. Pilots or
crew members neglected to govern instrumentation, verify inputs,
or communicate caught errors. During the period of review by
NTSB, the aviation industry was undergoing significant changes
in automation levels. As the responsibility for flying shifted from
the pilot to the software, pilots were lulled into a false sense of
confidence. Pilots felt bored and abdicated their duties.

Today, the automotive industry is experiencing a similar phe-
nomenon, highlighted by two recent fatalities involving cars with
different degrees of autonomy.
• On a dark night in March, 2018, an Uber Technologies, Inc.
vehicle was being tested operating fully autonomously when
the vehicle suddenly struck and killed a pedestrian who was
crossing the street (Figure 1). A preliminary NTSB report of
the crash revealed that the supervisor, i.e., the backup driver
— responsible for commandeering and then operating the
vehicle in times of emergency — was distracted moments
before the incident [25]. The supervisor’s hands were not on
the steering wheel, her eyes were directed downward just
before impact, and she was unable to engage the emergency
brakes. The report concludes that the vehicle’s operating
software had apparently recognized the pedestrian as some-
thing else.
• In March, 2019, only ten seconds after a driver initiated the
only partially autonomous driving mode, ironically called
“Autopilot”, in a commercially available Tesla Model 3, the
Tesla struck the underside of a semi-trailer. The top half of
the Tesla was sheared off, and the driver of the Tesla died as
a result of the crash (Figure 2). No evasive maneuvers had
been executed. As in the Uber incident, a preliminary NTSB
report revealed that the Tesla driver was not paying proper
attention to his vehicle and the road conditions [26]. Sensors
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Figure 1: Location of the crash, showing paths of pedestrian
in orange and the Uber vehicle in green [25].

Figure 2: Post-crash view of the Tesla Model 3 [26].

in the vehicle showed that the driver’s hands had not been
on the steering wheel, as is required by the use of Tesla’s
Autopilot.

Each incident demonstrates the willingness or the tendency for
a human to withdraw attention while he or she is supervising or
driving a more or less autonomous vehicle. The inattention problem,
the same that had plagued the aviation industry many years earlier,
had returned.

Over the next few decades, the automotive industry will expe-
rience several challenges caused by the increasing autonomy in
vehicles. Part of the problem is that moving more and more of the
vehicle’s operation into the vehicle’s software causes the require-
ments of the vehicle to change. The now-autonomous vehicle (AV)
must gather data from its surroundings that it had never needed
before. The role of the driver has changed too. Previously, driving
a vehicle required constant attention and action on the part of the
driver. Now, a driver may not be needed at all.

Table 1: Automation levels defined by the Society of Auto-
motive Engineers (SAE) J3016 [30]

RHitV’s Vehicle’s Degree
Level Duty of Automation

0 drives totally manual
1 drives assists driver with some functions1

2 drives automates some functions2

3 supervises automates many functions3
4 nothing automates all functions needed

in specific conditions
5 nothing automates all functions needed

in all conditions

The increasing autonomy is shifting the driving responsibility
from the driver to the AV’s software, seemingly allowing and, thus,
encouraging the driver to focus his or her attention elsewhere.
However, no vehicular software is perfect, and until such time
as it is close enough to being perfect, some human being, must
be responsible for continually paying attention to the AV and its
surroundings to be able to take over for an AV that is about to get
into trouble. Therefore, many are considering equipping each AV
with machine-learning (ML) based artificial intelligence (AI) that
monitors the attentiveness of the responsible human in the vehicle
(RHitV) that is supposed to be driving or supervising4 the AV. A
RHitV is supervising a vehicle when the RHitV is watching over the
vehicle enough to be able to take over driving at any time, sometimes
in an emergency, sometimes at the vehicle’s request.

In general, a vehicle, which can be a car, van, SUV, or truck, is
autonomous to some degree, and it requires human attention to some
degree. The Society of Automotive Engineers (SAE) has defined
six autonomy levels (Table 1), with which to classify the degree
of automomy of a vehicle according to (1) the degree of human
attention required and (2) the degree of automation of the vehicle
5. This paper focuses on two particular levels of autonomy:

Level 2 in which there is a RHitV tasked with driving the ve-
hicle even though some of the functions of the vehicle are
automated; that is, the RHitV must keep his or her hands on
the vehicle’s steering wheel at all times and is responsible
for operating the vehicle at all times even when the vehicle is
doing a function that has been automated; and

1 Vehicle does ((steering or speed control) and partial perception). Driver does either
steering or speed control, and is thus engaged continuously.
2 Vehicle does ((steering and speed control) and partial perception). Driver does neither
steering nor speed control and only completes perception when the vehicle cannot,
and thus is engaged only rarely.
3 Vehicle does ((steering and speed control) and full perception). Driver does neither
steering, speed control, nor any perception, but must be receptive at all times (1) to
anything that might be unusual and (2) to requests from vehicle, to take over driving.
4 Unfortunately, the literature uses the word “monitoring” to describe both (1) the
act of watching over an AV to detect when the AV is not able to handle the current
situation and (2) the act of watching over a person to detect when the person has
become inattentive while watching over an AV. This paper uses “supervising” for the
former and reserves “monitoring” for the latter. This wording is maintained even when
describing work that uses different terminology. So do not be surprised to find that
someone else’s monitoring is described as “supervising” in this paper.
5 There are subtleties of the SAE standard that are abstracted away in this table. The
subtleties affect the details and weights of any specific tradeoff, but they do not affect
the existence of the tradeoff.
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Level 3 in which there is a RHitV tasked with supervising the
vehicle even as the partially autonomous vehicle is doing
many functions; that is, while the RHitV does not have to
keep his or her hands on the vehicle’s steering wheel at all
times, he or she must be attentive enough to the vehicle’s
current condition to be able to take over driving the vehicle
at any time, sometimes in an emergency, and sometimes at
the vehicle’s request.

Thus, the RHitV of a vehicle is (1) a driver or (2) a supervisor, and
what a RHitV does, piloting6, is (1) driving or (2) supervising.

Because a RHitV’s attentionmay lapse while he or she is piloting
an AV, among the vehicle’s software must be a RHitV Monitor and
Notifier (RiMN). The RiMN consists of two communicating parts:
• the Monitor, an AI that somehow monitors7 the RHitV for
signs of inattention, and at any time that the Monitor detects
that the RHitV is inattentive8, it informs the Notifier to do
its job, and
• theNotifier, when informed by theMonitor, somehow notifies
the AV9, the RHitV, or both, that signs of inattention have
been detected in the RHitV.

Even a Monitor is never perfect, both failing to detect an inat-
tentive RHitV, in a false negative (FN), and incorrectly detecting
inattention in an attentive RHitV, in a false positive (FP). Generally,
the developers of the Monitor have to trade FNs off with FPs, not
being able to eliminate both. A FN is bad because a RHitV who has,
e.g., fallen asleep is not detected and notified. A FP is bad because
the resulting notification contributes to the RHitV’s perceiving the
RiMN as crying “wolf!” and then to the RHitV’s ignoring the RiMN.
As shown in Section 5.5, the assumption in the literature seems to
be that FPs and FNs are equally bad and that recall and precision
should be weighted equally. However, this assumption may not
be true in some circumstances. The contribution of this paper is to
identify the circumstances in AV operation under which each of FPs
and FNs are to be avoided and are to be tolerated. This contribution
informs requirements engineering (RE) for the RiMN, telling the re-
quirements analyst what data need to be gathered in making the
correct tradeoff.

In the rest of this paper, Section 2 discusses some causes of fail-
ure in AVs. Section 3 examines studies involving driving and flying
simulations to see how a poorly conceived RiMN can have nega-
tive effects on human RHitVs. Section 4 examines the concept of
human-centered automation from the aviation industry. The avia-
tion industry successfully dealt with a similar automation shift, so

6 Indeed, the tasks of an aircraft pilot can be described as a mixture of driving and
supervising.
7 In this paper, for each noun n, the verb of what n does is the verb that shares a root
with n, and vice versa.
8 An inattentive RHitV is not necessarily a distracted RHitV. He or she could be asleep.
He or she could be so focused on one part of the driving, e.g., the road in front, that he
or she does not notice something critical happening to the side. So, “inattentive” is
used as the most general term for what a RHitV should not become, and “distracted”
is not used as a synonym for “inattentive”.
9 Note the distinction between “informing” and “notifying”. “Informing” is the simple
act of the Monitor’s telling the Notifier that the RHitV appears to have become inatten-
tive, while “notification” is the complex act of the Notifier’s somehow telling the RHitV
that he or she needs to be more attentive. Notification is any of a spectrum of acts,
ranging from just gently telling the RHitV to be more attentive to causing the vehicle
to do something that the RHitV will surely notice, all with the goal of reengaging the
driver to be attentive.

perhaps, similar principles could be applied to AVs as well. Section
5 discusses possible sets of requirements for RiMN and their impli-
cations on the tradeoff between FNs and FPs, i.e., between recall
and precision, in Monitors. Finally, Section 6 summarizes the paper
and describes future work.

2 FAILURES IN AUTONOMOUS VEHICLES
New technologies, often based on AI powered by ML, are enabling
the development of autonomous systems in places never thought
possible. However, these systems are not free of failures, and failures
can result in the system’s not satisfying safety requirements, partic-
ularly in safety-critical systems. To provide the lowest risk possible,
humans must supervise an autonomous system and respond to
its failures. Understanding human factors and the limitations of
autonomous systems allows designing an AV and its RiMN to work
together to achieve the required level of safety.

An AV must deal with unpredictable surroundings. An AV is not
isolated, it must interact with humans: pedestrians, cyclists, and
drivers of other vehicles on the road. For example, a human driver
could attempt to cut in front of an AV, anticipating that the AV will
not respond aggressively. If the AI operating the AV cannot cope
with some unpredictability, then there must be a human present
in the AV supervising the AV for unpredictable events that the AV
cannot handle, ready to take over as the AV’s driver.

Some faults present in AVs today are unavoidable even in a Level
5 AV. Unlikely events, such as random bit flips caused by the sun’s
radiation, can erroneously effect software calculations and cause
the AV to behave incorrectly. Hardware component and sensors
can malfunction, e.g., as a result of degradation in cold or corrosive
weather [16]. The solution for these kinds of faults is hardware
fault tolerance, including redundant hardware [2].

There will always be malicious actors trying to exploit security
vulnerabilities in AVs. Since an AV is controlled by software, who-
ever gains control over the AV’s software can commandeer the AV,
possibly driving it remotely. The solution for these kinds of faults
is having programmed security into the AV from the beginning of
its development [14].

The AI currently in AVs is error prone, as demonstrated by the
recent Uber test vehicle and Tesla Model 3 incidents. Neither the
Uber test vehicle nor the Tesla Model 3 had a RiMN working to
prevent the fatal lapse of attention on the part of vehicle’s RHitV.

The Tesla Model 3 with Autopilot engaged is properly classified
as Level 2. While the Uber test vehicle appears to be classified as
Level 3, it was in fact a prototype for Uber’s planned Robo Taxi,
which is targeted to be released as a Level 4 AV. Every prototype AV,
regardless of its target level, requires the presence of a RHitV, called
a “safety driver”, supervising the vehicle in the fullest sense of the
word. While the goal of all AV manufacturers is to produce a Level
4 AV, to date, no one has produced a Level 4 or 5 AV. Moreover,
correctly, no one claims to have produced one. Therefore, everyone
understands that for even the most automated AV available today,
a responsible human supervisor is needed in the AV, ready to take
over the driving at any time.

After the incident, Tesla announced: “data shows that, when
used properly with an attentive driver who is prepared to take over
at all times, drivers supported by Autopilot are safer than those
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operating without assistance” [35]. Despite the misleading name,
Tesla’s Autopilot requires an attentive driver who is prepared to
take over the full role of driving at any time. Expecting the driver
to remain attentive after he or she has engaged a feature that in fact
makes driving require less attention invites mistakes, as evidenced
by the incident. That the feature is named “Autopilot” enhances
this invitation. Tesla’s statement about proper use of Autopilot is
irrelevant when a driver in fact accepts the invitation and becomes
inattentive.

More concerning is that traditional RE and safety principles
may be ignored as car manufacturers feel pressure to innovate and
design the most autonomous system as possible, instead of the
safest system possible. Also, consumer overconfidence will present
a major challenge, especially in a Level 3 AV, which cannot perform
independently in all conditions. As discussed in Section 3, this
overconfidence contributes to the tendency of RHitVs, who are
often consumers who bought the vehicles that they are piloting, to
lapse into inattention.

3 EFFECTS OF VEHICLE AUTONOMY
As evidenced by the Tesla incident, requiring a RHitV to pay atten-
tion doesn’t mean that the RHitV always will. The RHitV is affected
by an AV in ways that the designers of the AV never intended. The
resulting effects can make it very difficult for a RHitV to supervise
the AV effectively.

3.1 Active and Passive Fatigue
In general, piloting requires effort by the RHitV, and naturally, effort
causes fatigue. Automation research has discovered two different
types of fatigue, namely active and passive, that can impact a RHitV
after long periods of piloting [19]. Active fatigue happens when a
driver spends physical energy on the driving task, such as steering,
braking, and scanning the road for hazards. Passive fatigue happens
when a supervisor, who is not actually performing the driving
task, nevertheless becomes fatigued by the mental effort required
to remain attentive and focused, to perform the supervising task.
Passive fatigue is heightened when there is more information for
the supervisor to focus on. Although the symptoms of active fatigue
are physical exhaustion, stress, and heightened coping effort, the
symptoms of passive fatigue are more subtle: mental fatigue, a
decline in task engagement, and infrequent use of controls.

Saxby et al. conducted studies to demonstrate that the two types
of fatigue can cause different performance effects on the user and
user safety [34]. They tested 168 participants for (1) fatigue effects
on vehicle control and (2) alertness in a driving simulation. Each
participant was told to pilot a vehicle simulator for 30 minutes
For this piloting, the participants were split into two groups. Each
participant in the first group drove a simulated vehicle in an active
setting on a curved road, with winds gusting throughout the 30
minute period, requiring continual correctional steering on the
participant’s part. Each participant in the second group supervised
a fully autonomous vehicle in a passive setting for the 30 minute
period. Immediately after the 30-minute piloting, each participant
of either group drove a simulated vehicle for four minutes and was
told to anticipate an emergency event (Figure 3). The data collected
for each participant during the 4-minute driving were (1) whether

Figure 3: Each participant piloted for 34 minutes total, with
the first 30 minutes (A to B) either supervising a fully au-
tonomous vehicle or driving a fully manual vehicle on a
curved road with wind gusts [34]. The last 4 minutes was
a performance test (B to C) driving a fully manual vehicle.
Each participant was told to expect an emergency event (E)
sometime during the performance test.

or not he or she crashed during the anticipated emergency event
and (2) the speed of his or her braking and steering response to the
emergency event.

Despite having to endure 30 minutes of physical effort in steering
and controlling the simulated vehicle just beforehand, participants
in the active setting performed much better in the emergency event
than those in the passive setting, even with the forewarning of the
impending emergency event! The participants of the second group
crashed their simulated vehicle more often than did the participants
of the first group. Although both types of fatigue caused tiredness,
aversion to effort, and loss of task engagement, only passive fatigue
reduced alertness. The results suggest that a supervisor spends
significant mental energy performing tasks such as staying alert
and absorbing information.

3.2 Malleable Attentional Resources Theory
The typical explanation given for a person’s deteriorated driving
performance after a long period of supervising an AV is mental
fatigue. However, Solís-Marcos et al. noticed the same deterioration
even after only a few minutes of supervising, too soon for any kind
of fatigue to have set in [37]. They believed that this deterioration
is explained also by Young and Stanton’s Malleable Attentional Re-
sources Theory (MART), which attempts to explain why people lose
focus so quickly [41]. According to MART, attentional resources
shrink to accommodate any demand reduction. When a task be-
comes easier, people are not inclined to spend the extra time and
energy performing some other task closely related to the task at
hand. In the case of AVs, if the automation level increases, people
in the AV do not use the freed up time to look more carefully at
traffic, plan ahead, or seek potential hazards. Instead, they spend
only the resources required by the supervising task. MART sug-
gests that future AV designers should employ their technology in
pilot-support systems rather than in automation to replace the dri-
ver, supporting human-centered automation principles. Otherwise,
users will decrease mental effort on the driving task as it becomes
easier, ignoring the need to stay vigilant for safety precautions.

Matthews and Desmond conducted a study with a simulated
partially autonomous vehicle [24]. First, each subject drove the
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vehicle for a lengthy enough period for fatigue to set in. Then,
each subject drove a short track that demanded high performance
and concentration. The track for half of the subjects was straight
and the track for the other half was curved. The straight-track
subjects committed significantly more heading errors than did the
curved-track subjects. Matthews and Desmond believed that the
straight-track subjects underestimated the difficulty of their driving
task and withdrew necessary focus. These subjects suffered not
only passive fatigue, but the effect of cognitive underload caused
by partial automation, as predicted by MART.

MART explains also the apparent loss of attention in the Tesla
incident, in which Autopilot was active for a mere 10 seconds before
the impact. Other studies have shown that aircraft pilots are effected
by MART as well. In a study by Casner et al., sixteen pilots were
asked to fly in a Boeing 747 simulator [13]. As the simulated flight
progressed, automation levels were varied, and anomalies were
introduced at random points in the flight. The pilots were told
beforehand that anomalies would happen, so they should always
try to pay attention. Despite this warning, only one pilot was able to
complete the test without making a mistake, and the rest exhibited
significant mind-wandering. In most cases, the pilots could detect
what was wrong, but didn’t respond as well as they should have.
The higher the automation level, the fewer attentional resources
were spent on the task, and the worse the errors were. Thus, even
though cockpit automation provides pilots more time to think, it
may actually encourage pilots to invest only part of this free time
in thinking flight-related thoughts.

3.3 Overconfidence
Overconfidence may not be caused directly by supervising itself,
but it does have a significant impact on supervising performance. AI
technology is exciting but the limitations are not well understood by
the general public. Vehicle manufacturers feel enormous pressure
to market their products as more autonomous or cutting-edge than
other competitors, creating a tension between the need to innovate
and the need for safety. As a result of popular fiction about comput-
ers and software in entertainment media, the public tends to believe
that the capabilities of AI systems are greater than they actually are,
that AI systems are even truly adaptively intelligent. Overconfidence
on a driver’s part naturally leads to complacency, which causes
drivers to be unaware of dangers around them. Complacency is
especially dangerous in safety-critical systems. As happened in the
Uber and Tesla incidents, people are willingly putting their lives —
and the lives of people around them — at risk by trusting AVs to
work flawlessly. The public needs to understand how automation
works to realize that AI systems are not foolproof.

4 HUMAN-CENTERED AUTOMATION
The actions of aircraft pilots today demonstrate how a vigilant, well-
trained human supervisor can provide safety and security in safety-
critical domains, but it wasn’t always this way. Similar to what
is happening today with AVs, aircraft underwent an automation
shift starting in the mid 1970s. Functions such as flight path, power
control, landing gear, and other subsystems had transformed into
fully automated processes. Airplanes were described as completely
autonomous by 1991: “current aircraft automation is able to perform

Figure 4: The cockpit of a Boeing 747 airplane has dozens of
dials, screens, and gauges that require supervising.

Figure 5: Statistics of air accident incidents 1918-2017, from
ACRO records [1].

nearly all of the continuous control tasks and most of the discrete
tasks required to accomplish a mission” [7]. The result was that
inside the cockpit of a Boeing 747, there are dozens of dials, gauges,
and screens that are operating automatically (Figure 4).

However, as early as 1977, the U.S. House Committee on Sci-
ence and Technology had said that automation was a major safety
concern for the coming decade [31]. The committee’s prediction
proved to be spot on. A 1990 NTSB report identified 31 of the avia-
tion accidents involving flight crew from 1978-1990 were caused by
what the report calls “monitoring failures”, i.e., aircraft pilots who
had become inattentive while they were supposed to be supervis-
ing almost completely autonomous aircraft [8]. Even before this
NTSB report was finally officially published in 1994, NASA and the
FAA had identified the growing challenges of automating aircraft.
Consequently, a 1991 NASA report observes that

Several aircraft accidents and a larger number of inci-
dents have been associated with, and in some cases
appear to have been caused by, aircraft automation
or, mote accurately, by the interaction between the
human operators and the automation in the aircraft.

and suggests that NASA and the FAA adopt a set of human-centered
automation (HCA) principles to be used to design the automation
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on an aircraft [7]. These principles suggest strategies for developing
automated systems that help human operators accomplish their
responsibilities.

In HCA, automation technology is called on to focus on helping
aircraft pilots, not replace them. The NASA and FAA report said
that “the quality and effectiveness of the pilot-automation system
is a function to the degree of which the combined system takes
advantages of the strengths and compensates for the weaknesses
of both elements” [7]. Humans have a number of abilities that they
do far better than does any AI now and for the foreseeable future:

(1) detecting signals or information in the presence of noise,
(2) reasoning efficiently and effectively in the face of uncertainty,

and
(3) abstracting and conceptually organizing.

These abilities make humans irreplaceable.
New research in deep learning is attempting to replicate hu-

man qualities, but there is still a long way to go, if possible at all.
Therefore,
• any function that humans do best should be left to the human
pilot at hand, and
• if during autonomous operation, the vehicle needs assistance
that can best be rendered by humans, the human pilot should
be called on, even in a non-emergency, if for no other reason
than to keep the human pilot engaged.

Regardless, a safety-critical domain is not an area in which to test
innovative technology if there is any chance that safety will be
impacted.

HCA started being applied to aircraft development in the mid
1990s. It kept pilots at the center of responsibility and control. Sta-
tistics demonstrate the significant reduction in air incidents in the
years after HCA was introduced (Figure 5). Even with HCA, pilots
still get bored, leading to lapses in attention. Pilots are human after
all. To cope with boredom, pilots engage in secondary tasks such as
doing puzzles, talking to colleagues, payingmental games, fidgeting,
looking around, and reading training manuals. Despite not tending
to the primary task of flying, studies with simulations have shown
that pilots who relieved boredom through these activities were less
likely than those who did nothing to abdicate responsibility to the
automation or to fail to supervise the automation properly [6].

Admittedly, these activities that pilots are allowed and encour-
aged to do are not realistic in vehicles. A pilot is required to fly
with at least one other pilot in the cockpit; a driver does not always
have a co-driver to talk to. Also, reading and playing games aren’t
good options either: a driver requires a faster reaction time in order
to avoid hazards, such as pedestrians, cars, objects, etc., which are
more abundant on the ground than those in the air. It is unlikely
that the deceased in either the Uber or the Tesla incident would
not have been killed if the RHitV in the incident had been playing
games instead of paying attention. Therefore, to successfully apply
HCA to AVs, it will be necessary to discover and invent ways to keep
vehicle RHitVs engaged in ways that allow and encourage very fast
response to unexpected events.

5 REQUIREMENTS FOR THE RIMN
Recall the functionality of the RiMN:
The RiMN consists of two communicating parts:

• the Monitor, an AI that somehow monitors10 the RHitV for
signs of inattention, and at any time that the Monitor detects
that the RHitV is inattentive, it informs the Notifier to do its
job, and
• theNotifier, when informed by theMonitor, somehow notifies
the AV, the RHitV, or both, that signs of inattention have
been detected in the RHitV.

The goal of this section is to begin to flesh out the details of the
requirements for each of the Monitor and the Notifier. Therefore,
this section explores related work to learn what is feasible for
each of the Monitor and the Notifier and what might be traded off
between them. What is learned informs requirements specification
for a RiMN that is as effective as possible11.

The subsections of this section describe (1) past suggestions for
implementations of a Monitor, (2) how to evaluate the effectiveness
of a Monitor, (3) past suggestions for implementations of a Noti-
fier, (4) how to evaluate the effectiveness of a Notifier, and (5) the
tradeoffs that can be made in an effort to achieve the most effec-
tive overall RiMN, consisting of a Monitor and Notifier working
together.

5.1 The Monitor
Many have developed and evaluated algorithms for monitoring an
AV’s RHitV. The algorithms use data gathered by various devices
that continually observe the RHitV and compute predictions about
whether the RHitV is engaged. These decisions are computed at very
frequent intervals to minimize the amount of time between when
a RHitV becomes inattentive and when he or she is notified. This
subsection considers two such algorithms and their evaluations.

Braunagel et al. conducted an eye- and head-tracking study of
73 participants using a driving simulator while doing a number of
activities, both driving and not driving [10]. Eye-tracking cameras
were particularly important to the study: quick eye-movements may
indicate that the driver is aware of his or her surroundings, while
long gazes too far to the left or right may indicate that the driver is
distracted. Other data captured from the cameras include eye-blink
frequency and the head’s angle and position. Using a multi-class
support vector machine algorithm, each participant was predicted
as either reading, composing e-mail, watching a movie, or paying
attention to driving. One variation of the algorithm predicted the
correct activity with 50% precision, 57% recall, and 53% accuracy12.
This variation performs significantly worse than in a controlled lab
environment. So, it is not suitable. Another variation of the algo-
rithm predicted with 70% precision, 76% recall, and 77% accuracy.
This variation is more suitable than the previously mentioned one.
To decide which algorithm, or variation thereof, is better, Braunagel
et al. used accuracy (called “ACC” in their paper), which weights
FNs and FPs equally, as the arbiter. That is, the variation with the
highest ACC measure is considered the best to use.

To monitor whether a RHitV is capable of providing adequate
supervision for his or her AV, Fridman et al. propose using biomet-
ric sensors and cameras [17]. The sensors report the RHitV’s heart
10 In this paper, for each noun n, the verb of what n does is the verb that shares a root
with n, and vice versa.
11 Effectiveness of a RiMN is defined in Section 5.5, when more of the requirements
are understood. Until then, a vernacular understanding suffices.
12 See Section 5.2 for definitions of these standard measures.
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rate and skin conductance, and the cameras are focused on the
RHitV’s face, eyes, and torso. Fridman et al. use image processing
to recognize the RHitV’s facial expressions, eye movements, and
body posture. They use a deep learning algorithm to learn from
the RHitV’s (1) heart rate, (2) skin conductance, (3) facial expres-
sions, (4) eye movements, (5) posture, and (6) current health the
RHitV’s current state and whether he or she is attentive enough
to be adequately supervising the AV that he or she is piloting. For
example,
• a forward-leaning face and closed eyes might indicate that
the RHitV is asleep
• a high heart rate might indicate that the RHitV is stressed
or anxious, while a low heart rate might cause fatigue or
dizziness in the RHitV,
• high skin conductance might indicate that the RHitV is phys-
iologically aroused from external or internal stimuli.

Fridman et al. try several variations of the deep learning algorithm
in an effort to improve the accuracy of its prediction of whether
the RHitV is capable of providing adequate supervision. Generally,
the more data the algorithm uses, the better the prediction. By
increasing the number of data items used by the algorithm, the
accuracy of the algorithm’s prediction of the driver’s state can
be improved from about 62% to about 92%. However using more
data increases the time to the next prediction and thus decreases
the frequency of estimates. A crash could occur in between two
predictions that are too far apart.

Thus, the general plan for a RiMN is that at regular, frequent in-
tervals of time, its Monitor is examining its input to make a decision
about whether the RHitV is inattentive. If the Monitor determines
that the RHitV is inattentive, the Monitor informs the RiMN’s No-
tifier. The Monitor is making decisions at only regular intervals
of times. Therefore, each of inattentiveness and attentiveness is
an instantaneous phenomenon. Because a notification happens in
response to a decision of inattentiveness, and a decision of inat-
tentiveness is expected to be rarer than a decision of attentiveness,
inattentiveness is considered the positive decision, and attentiveness
is considered the negative decision in the discussion below.

5.2 Evaluation of Monitors

cor

inat

inat

¬

¬

cor

TPsFPs

TNs FNs

Figure 6: The Universe of a Monitor

The most common measures used to evaluate the decision-mak-
ing effectiveness of an AI that functions as a Monitor are recall (R),

precision (P ), accuracy (A), and the F -measure. To define these mea-
sures precisely, it is necessary to consider in Figure 6 the universe
of a Monitor [5]. The circle represents the space of all decisions of
the Monitor, correct or not. The space can be partitioned by two
independent axes,

(1) one separating the decisions of inattentiveness, inat, from
those of attentiveness, i.e., non-inattentiveness, ¬inat, and

(2) one separating the decisions that are correct, cor, from those
that are not correct, ¬cor.

These two partitions create four regions in the space, consisting of
• the true positives, TPs, the decisions of inattentiveness that
are correct, i.e., the RHitV is, in fact, inattentive,
• the false negatives, FNs, the decisions of attentiveness that
are incorrect, i.e., the RHitV is, in fact, inattentive,
• the true negatives, TNs, the decisions of attentiveness that
are correct, i.e., the RHitV is, in fact, attentive,
• the false positives, FPs, the decisions of inattentiveness that
are incorrect, i.e., the RHitV is, in fact, attentive.

With these subspaces, it is possible to give precise definitions of
recall, R, and precision, P :

R =
|inat ∩ cor|
|cor|

=
|TPs|

|TPs| + |FNs|
(1)

P =
|inat ∩ cor|
|inat|

=
|TPs|

|FPs| + |TPs|
(2)

Accuracy, A is defined:

A =
|inat ∩ cor| + |¬inat ∩ ¬cor|

|cor ∪ ¬cor|
(3)

=
|TPs| + |TNs|

|TPs| + |FPs| + |TNs| + |FNs|
(4)

Accuracy is the fraction of the entire space that is classified accu-
rately, whether as a TP or as a TN. A decision of inattentiveness or
of attentiveness that is correct is considered classified accurately.

The composite of recall and precision that is often called “cor-
rectness” is the F -measure:

F = 2 ×
P × R

P + R
, (5)

the harmonic mean of recall, R, and precision, P .
Each of accuracy and the F -measure weights all regions of the

space, and thus recall and precision, equally. However, there may
be situations in which the expected cost of a FN, a failure to detect
inattention, is higher than the expected cost of a FP, a spurious
detection of inattention. Then, FNs should be weighted more than
FPs, and as FNs and FPs are weighted so are recall and precision,
respectively. For situations in which recall and precision are not
equally important, there is a weighted version of the F -measure,

Fβ = (1 + β2) ×
P × R

(β2 × P ) + R
, (6)

called the Fβ -measure.
Note that the simple F -measure is F1. Note also that the formula

for Fβ ends up multiplying P by the dominating β2 in both the
numerator and the denominator. Thus, as β grows, very quickly Fβ
approaches R, and P becomes irrelevant in computing Fβ . When
β is as little as 5, and P is large enough relative to R, P is already
essentially irrelevant.
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In these formulae, β is the ratio by which it is desired to weight
R more than P , a ratio whose

numerator is the cost of a FN and
denominator is the cost of a FP.

Section 5.5 explains how to compute these costs for any particular
RiMN.

5.3 The Notifier
In the typical current AV that has a RiMN, when the Monitor has
decided that the RHitV is inattentive, the Monitor informs the
Notifier to do its job. The typical Notifier then directly notifies the
RHitV that he or she is inattentive, perhaps activating a speaker to
say “Please pay attention!”. It is hoped that after such a notification,
the RHitV begins to pay attention to the driving task. If not, then
the Monitor will soon notice that the RHitV is still inattentive, and
will again ask the Notifier to notify the RHitV.

The problem with this simple design for the Notifier, is that, the
effectiveness of a notification that is repeated too often probably
begins to deteriorate. The effect of AVs on RHitVs described in
Sections 3.1–3.3 suggests that over time, a RHitV will begin to treat
the notification as background noise and to ignore it.

Therefore, it will be necessary to invent notification techniques
whose effectiveness does not deteriorate when they are repeated.
When automated aircraft designers faced the same effectiveness
deterioration problem, with HCA, they found ways to adjust the
level of automation in the aircraft itself so that the aircraft’s pilots
were required to do more in order to fly the aircraft. A pilot who
is busy flying the aircraft is naturally engaged and is therefore
attentive. Essentially, HCA needs to be applied to the design of an
AV and of its RiMN.

In 2018, the SAE released the J3016 standard taxonomy related
to AVs [30]. The standard defines the Operational Design Domain
(ODD) — the specific conditions under which a system can operate
safely — for automation systems in vehicles. Examples of condi-
tions include geographical areas, road types, traffic conditions, and
vehicle speeds. To take this idea further, Colwell et al. propose a
Restricted Operational Domain (ROD) specified at the requirements
level [15]. The ROD is essentially a dynamic version of the ODD,
restricting the capabilities of the system at runtime in a graceful
manner. As sensors degrade or functionality becomes limited, the
ROD adapts and becomes smaller. When the ROD is smaller, human
intervention is required more frequently, and the human naturally
remains attentive.

The design of a graceful reduction in the level of automation of
an AV is not easy. Suppose that we have a Level 2 AV, such as the
Tesla Model 3 with Autopilot. The difficulty is finding a reduction
in automation that is indeed graceful. Just stopping steering or
throttling without telling the driver could confuse the driver. Just
quietly stopping the lane-centering function could be quite danger-
ous. Probably, it will be necessary for the vehicle (1) to inform the
driver about a specific upcoming reduction in automation and (2)
to require some form of acknowledgement from the driver, before
it actually does the reduction. One possibility is for the vehicle
to announce both in sound and in text, “I am shutting off cruise
control. You will need to control the throttle. Please confirm by
touching the center touch screen that you are ready to do so.” A

number of researchers have proposed and explored ways for an
AV to pass control of the AV to the RHitV in ways that are not
causing the RHitV to be momentarily disoriented and at risk for a
crash [3, 23, 27, 38, 40]. Of course, it will be necessary to experimen-
tally verify that a proposed notification technique is both graceful
enough and that its effectiveness does not degrade with repetition.

5.4 Evaluation of Notifiers
Thus, the evaluation of a particular Notifier should consist of con-
ducting an experiment to measure the deterioration of the effec-
tiveness of Notifier’s notification technique as a function of the
frequency with which the Notifier delivers notifications.

5.5 Tradeoffs in a RiMN
A Monitor and a Notifier cooperate to build a RiMN. Thus, re-
quirements for a RiMN, particularly those affecting the RiMN’s
effectiveness, have implications on the requirements for its Monitor
and for its Notifier. When satisfaction of a requirement is dependent
on a tradeoff, it’s useful to have metrics to guide the trading.

A RiMN is most effective when
(1) its Monitor has 100% recall, and is thus detecting all instances

of RHitV inattention, and
(2) the effectiveness of its Notifier’s notifications do not degrade

when they are repeated.
The danger of too many FNs, i.e., low recall, in the Monitor is

that the RHitV could be asleep but is not notified. The danger of
too many FPs, i.e., low precision, in the Monitor is that there will be
spurious notifications bothering an attentive RHitV, and the RHitV
could eventually learn to ignore the notifications, leading to the
degredation of the effectiveness of the notifier.

In practice, FNs and FPs, or recall and precision, have to be traded
off [5]. To get fewer FNs and higher recall, an algorithm has to suffer
more FPs and lower precision, and vice versa. In fact, there are two
extremes:
• Achieve 100% recall by always notifying the RHitV. This ex-
treme amounts to the RHitV’s manually driving the vehicle.
• Achieve 100% precision by never notifying the RHitV. This
extreme amounts to having a fully-autonomous vehicle.

For now, the second extreme is not acceptable, as for the foreseeable
future, self-driving vehicles make too many mistakes. The first
extreme is not much better, as it eliminates the autonomy of an AV.
So, the goal for an AV’s RiMN is for its Monitor to achieve as high a
recall as possible without degrading the effectiveness of its Notifier
and without defaulting into the RHitV’s just manually driving the
vehicle.

It appears that all the literature known to the authors about mon-
itoring algorithms manage the tradeoff only implicitly, by assuming
that FNs and FPs are equally bad, i.e., (1) in the formula for accuracy,
the four regions of the space of decisions are weighted equally, and
(2) in the formula for Fβ , β = 1 and thus, R and P are weighted
equally. Certainly Braunagel et al. and Fridman et al., whose work
is described in Section 5.1, do so. In addition,
• each of the references [4, 9, 11, 18, 20, 22, 28, 29, 32, 33, 36, 39]
evaluates the algorithms it describes using accuracy with
the standard formula, which weights FPs and FNs equally;



Requirements for Monitoring Inattention . . . NONE, 2020, Nowhere

• each of the references [9, 22] evaluates the algorithms it
describes using F1, which weights recall and precision, and
thus, FPs and FNs equally;
• each of the references [12, 20, 22, 32] evaluates the algorithms
it describes using recall and precision, and it has no mention
of any weighting between them or between FPs and FNs;
and
• the reference [22] evaluates the algorithms it describes using
also the κ statistic and ROC curves, and it has no mention
of any weighting between FPs and FNs.

Note that some references appear more than once in the above list,
because each uses more than one measure to evaluate its algorithms.
Only one of these works shows any awareness that FNs and FPs
may not be equally bad. Ohn-Bar et al., while using the region-bal-
ancing accuracy measure to evaluate their algorithms, nevertheless,
try specifically to minimize FPs [29].

However, suppose that the designers of AVs learned from the
experiences of aircraft designers’ introduction of automation to air-
craft cockpits and applied HCA to design Notifiers with notification
techniques whose effectiveness does not degrade with repetition.
Then, the associated Monitor should be designed with the highest
recall possible, even at the cost of a moderately low precision (only
moderately low, so that the extreme of always reporting inattention
is not used). So, if a vehicle’s response to a prediction of inattentive-
ness is one that does not start to be ignored in the presence of FPs,
the algorithm, or variation thereof, with the highest recall should
be chosen. For example, among Braunagel et al.’s algorithms, the
one with the highest recall achieved only 76% recall. A recall of
76% is not very good, because this recall means that algorithm is
failing to detect 24% of the inattentive spells, leaving the vehicle
with no supervision almost one-quarter of the time. It would pay for
Braunagel et al. to play more with the algorithm to see if tolerating
more imprecision can bring recall closer to 100% than 76%.

Section 5.4 discusses the issues in achieving a Notifier whose
effectiveness does not degrade in the face of many FPs from the
Monitor.

In deciding the tradeoff for the Monitor, it is essential to compare
the costs of a FP and of a FN in the whole RiMN.
• The effect of a FN is for the system to not notice that the
RHitV is inattentive. The expected cost of a FN is (1) the
probability of a FN, times (2) the probability that an accident
will happen when the RHitV is not attentive, times (3) the
average cost of an accident.
• The effect of a FP is for the RHitV to be notified of inat-
tentiveness unnecessarily. The expected cost of a FP is (1)
the probability of a FP, times (2) the probability that a FP
will finally teach the RHitV to ignore warnings thus making
warnings useless and leaving the driver inattentive after all,
times (3) the average cost of an accident.

These two expected costs have to be compared in any situation.
Observe that the average cost of an accident is a factor in both
expected costs, so the comparison is between two products of prob-
abilities. The ratio of the expected cost of a FN to the expected cost
of a FP can be used as the ratio of the importance of recall to the
importance of precision in any situation and thus as the β in the
formula for Fβ to evaluate the Monitor.

Apparently, those applying AI to examining data to screen pa-
tients for diseases have learned to tolerate low precision to achieve
a recall of close to 100%, particularly when the cost of a more precise
follow-up test is low [21].

6 CONCLUSION AND FUTUREWORK
This paper recounts the circumstances of two fatal accidents involv-
ing AVs during which their RHitVs failed to maintain the required
attentiveness. It discusses some causes of failure in AVs and exam-
ines studies involving driving and flying simulations to understand
how and why increased automation in AVs leads to greater inat-
tentiveness on the part of the AVs’ RHitVs and to see how a poorly
conceived RiMN can exacerbate the inattentiveness problem. It
shows how HCA helped the aviation industry successfully coun-
teract pilot inattentiveness and suggests ways to do the same with
AVs.

The main point of the paper is that if HCA is applied to the
design of the Notifier of a RiMN to produce a Notifier whose ef-
fectiveness in bringing the RHitV back to attentiveness does not
degrade in the face of too frequent notifications, then the Monitor
of the RiMN can be safely optimized for fewer FNs, or higher re-
call, at the cost of more FPs, or lower precision, to obtain a more
effective overall RiMN. Heretofore, the assumption has been that
FPs and FNs are equally bad and that recall and precision should
be weighted equally.

Application of HCA to ordinary vehicle owners who have opted
to buy AVs at Level 2 or 3, taking on the role of RHitVs, will be a
challenge. AV RHitVs are nowhere as well trained as aircraft pilots,
and their emergencies have a much shorter time frame than those of
pilots. It will be necessary to invent notification techniques that are
both sustainably effective and not so disruptive as to momentarily
disorient the RHitV. The authors admittedly have difficulty thinking
of such notification techniques. However, we are not going to begin
to find any such techniques if we don’t look for them with the
knowledge that they can be used. That said, there is one class of
RHitVs for which HCA may work, namely professional drivers as
for taxis and trucks. These drivers have known how to use walkie-
talkies for years without becoming distracted from driving.

Thus, there is a need for future work in the simultaneous design
of high recall Monitors and low degradation Notifiers for use in
high effectiveness RiMN for AVs. The lower the degredation of
the Notifier’s effectiveness the more FPs, or low precision, can be
tolerated in the quest for few FNs, or high recall, in the Monitor.
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