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1. Introduction
1.1 What is done

This paper describes the development of a denotational semantics for nondeterminism and paral-
lelism in a shared memory. The denotation of a program fragment is a tree representing a partial order-
ing of actions to be performed in the rest of the computation. Forking in the tree represents spawning of
processes. Each action in the tree causes either an indivisible state change or a macro expansion to a sub-
tree of other actions to be performed. Thus, this denotation is similar to Plotkin’s resumptions [Plo76,
Smy78]. All such trees of actions are finite even if the program gives rise to nonterminating processes,
i.e., macro expansion to subtrees occurs only at run-time as needed.

It is convenient and advantageous to use VDL control trees as the tree denotation described
above. It is convenient, because all the required mechanisms have already been set up [LLS70, LW69). It
is advantageous, because, as it is shown, given any VDL definition of a block structured language which is
in a certain generally achievable normal form, it is possible to convert this interpreter definition into a
denotational semantics of the same language giving the control trees as the meaning of program frag-
ments, )

In addition, it is shown that each control tree is an encoding of a function, cailed a P-continuation,
which is on the value and storage returned by an instruction to the set of all answers obtained from all
possible computations starting with the given instruction. It turns out the the function encoded by a con-
trol tree cannot be used in place of the control tree in the semantic equations, because information about
possible interleavings has been lost.

Plotkin and later Smyth [Plo76, Smy78] present the power domain construction of resumptions R,
where g

R =S - PIS+{SXR)|

where § is a domain of states. These resumptions may be taken as the denotation of program fragments
giving rise to processes which access shared memory. Plotkin and Smyth observe that functions on states to
sets of states are not powerful enough to model arbitrary interleaving.

Schwarz presents a power domain semantics to handle an expression (without assignment)
language with features that require parallelism [Sch79].

Francez, Hoare, Lehmann, and de Roever [FHLR79] present a semantics of CSP, which has its
processes communicate via message passing rather than through shared memory. This restriction in means
of interaction between processes allows use of domains simpler than power domains. They ascribe to cach
process description a potentially infinite history tree with potentially infinite branching which denotes all
potential communications with other processes. The meaning of a collection of processes is obtained by
binding their history trees, i.e., by matching in pairs of history trees potential communications that
represent actual communications between the processes owning the trees. The result of the binding process
is not in the same domain of history trees, so it cannot be further bound.

A later work by Francez, Lehmann, and Prueli [FLP80] improves on this last work by offering as
the semantics of a process description a relation between sets of attainable states and the communication
sequence needed to attain these states. This sequence, being linear, is simpler than the potentially infinitely
branching history trees of the previous work. They provide a binding operator which matches and merges
two Or more processes’ communication sequences to obtain the semantics of the combined processes in the



sams domain. Thus the result of a binding can be further bound. They remark that to be able to handle
arbitrary interleaved access to shared memory instead of just message passing would require the use of
more complex power domain constructions.

Stoughton {Sto81] uses a mapping from states to sets of potentially infinite computation sequences
as the meaning of a program or system. Interestingly, he programs the system’s scheduler into his equa-
tions so that the scheduler can be varied from definition to definition.

The contribution of this paper is a denotational semantics which
1. is powerful enough to model arbitrary interleaved access to shared memory,
2 is finite,
3. is systematically constructible from a VDL interpreter definition of the same language, and
4. isane:mdingforaneasﬂyconstructedﬁmcﬁononsmutosetsofmta.

This last contribution is important because a definition is not considered abstract enough unless the mean-
ingofaprogamisaﬁmcﬁononstatmtostataorsetsofstam.

1.2 History of this Paper

The history of this paper is instructive. In my graduate class on operational semantics, I teach the
Vienna Definition Language (VDL) [LW69, LLS70, Weg72] as a language well-suited for writing opera-
tional definitions of programming languages. We cover several example definitions as well as how to con-
vert a collection of instruction definitions into the state transition function they represent. The examples
exhibit deterministic, nondeterministic, and parallel computations. '

In the 1979 version of the course I decided to teach denotational semantics [Ten76, Ten78, Gor79]
as well after having presented VDL. The lecture leading into the denotational semantics attempted to
motivate the continuation idea by constructing a continuation from a deterministic control tree. Once the
construction was understood, the functionalities of the continuation and of the semantic meaning function
were obvious. Then it was easy to explain and understand denotational continuation semantics.

Thewmmwﬁmhadproweded&omdemmmisﬁcwntolumbemuselkncwmmmmn-
ism had defied denotational, continuation semantics treatment [Gor79, ADA79)]. In any case, after the

class was over, just for the heck of it, I tried applying the construction also to nondeterministic control
trees -- it seems to have worked.

1.3 Outline

This paper assumes at the outset familiarity with denotational, continuation semantics as described
by Tennent or Gordon [Ten76, Ten78, Gor79]. The second Section, based on the lecture mentioned
above, informally describes the construction of a continuation from a deterministic control tree. In order
that a full knowledge of VDL is not needed to apprediate the basis of the construction, the discussion
resorts to informal pictorial descriptions of VDL machine behavior. However, an acquaintance with the
informal dmcripﬁonofVDLandoftheEPLmachinegivcnin [LLS70] or [Weg72] is helpful.



ThethirdSecﬁonforma}izaSécﬁon 1’s construction of a continuation from a control tree. Be-
cause of the terseness of this Section, familiarity with the definition of VDL in [LLS70] or {LW69] helps.
However, the formal development is self-contained.

The fourth Section returns to an informal discussion to apply a similar construction to nondeter-
ministic control trees to obtain what is called a P-continuation (parallel continuation),

The fifth Section formalizes this new construction. This development assumes the construction of
the third Section, and with that Section, is self-contained.

Finally, the sixth Section evaluates what has been done and attempts to clarify its relationship to
the various existing kinds of semantics.

This paper uses the original, perhaps antiquated, VDL notation because it is talking about the ori-
ginal VDL and is showing that, in fact, the more modern presentations of semantics say exactly the same
things. In addition, it is best to use the criginal VDL notation when talking about VDL so that yet another
notation does not have to be developed.

2. From Deterministic Control Trees to Continuations (Informal Discussion)

2.1 Computations and Meanings
VDL is used to write information structure models [Weg70] (ISMs). An ISM is an abstract
machine formally described as a triple®, )
{is—state,is~initidi-stats,A),

the set of possible states, the set of initial states, and a state transition function A. In these first two Sec-
tions, all machines are deterministic so A applied to a state either yields the next state or is undefined indi-
cating that the given state is a final state.

A:is-state—is—stata+{undefined}.

A computation is a possibly infinite sequence of states
<EOJEIJ e ’E‘-laeh-">
such that

a. &, is an initial state,
b. for each §; with i>0,
E=A(Si-),

c. mewqumisnmapmpahﬁﬁalsubsequmofmmdsequmsaﬁsnyga)mdb).CHﬁs
condition guarantees that a finite sequence ends with a state £, such that A(§,)=undefined.)

If in the sequence, there is a state £, such that A(E,)=undefined, then the computation halts. Diagrammati-
cally a finite computation may be shown as:

*Recall that in VDL, sets are defined by predicates. The predicate p is used to denote the set {x|p(x)}.
Given a predicate p, p={x|p(x)}.



A A A A A A A
P e W W - Sl
Eo §1 EI-: El §n-1 §n

is—state(E;), for all i=0
is—initial-state(&,)
A(g-,)=¥&,, for all i>0
A{E,)=undefined

Denotaﬁonalsemanticshasalwaystriedtotakeasthemeaningofaprogramthefuncﬁonitcom—
putafromﬁlei:ﬁﬁaltotheﬁnalstateifitexists. That is, the meaning of a program p is a function f
such that

£ if the computation of p from the initial state
g, halts at §,
fl&)=11 if the computation of p from the initial state
£, does not halt.

Oneofthegoalsofthispapa'istoshowthcwmtucﬁonofthisffromthestatetransiﬁonﬁmcﬁonA.

In addition, whatever the semantics, denotational semantics constructs meaning in syntax-directed
manner; that is, the meaning of a construct is constructed from that of its direct syntactic components. It is
typical that the meanings of all constructs, programs, assignment statements, single tokens, etc. are of the
same type, e.g., function from start state to end state if it exists. Thus, viewing the abstract machine from
a denotational framework, the meaning of a particular program construction, e.g., an assignment state-
mcnt,isthecomposiﬁonoancossthestatmﬁ'omthebeginningtothccndoftheemtionofthccon—
struct. Diagrammatically, the assignment i:=i+1 may be viewed in the context of a whole computation as
shown in Figure 1.

Note the denotational idea of syntax-directed composition of A. The meaning of i:=i+1 is con-
structed from the meanings of i, :=, and i+1. The meaning of i:=i+1 contributes to the construction of
the meaning of the statement list containing i:=i+1. All of these meanings are of the same functionali-
ty, i.e., state to state.

The next Subsection begins the construction of these program and construct meaning functions in
detailusingancxtensionoftheVDLEPLmadﬁncd&aibedin[llSO] and also in [Weg72]. EPL is a
simple block structured Janguage with
1, integer and logical variables that must be declared in blocks,

2. potentially recursive procedures and functions with typeless, by-reference formal parameters, and
3. assignment, conditional, procedure call, and nested block statements.
The extension, called EPL+, adds label vatues, label variables, gotos, and while loops. The label and goto

extensions appeared first in an unpublished report [BW72]. Appendix I contains the complete definition of
EPL+.



2.2

statement list
containing i:=i+l

A_ Ao AL Do B )

Figure 1

Modifications to EPL+ Machine
First,theEPL+mnchineisgivmadétminisﬁcconﬁolﬂeebygetﬁngﬁdofaﬂfoﬂdnginthc

control tree. This is done by

1.
2.

changing all commas in control tree representations into semicolons,

changing all macros which expand into sets of instructions, e.g.,

Int—decl—part{t)=
null;
{int—deci(id(s—env(£),id(t)) |id(¢)= 0}

into sequentiaily recursing macros, e.g.,

int—decl—part{t)=
ig=< > (t)-null;
T-int—decl—part{ta il(t));
It —decl(s—id(head(t)){e-env(£)),
s-attr(head(t})))

This change may, in some cases, necessitate a change in the syntax of the program. An
object which is a set of things, e.g., an object satisfying the predicate is—decl-part, may have to be
dmnguihnoa]htofﬂﬁmpcnuwwhmtheswnchﬁbnmnkm,eg"=uldﬁansmm¢ﬁmgthe;naﬁ-
cate is—decl-list, in order to permit sequencing through the things.



Second, the state is reorganized so that it has only a storage, an environment and a control tree
(which is deterministic) i.e.,
is—shto=[<s—st¢:is—stg>,<s-env:is—env),(s—c:is—c)),
or to use more conventional denotational semantics notation
is-state=8SXUXCont.

It is necessary in this change to account for the information of the missing components, the unique name
counter, the attribute and denotation directories, and the dump, in order to insure that correctness has
been preserved.

The unique name counter is dispensed with by rewriting the un—name instruction to return any n

such that nos-stg(£)=. In order to distinguish unallocated locations for which nos-stg(£)={ from allo-
cated but uninitialized locations, the latter will have the value UNINIT.

The information normally found in the attribute and denotation directories is moved into the
storage.

ia—sth({<n:(<s-dn:is—dn>,<s—at:is-typo>)>||is—n(n]})

is—dn =is-proc-dnVis—fun:b—dnvis—n!uaVis—!abei-ngis—UNINIT

Sincethedumpsavutheenﬁronmmtandmntolofthecaﬂingblockorprowduremstance,to
get rid of the dump it is necessary to reorganize the block, procedure, and function entry and exit:

1. Insteadofdumpingthemrrmtmntroltreeandthmoverwﬁﬁngthemrrentcontroltreewitha
new one, the new one is macro-appended to the current one.

2. The environment which is saved in the dump to be restored by exit is now made an actual param-
eter of the exit, which restores it from its formal parameter.

Thus, for example,
int—block is rewritten as
Int—block(t)=
oxit(s—env({E));
int—st—list(s-st-list(t));
Int—decl—part{s—decl-part{t));
update—env(s—decl-part(t))
and exit is now
exit{env)=s—env:env

'Ihemultofthislastdmngeistoobtainonelongﬁnearconuoltreeinplaccofthedump(stack)
of control trees.



After the first change to make the machine deterministic, a typical state might appear as in Figure

3
° SV STexit c
3 envl
cl s-fiv S e
n n e oy exit
12 n 2 c2
! 2% %2
S-6nv s 1 S
axit
Q
env3
c3
Figure 2 : .

The effect of the second change is to change this state into that of Figure 3.




Appendix II contains the definition of EPL+ obtained by applying the above described modifica-
tion to the definition found in Appendix L

2.3 Key Observations

Observe what happens to label values by these modifications. In [BW72] it is shown that a label
value in the EPL+ machine is a dump,

is-labol-—dn=(<s—c:is—c>,<s-env:is—nnv>,<s—d:is—d>),

the control tree stating what is to be executed from arrival at the labeled statement until the end of the
containing block, the environment being that in which these statements are to be executed, and the dump
giving the environment, control, and dump to use after exiting this containing block. After these modifi-
cations, a label value ends up being simply a control tree paired with an environment,

is-label-dn=(< s—c:is—c >, < s—env:is—eny>),

the control tree telling how to execute from the labeled statement until the end of the computation and the
environment being that in which to execute at least the first instruction in the control tree.

Thus, it is clear that a contyol tree, after the above modifications, says exactly how to execute
fromthestatcowm'ngitunﬁ]theendofthemputaﬁonifthisendeximadﬁomthcstateuwningiton
ifthemddomnotexist.ThuscontroltrmscrvethesameﬁmcﬁonasdoMazurkiewicz’stailﬁmcﬁons
(Maz71}. One can then view the construction of f from A as applying the control tree of the current state
tothcemrironmcntandstorageofthcsamestatetoyieldtheﬁnalstateifitcxistsor.1.iftheﬁnalstate
does not exist:

if &= |.l.,,(<s'—stg:stg><an:m>,<s-c:cam>) then
fig) =
&= p.n(<l-|tg:.ftgf>,<an:mvf>,<s—c:comf>),
cont{env,stg) = if the computation from £ halts at £,
L, otherwise.
Here for the sake of generality f is considered to return a full state, but in the EPL+ machine, env =

and cont;={}. Thus, it would suffice to let the result of f be simply stg,, the final storage, if it exists and
1 otherwise.

A deterministic control tree, su:hascom,iswmprisedofonetenninalorleafnodzandthzmt
of the tree. Inordertoexecutefrom&unﬁ]themd,beitaﬁnaistateou_,onemustexemtethemrrent
instruction found in the terminal node, cbtaining a new state &' and then the rest of the control tree from

* until the end. As a consequence, application of cont to env and stg is the execution of inst at cont’s ter-
minal node in env and stg to yield a new environment env’, a new storage stg’, and a new control tree
cont’, followed by application of cont’ to env’ and s1g’. That is,

cont{env,stg) = cont’(env’ s18"),

where cont’, env’, and stg’ are yielded by executing the instruction inst, at cont’s terminal node, in env
and stg.



2.4  Outline of Construction

The full construction outlined here is found in Sections 2.5 through 2.7. These sections may be
skipped if the construction is clear from this outline. Using the above described point of view, one can
construct a denotational meaning function which gives the meaning of an instruction in terms of the
current environment, the current storage, and what is to be done when the instruction is done. What is to
be done when the instruction is done is denoted by the rest of the control tree, rst, and the return infor-
mation, return—info, that results from removing the current instruction from the current control tree.

M [inst] env <rst,return—info>> stg = cont’ env’ s1g’
For each kind of instruction, there is a particular meaning equation scheme for it. -
1. For

inst= PASS:val
s—stg:stg’
-s—envienv’,
the equation scheme is
M [inst] env <rst,return—info> stg = <rst,retrn—info> val env' stg’.

inst= s—stg:sig’
s—env.env’
s—c:cont’,
in which cont’ is the label value for a goto, the equation scheme is
M [inst] env <rstreturn—info> stg = cont’ ) env’ stg’.

3 For
inst= rest—of—inst( - - -ri---);
ri:first—part—of—inst,
the equation scheme is

M [inst] env <rst,renan—info> stg =
M [first—part—of—inst] env comt’ stg

where
cml ml' ml thl =

M [rest—of—inst{ - - - val’ - - - )]
env' <rstretan—info> stg’.

10



This informal development has been treating control trees and rests of control trees plus
return—infos as functions. Actually, they are not, but each can certainly be considered as an encoding of a
function which takes information about the state yielded by the execution of an instruction and produces
the final result of the ensuing computation. These functions are nothing more than the continuations of
continuation semantics. It is clear that a continuation requires a value, an environment, and a storage as
its arguments. So, define a domain Cont with p as a typical element as®

p €Cont=is-value Xis-anv Xis~3tg-is-state+{L}.

However, in the case of EPL as mentioned, the only part of a final state which is not {} is the storage.
Thus, the above could be simplified as

[ €Cont=is-value Xis—8nv Xis-stg~is-stg+{L}.
By denotational semantics convention,

is-anv=U,

is—dn= the domain of storable values =V,

is—stg=S8,
is—stg+{L}= the domain of answers =A=S+{L}.

Thus,

P €Cont=VXUXS-~A
or in curried form

P €Cont=V-U-S-A.

It is now possible to use these continuations in place of the <rst,return—info>>s they represent in
the above equation schemes. One obtains a meaning function

MEInstXUXContXS=-A,

or in curried form

M €Inst-U~Cont-S~A.

Corresponding to the three equation schemes above one obtains

1. M [inst] env P stg = p val env’ sz’
2. M [inst] envp stg =P’ Qenv’ 513’
3. M [inst] env P stg = M [first—part—of—inst] env p’ s1g

where P’ val’ env' stg’ = M [rest—ot—inst( - -val' - - -]] env' P stg’.

*The Hebrew letter Quf, P, is taken as the letter to denote instruction continuations here so as not to
confuse it with the more specific command and cxpression continuations which have their own naming
conventions.

11



In (2) above, p’ is the label value of a goto.

ix TID contains the denotational continuation semantic definition of EFL+ constructed
from the VDL definition of EPL+ of Appendix II.

The previous paragraphs have effectively shown how to systematically construct a denotational
continuation semantic definition from a VDL semantic definition of the form described in Section 2.2. The
constructed definition is such that

1. the parameters of the statement continuation are precisely the top-level state components other
than the control tree, and

2. there is one equation for each instruction (action) of the three instruction forms mentioned above.
2.5 Value-Returning Instructions - Passing Value Back

There are two possibilitics as to the nature of inst as it is executed. It may be either value-
returning or macro. In the case of a value-returning instruction, one possibility is that it is of the form (as
for expression evaluation with side effects):

inst=
PASS:val
s—stg.s1g’
s—env:env’

Thenenv’andsrg'aremcrsmofuxemﬁnghminmandngmdmingenaaldiﬁmfrommmd
stg. Additionally, cont’ is related to cont in the following way: Let rst be the rest of cont, i.e., cont after
the terminal node is removed. Then cont’ is rst as modified by the passed-up value, val, returned by the
instruction. Recall that part of a node is information stating to which actual parameters of which instruc-
tions higher up the tree the PASSed value should be copied.

Thus, if cont is considered as composed of (return— info,inst);rst, i.e., cont appears as in figure A.

rst

return-info: ¥inst Figure A

and execution of Inst in env and stg yields env’, stg’, and val as the new environment, new storage, and
PASSed value respectively. Then,
cont(env,stg) = exacute inst in env and
stg followsd by doing
rst with the help of return—info

I

rst—as-modified—by-val-according~ (el)
to—return—info{env',stg")

= cont’(env’,s18").
All elements of the above equation yield either the same final state or L as the case may be.

12



The middle two elements of the above equation ¢l may be used to define the meaning of an in-
struction inst as a function of the current environment, env, the current storage, szg, and what is to be
done after the instruction, rst-as-assisted-by-return—info. That is,

meaning of inst in env, stg, rst,

and return—info =
rst-as—-modified-by-val-according-to-
return—info(env’ s13")

(e2)

Fxamination of the parts of equation e2 shows that only rst and rerurn—info appear on both sides.
Thinking about these two items as a unit shows that it is rst and return—info combined that tell how to
continue from the completion of inst. That is this pair, given the value, environment and storage returned
by inst, tells how continue. Taking rst and return—info as a unit, €2 can be rewritten as:

meaning of inst in env, stg and
<rst return—info> = (e3)
<rst,return—info>(val){env’,s18"),
where execution of inst in env and stg yiclds val, env’, and stg’. Both sides of this equation yield the
same final state or L as the case may be.

'I‘hisinformaldevelopmenthasbeenueaﬁngoontolmandmtsofwnﬁoltrmplus
return—infos as functions. Actually, they are not, but each can certainly be considered as an encoding of a
function which takes informaticn about the state yielded by the execution of an instruction and produces
the final result of the ensuing computation. These functions are nothing more than the continuanions of
continuation semantics. As ¢3 is in terms of <rest—of—control-tree, return—info> pairs, the continuations
encoded by them are considered first. From 3, it is clear that a continuation requires a value, an environ-
ment and a storage as its arguments. So, define a domain Cont with p as a typical element as

P €Cont=is—value Xis—snv Xis-3tg-is—state-+{L}.
However,inthecaseofEPLasmﬁoned,theonlypanofaﬁnalstatewhichisnotnisthestorage.
Thus, the above could be simplified as

P €Cont=is—value Xis—anv Xis-stg~is—atg+{L}.

By denotational semantics convention,
is—anv=U,
is—dn= the domain of storeable values =V,
is-atg=S$,

is="stg+{L}= the domain of answers =A=S+{L}.
Thus,

P ECont=VXUXS-A
or in curried form

P €Cont=V-U-~S-A.

It is now possible to formalize the notion of a meaning function on instructions, environments,
storages and continuations (representable by <rest—of-control-tree,rerurn—info> pairs) to answers. His-
torically, the order of the parameters of the meaning function is instructions, environments, continuations,
and storages because it gives a more useful currying. Letting Inst be the domain of control tree instruc-
tions,

13



Mean €InstXUXContXS-A,
or in curried form,
Mean €inst-U-~Cont-S-A.
Following €3, the equation defining the meaning of an instruction is:
Mean[inst]env P stg=ans=p val env’ stg’ (e3a)
where
inst€Inst,
env, env' €U,
p €Cont,
stg, stg' €S,
ans €A, and
val€V,

and where execution of Inst in env and stg yields val, env’ and stg’. The equation may be read, "The
meaning of inst in env and stg in the presence of the continuation p is simply the answer obtained by ap-
plying the continuation to the val, env’, and stg’ yielded by the instruction in env and sr3."

If the instruction of a particular group of instructions corresponding to some syntactic domain al-
ways]cavetheenvironmentorstorageuncbangedordonotpassupavalue,aspedalcontinuationforthat
syntactic domain can be designed in which the unchanged component or the returned value is left out as a
parameter of the continuation. For example, in many languages, commands (statements) do not modify
environments and return no vaiue, so one might use a command continuation §€CCont, which is on
storage only:

0 €CCont=S-A.

Also in many languages, expressions have no side effects on either the environment or storage.
Thus, it is reasonable to designate an expression continuation, k €ECont, as being on values only:

Kk €EECont=V-A.

Thus, the command continuation needs only the new storage that a command generates to go to
the final answer; it assumes that the environment is unchanged and no value is passed up by the command.
Likewise, the expression continuation needs only the returned value to go to the final answer; it assumes
that the environment and storage are unmodified by the expression.

It is now possible to identify the function encoded by cont and cont’ in the expressions

cont(env,stg)
and

cont’(env’ stg’).
The function they encode is a statement continuation, that is a continuation for a construct which modifies
the environment and storage but does not return a value. Such a continuation has the functionality

U-S-A.

14



Define the domain SCont with typical element 3:*

JESCont=U-S-A,
Note that cont’ is produced by modifying rst by val according to return—info. That is, applying a general
continuation p €Cont to a value yields a statement continuation, 3. This statement continuation represents

the execution after completion of the statement containing the expression returning the value. So to
speak, the general continuation swallows the value returned by the expression to make the continuation for
the containing statement.

1.6 Value-Returning Instructions - Assigning Control Tree

Consider again the application of a control tree cont to env and stg. Suppose that the instruction
inst of the terminal node of cont is a value-returning instruction of the form (e.g., as for a goto or a back-
tracking):

inst=
s—stq.stg’
s—env:eny’
s—c:cont’

The rules of VDL are such that if the control tree is replaced in a value-returning instruction then no
node containing it can have retun—info.** In this case env’ , stg’ and cont’ are the result of executing inst
in env and stg and are in general different from env, s7g, and cont. In this case,
cont(env,stg) = execute Inst in env and
stg followed by doing
rst with the help of
return— info

= gxecute inst in env and (e4)
stg thus ignoring
rst and return—info
entirely

= cont'(env’ s13").
That is, execution of the instruction, inst, causes the rest of the control tree, cont, on which it was found

to be ignored entirely and for the comt’ to be used to dictate the rest of the computation based on the env’
and stg’ returned by the instruction.

Themcm:ingofsudaaninsuucﬁonbeexhibitedbyanequaﬁonsudias
meaning of inst in env, stg, and
<rst,return—info> = (e5)
cont’(env’ s18').
This may be formalized using the functions introduced earlier. Suppose <rt,return—info> encodes p and
cont’ encodes 2. Then,

* 5 js the Hebrew letter Kaf.

** A replaced control tree combined with the presence of refurn—info gives rise to a . with two dependent
composite selectors.
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Méaizﬂlmtﬂenv p stg=2 env' stg’ (e6)
where execution of Inst in env and stg yields 3, env’, and stg’.

1.7 Macro Instruction

Recall that cont=(return—info,inst);rst, i.c., as shown in figure A. Consider now the application
of cont to env and srg when the instruction, inst, of the termina} node of cont is a macro instruction of the
form:

inst=
rest—of—inst{ - - -ri---);
ri:first—part—of—inst

where ri may be empty. That is, the application of cont to env and sig is the execution of inst which
yields the same environment, env, the same storage, stg, and the control ftree,
cont’ =(ri first—part—of—inst);(renon—info,rest—of—inst{ - - - ri - - - ));rst, as shown in figure B,

rst

return-info: rest—of-inst

first-part-of-inst
followed by application of cont’ to env and stg. Equationally,
cont{env,stg) = exscuts Inst in env and
stg followed by doing

rst with the help of
return—info (e7)

Figure B

= cont'(env’,stg’).
However, application of cont’ to env and srg is the execution of first—part—of—Inst in env and stg fol-
lowed by doing rest—of—inst( - - - ri - - - ) with the help of ri followed by doing rsz with the help of
return—info. Thus,
executa inst in env and s7g followed by deing
rst with the help of retorn—info
= cont'(env,stg)
= exscute first~part—of—inst in env and stg (e8)
followed by doing rest—of—inst{ - - - ri - - - } with
the help of ri followed by doing
rst with the help of return—info.

In other words, when execution of Inst requires execution of first—part—of—inst followed by do-
ing rest—of—Inst( - - - ri - - - ) with the help of ri, then execution of inst followed by doing rst with the
help of remurn—info is execution of first—part—of—Inst followed by doing rest—of—inst( - - -ri: - )
with the help of i followed by doing rst with the help of return—info. In such a case, the meaning of inst
is defined in terms of the meaning of first—part—of—inst.
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meaning of Inst in env, stg, and
<rst,return—info> =
meaning of first—part—of—Inst in env, 5ig,
and <rest—of—inst( - ri: - Y, <rst,return—info> ri>
Letting <rst,return—info> be an encoding of p, €9 can be formalized as
Mean(instlenv p s1g =
Mean[[first—part—of—instfenv p’ stg

(e9)

{el10)

where
P (val’env’ stg')= |
Let cont’ =rest—of—Inst{ - - - ri - - * }-modified-by-
val'-according=to~-ri In
apply cont’’ to env' and stg’ to yield
val'’, env'’, and stg’’ which are
passed as paramsters to P

That is, P’,

1. first, given the val’, em’, and stg’ returned by first—part—of—inst, does the effect of
rest—of—inst{ - - - ri---)to obtain val'’, env’’, and stg’’,

2. second, passes val’’, env'’ and s13"’ to P to obtain the final answer.
Note that

rest—of—inst( - - - i - - - )—modified-by-val’-according-to-ri

is nothing more than rest—ot—inst{ - - - val’ - - - ).

The meaning equation, ¢10, for inst reflects inst’s macro nature in that the macro arranges for the
execution of an expanded list of instructions, starting with first—part—of—inst, t0 achieve its effect rather
than directly modifying the environment and storage by itseif.

. Formalization of Construction of Continuation from Deterministic Control Tree

All of the development of Section 2 may be formalized using the concepts developed in the formal
definition of the VDL programming language as given in [LLS70] and in [LW69)]. Using the notation of
the former, this Section shows the construction from a deterministic control tree to the continuation it is an
encoding of.

First it is necessary to outline the formal definition of the VDL programming language, adapting
it to fit the restricted states and control trees used in the informal development of the previous Section.

kN | Control Trees in General

First recall that for any state § ,
is—c(s—<(£))
and that
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is~c=is—ctvis—{).
That is, the s—¢ component of any state either is a control tree or is {) . A state £ such that s—c(£)=Q is a
final state.

A control tree in general is described by

is-ct = (L s-in:is-in>,
< s-al:({ < elem(i}:is-ob > ||
is-intg(i)})>,
< s-ri:( < s-compiis-sel>,
< s-apis-ip-set>)>,
{<risct>]| r € R}
where: is-intg={1,2, - -}
is<in == set of instruction names
is=sel = set of all selectors, i.c., is-sel = S”
is—ob = set of all objects
is—ip={< alem{1):is-intg>, < elom(2):is~intg>)
R is an infinite set of simple selectors such that

RM{s~in,s—al,8~ri,s-comp,s~ap}=2

Note that the s—al (argument list) component of a control tree may not be a proper list, because some of
the indices less than the maximum may select {3 .

For convenience, the predicate is—ri is introduced to denote the set of retirn—infos

is—ri=(< s—comp:is—sel >, < s—ap:is—ip-set>)

A few useful functions are nd, yielding for a control tree the set of composite selectors selecting
the nodes of the tree,

nd(ct) = {x[x€R" & x(cr)#0},

pred, vielding for a composite selector selecting a node, the composite selector selecting one node higher
up the tree,

pred(x)=(vX,)((3+ €5)(sox2=x)),
and pred” , the obvious extension of pred:

pred”(x) =
n=0-x

T-pred” (pred(x})

3.2 Deterministic Control Trees

Now as a result of the restrictions to the deterministic case, it is known that if is—ct{ct) then for at
most one selector r€R, r(ct)#{.
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3.2.1 Control Tree Representations

What appears in the VDL programming language wherever a control tree or sub-control tree is
needed is a two-dimensional (i.e. indentation as well as the text itself counts) representation of the control
tree object as defined above. Because of the determinism assumption, a control tree representation,
ct—rep, has one of the following forms:

1. instr
2. instr;

Succ.
An instr has one of the forms
1. In
2. in{expry, . .. ,@5),
and succ has one of the forms
1, ct—rep

2 dum:ct—rep
3. expr{dum).ct—rep.

To obtain from a control-tree representation the control tree it represents; first the dummy names, dum,
are eliminated by the following two rules:

1. Each occurrence of a dummy name, dum, as the prefix of an instruction (as in the 2nd and 3rd
forms of a suce) is replaced by a set of integer pairs: <ij> is in this set if and only if the same
dum appears as the jth actual parameter of the ith predecessor node.

2. Allusaofdummyngmainactualparameterposiﬁonsarercplamdbyﬂ.

Then the control tree represented by a given control tree representation is determined recursively by Table
1 [LLS70] given below.

3.2.2 Instruction Schemata

The instruction schemata (i.e., instruction definition in the VDL programming language) assodat-
ed with an instruction name in has, in general, the following form:

infxy, . ...x,) =
pl[xh'"lxmg)"gro'?‘l(xla"'rtmg)

Pl Bk E) GO s .. )

where each p, is a meta expression denoting a truth value and each group; has one of the two forms:
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Category Form Represented Control Tree
ct—rep instr instr
instr; ulinstr;{<rsuce>}>)
succ where r€R
instr in Poo(<s—in:in>)
in(expry, . . ..ePr) | Po(<s—inin>,<s-al:
po <elem{l).expr,>, ...,
<alem{n):expr,>)>)
succ ct—rep pct—rep;<s—ti:
: o <s—comp:I>, <s—ap:{}>)>)
dum?®:ct—rep w(ct—rep;<s—ri:
B[ <s—comp.J> <s—ap:dum*>)>)
expr(dum*).ct—rep | pct—rep;<s-ri:
tho( <s—comp:expr>,<s-sp:dum* >1>)

where: dum® is the set of ordered pairs which has replaced dum.
Table 1

1. value returning: -
PASS:€, (X, . . . .Xn,5)
s—envie,(x,, . .. +%n,E}

._‘tgleu(xp e -xmg)
s-c:e?(x,_. v o2 %,E)

where each ¢, is an arbitrary expression; any of the lines may be missing; a missing first (PASS)
line is taken as equivalent to PASS:{} .

2. Mmacro;

ct=rep(x;, . . . .%n,§)

a control tree representation.

It is now possible to define a function cont which extracts the continuation encoded by a controi
tree and return-information pair.

Each instruction schema can be considered a shorthand for a function,
Ayyis—ob" Xis—state Xis-sel Xis"ri~is—state Xis—cb,

Apfts. . . X ET ) =
pl(xh-"rtmE)"gro@:- (x].l‘"lxﬂlel?ln')



;m(xh---rtms)‘gro@r: (xh "'JxHIEITln-)

where group;” is obtained from group; according to the latter's form: If group; is
1. value returning then group;" is

(p.(p.(&;{<(s—comp(ri))oekm(f))os—aI(pred‘('r])os—c:
& (5 - - - X, E)> <0 Es-ap(ri)});
<s—env:ey(x, . .. X0, E)>,
<g-stg€,(X;, - . . 1 Xn,E)>,
<s—c:r?(x,. - X))
‘-v(xl' b ’xmg)>

2. macro, then group; is

(& <tos—c:ufct—rep(x,, . . . En ) Sa-ri:ri>)>),
o>

That is A, returns both the next state, & iz ®y, defined in [LW69], and the passed up value.

Using this A, it is possible to write a recursive function, cont, which given a deterministic control
tree ct (with therefore a unique terminal node) and return information ri, stating where in ¢ a returned
valueistobepassed,consﬁuctstheconﬁnuaﬁonemodedbythm That is:

cont:is—ct XisZri-Cont

'The continuation yielded by cont(ct,ri) is of type
VXEXS-A .

Figure 4 is useful for understanding the definition of cont.

Definition 1. Suppose is—c{ct) and is-ri(r?).

Then,

cont{ct,ri) = \(€,p,0).

(is— e},
T-cont(ct ' nri)(e’ p’,0"))

tn{ct) 7 ()LT)(TEnd(ct) & (Vx)(x €nd(ct)Opred(x) # 1)),
T = tn{ct),
et = p(ct;{<(s—comp(n'))oekmo')os-ai(prod"'1(1')]:e>|<i,j> €s-ap(ri)}),
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node = (ct?),

in = s—in(node),
al = s-al{node),
nri = s—ri(node),

n = number of formal parameters in schema for s-in(node), and
<;L°(<an:p’>,<s—st;:a‘>,<s—c:cr'>),e’) =
Ay{elem(,al), . . . ,elem(n,al),

o <s—env:p>,<s-stg:0>,<s—c:8(ct1,1)>),7,nri)

In the above, ta identifies the selector T selecting the terminal node of ct. Also, recall that 8(0,x) deletes
the object at x(O) from O.

4. From Nondeterministic Control Trees to Parallel Continuations (Informal Discussion)

The ultimate goal of this Section is to obtain a parallel continuation which can be used in equations
to define the meanings of syntactic constructs in a denotational, syntax-directed manner. Section 3 started
with deterministic control trees and obtained by a particular construction continuations and equations such
that the contro} trees and continuations could be used interchangeably in the equations. Thus, this Section
starts with nondeterministic control trees and follows the same construction in an attempt to obtain parallel
continuations and equations such that the control trecs and the continuations can be used interchangeably
in these equations. That is, this Section takes the paradigm of applying the nondeterministic control tree
to the rest of the state. The results are a parallel continuation and a rather messy equation. In the hopes
that the control trees and the continuations can be used in the equations, the messiness of the equations is
tolerated. It turns out that only the control trees may be used in the equations. Examination of the equa-
tions shows why continuations cannot be used in them and suggests a cieaner formulation of the equations
suitable for use with the control trees only. It does however turn out that from any control tree used in ei-
ther of the equation forms, one can obtain the parallel continuation that it encodes.

4.1  Unmodifications and New Modifications to EPL+ Machine

First undo the changes to the EPL+ machine of Section 2.2 which made the control tree strictly
deterministic. That is, the commas are re-introduced and the macros which had originally expanded into
sets of instructions are put back into that form. At this point, a typical state looks as shown in Figure 5.
The control tres may have several terminal nodes. At any given state, any terminal node may be selected
for execution -- giving rise to nondeterminism in the computation sequence.

If EPL+ were now extended to permit parallel blocks, e.g.,

a sequence of statements which are executed asynchronously (i.e., possibly completely interleaved parallel-
ism) some additional changes to the state and the instruction definitions must be made. Since the execu-
tion of each of these statements may independently enter blocks, procedures, and functions and may do
gotos, each must be able to operated in its own environment rather than from a single global shared en-
vironment. They must, however, all share the same global storage, otherwise the nondeterminism will not
make itself felt through possible nondeterminate results in a shared storage.

'Ihus,theenvh‘onmmtmustbermcvedfromthctoplevelofthestateandmadeaparameterof
each instruction which itself can access identifiers or which expands to at least one instruction which can
access identifiers. As a result, a typical state ends up appearing as in Figure 6. Observe that it is no longer
nmaryforoxlttohaveanmvironmmtasaparamctusimethereismglobalmﬁrcnmuﬁtorsmre.
Observe also that a label value is simply a control tree, as its environment is found directly in the instruc-
tions to execute after the goto.
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Appendix I contains a definition of EFL+ extended with a parallel block.
4.2 Nondeterministic Control Trees

A nondeterministic control tree, cont, has a set of terminal nodes. At any step in a computation,
some one of these nodes is selected. Once a node is selected, the rest of the tree, rst, is determined, i.e.,
the original tree with the selected node removed. In order to know how to pass values up or to where to
attach macro subtrees it is necessary to remember along with rst the composite selector x selecting the re-
moved node as well as the return information. This is illustrated in Figure 7.

eont

sele—gted terminal node

Figure 7

Just as in the deterministic case rt and return—info were identified as a unit, so are rst, x, and
return—info identified as a unit in the nondeterministic case. It is convenient to call the rst, x and
return—info associated with a node m of cont the p—rest of cont with respect to m and to call triples of
rsts, xs, and return—infos p—rests®. If one observes that in the deterministic case, the x of a terminal
node is uniquely determined then it is clear that, in fact, the <rst,return—info> pair for a deterministic
control tree conveys the same information as the <rst,x,return—info> triple for a nondeterministic control -
tree.

4.3 Computations and A

To execute from a state £ with control tree cont until the end, starting with this particular selection
of terminal node, it is necessary to execute the instruction at the selected terminal node. When it or its ex-
pansion is completed then rst, possibly modified by a returned value according to return—info is executed
until the end.

*4p” for parallel.



The rst itself in general has a set of terminal nodes, some of which may be terminal nodes in cont
which were not selected for execution. As a consequence, for each terminal node of cont, there is a dif-
ferent beginning of the remainder of the computation, and for each such remainder, for each terminal
node of the possibly modified rst there is a different beginning of the remainder of the remainder of the
computation. Thus, from a given control tree cont, there is a tree of possible computations, as illustrated

in Figure 8.
£q

£ £5+1 £j+2 i“-Ij+3 ‘2

Ex \;Ek+1 )fk+2

G-I S M E—Y

Figure 8

Each node of the tree is a state and each path, possibly infinite, is the computation comprised, in se-
quence, of the states lying on it.

The usua] way to fit nondeterministic computations into the information structure model frame-
work is to let the A of the triple,
(is—state,is~initial-state,A),
return for a state a set of states.
A:is-state—=P(is-state).
A transition from state £ is accomplished by selecting any element of A(§). If A(£) returns the empty set,
the computation is said to halt at £.

By analogy to the discussion of Section 2, the construction of f from A may be viewed as giving
for a particular initial state the set of answers obtainable from all computations of that initia} state, i.c.,
the set of all final states and 1 if any computation is nonterminating:

Sis~state=P(is-state+{L})

From this discussion it is clear that application of a control tree to the remainder of the state, i.e.,
the storage, should be viewed as yielding a set of answers and that a nondeterministic control tree is an en-
coding either of a set of classical continuations each yielding an answer or of a parallel continuation yield-
ing a set of answers.



4.4 Application of Nondeterministic Control Trees

Let cont be a nondeterministic control tree and let stig be storage. Then application of cont to stg
gives rise to a set of answers. A subset of these answers is obtained by selecting one of the terminal nodes
of cont, say v, executing its instruction inst in srg and its p—rest to yield new storage stg’ and a new conp-
trol tree cont’, and then applying cont’ to szg’. The application of cont’ to stg’ itself yields the required set
of answers.

To be more precise, suppose {m,, . . . ,M,} is the set of terminal nodes of cont. Suppose that the
p—rest of cont with respect to m; is <rst, X, return—info,>. Suppose that the instruction of = is Inst;.
Then,

cont(stg)=|_J{ execute inst; in stg and <rst;, x;,return—info;> followed
(E1) by doing rst with the help of x; and return—info,j1si=n}.

Note, that each of the “execute inst; ..."s itself returns a set of answers so that it is necessary to take the
union of these sets to get the desired set of answers for cont{sig).

Suppose, now, that execution of Inst; in srg and <rst;,x; return—info;> yields stg;” and cont;” .
There are three ways in which the instruction may operate:

1. If inst, is value-returning and refurn—info; is non empty, then stg;” is that explicitly yielded by the
instruction and cont,’ is rst; as modified by passing up a value from the arc selected by ¥, accord-
ing to Feturn—info;.

2. If inst, is value-returning and it calculates a new control tree, then cont’ that control tree and srg;’
is that explicitly yielded by the instruction.

3. Iflnst,ismwothensrg;'is:tgandcam,'isobtainedbyhangingthemmsubmeoffthex,arc
of rst; leaving return—info; at the node selected by x;.

However Inst; operates, the set of answers yielded by “execution of inst; ..."” is that yielded by
cont;’(stg;'). Stated equationally,

cont{stg)=1_J{ execute Inst; in stg and <rst,,x;,return—info;> followed by
(E2) doing rst, with the help of x; and return—info;|1 <i=n}
= | {cont;’ (stg,") 1 si=n}.

Following the pattern of the deterministic case, a meaning equation is built out of the last two elements of
E2 rewritten as:

U{ execute inst; in s1g and <rst,x,,return—info;> followed by doing
(E3) rst; with the help of return—info; and x,

I3 a terminal node v; of cont such that inst, is the instruction of n,
and <rst;,x;,return—info;> is the p—rest of cont w.r.t. n;}

= |J{cont;'(stg;")]2 a terminal node n; of cons such that inst; is the
instruction of m;, <rst,,x;,return=info;> is the p—rest of cont
w.r.t. m;, and execution of inst; in stg and <rst;,x;,return—info,>
yields cont,” and stg;'}.
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4.5  Meaning

The concern, then, is with the meaning of a ser of instructions (from the terminal nodes of a con-
trol tree cont) in stg and a corresponding set of p—rests (of cont with respect to the terminal nodes). Parts
of the previous sentences are parenthesized because a meaning should be defined for any set of instruc-
tions and any set of the same size of p—~rests. However, the meaning makes sense only when the instruc-
tions are all from nodes of a single control tree, and the p—resrs are all of that control tree with respect to
the same nodes.

To keep the correspondence between elements of the two sets, it is convenient to make the two
sets sequences of the same length; the ith instruction is executed in szg and the ith p—rest.

On this basis, it is possible to introduce a meaning function with functionality. *
MEInst* X (isct X is=sel X is=ri)* X is—stg~F(A)

defined by
MH<M1, .. ; ,Iﬂ‘tn>ﬂ<<ml,xl,fm-wol>,
o o o, KTSty, Xn, FEIUR = inf0, >3 5tg
(EA4) = |_J{cont,'(stg;"}| execution of inst; in stg and <rst,x,,return—info,>

yields stg;" and cont;’}

where it is assumed that there exists a control t;ee, cont, such that
1. {4 . + - » N} = the set of terminal nodes of cont, and

2. for 1=i=n, inst; is the instruction of v;, and <rst, x,return—info,> is the p—.resr of cont with
respect to ;.

The consistency assumption attached to E4 is to insure that the various pieces making up an instance of
the equation could appear in a control tree together.

Each clement of the set to which the generalized union operator is applied in E4 is a set of
answers. Thus,

M<inst,, . . . inst,>]<<rst,x, return—info,>,
(ES) . = o, KrSty, X, TEUrR— infO, > 518
= |_{anse;j1si=<n}

where anset; is determined as follows:

anset; = if execution of Inst, in stg and <rs, X, return—info,> gives rise
to a value-returning group yielding stg;," and val’
then
M[<inst/’, ... inst,'>]|<<rst,x,’ reen—info,'>, . ..,
<rsty',Xi' return—info,' >>stg;’
where cont’ is rst; with val;’ passed up from y; according to refurn—info;,

*1s2ct is the set of control trees, is—sel is the set of compound selectors, and is-ri is the set of
return—infos.



{m,". . . . ,m'}= terminal nodes of cont’,
for 1=j=h, inst)’ is the instruction of n,’, and
<rsty' x;' return—info;"> is the p—rest of cont’ w.r.t. 7’
elif execution of inst; in stg and <rsti,x;,rem—bgfo,> giVCS rise
to a value-returning group yielding stg," and cont;’, and return—info, is Q

then
Mi<inst,’, ... JInst,' > <<rst,’ x,' return—info,’>, . . .,
<rst,’,xi',return—info," >>stg;’
where {n,’, . . . ,m:'}= terminal nodes of cont’,

for 1=j=k, inst," is the instruction of 7;’, and
<rst)',x; ,return—info,'> is the p—rest of cont’ w.r.t. m,’
elif execution of inst, in stg and <rst;,x; return—info,> gives rise
to a macro group yielding a control subtree st
then
M[<inst,’, ... inst,'>]<<rst,"x,  retern—info,'>, . ..,
<rsty’ X' FEUR—infO,,' S>> 518
where con:’ is rst; with st made its x;th component,
{M,', . . . /Mx’}= terminal nodes of cont’,
for 1sj=m, inst,’ is the instruction of ', and
<rsty' X, return—info,"> is the p—rest of cont’ w.r.t. v’

co Note the lack of prime after the last *“stg” just before the last “where” co

The major reason for the complexity of ES is to insure that interleaving of value-returning instrnc-
tions is carried out to the fullest degree implied by the nondeterminism and paraflelism. ES has taken care
that if a macro instruction being interleaved with A, ..., A, expands into an interleaving of
B,...,B, thenallof A,, ..., A, B,, ..., B, are interleaved together. If care is not taken, it is easy
to end up with only the B,, . . . , B, being interleaved and then when they are all done, the interleaving of
Ay .. ., A, continuing. The former is a correct model of the nondsterminism and parallelism while the
latter is not.

For a particular VDL definition of the correct form with, say, % different instructions,
INST,, . . . .INST,, ES would be rewritten as E6 below:

M[<inst,, ..., inst,>] <<rst,x,return—info,>,
(Es) <t SIShy, X, TERUT —info,>>s13=

U {anset;|1=<i=<n}
where anset;=

case inst; in
INST, then M[si,]spr, stz,’,

HVSI} then Mﬂsikﬂsprk Stgk'
esac

where each sij is a sequence of instructions, and cach spr; is a like-lengthed sequence of p—rests.
M[[sif|spry stg," is the expression obtained by carrying out the conditional expression in ES for anser; with
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inst;=INST;. -

It is necessary to observe that the formula E6 is an equation scheme rather than an equation as is
normally given in a denotational semantic definition. It is an equation scheme and not an equation be-
cause of its dependence on the n particular instructions that happen to be at the terminal nodes of the
current control tree and the n parﬁanarp—remthathappmtorwﬂtwheneachofthcntennjnalnodes
is removed from the tree, i.c., because of its dependence on the current control tree. There is one in-
stance of this equation scheme, i.e., one equation, for each possible control tree.

In essence, the formula is an equation scheme representing a definition with an unbounded
number of equations, which are finitely specifiable by the scheme.

It is interesting to note that there is yet another finite specification for this unbounded set of equa-
tions, namely the original VDL definition from which the scheme is constructed. The VDL definition, be-
ing in fact a program, is probably less hairy to the reader than the scheme, which is in a non-direct* form
to permit the use of continuations or continuation-like objects.

The above equation scheme is messy, but it is in a form in which the meaning of a construct is
 given in terms of pieces of the control tress, i.e., p—rests, which state what is to be done after the execu-
tion of the current construct is finished. The next Section obtains the functions encoded by these control
tree pieces.

From this informal development, it seems clear that a p—rest of a control tree, that is a
<rstyreturn—info> triple plays the same role for a nondeterministic computation as does an
<rst return—info> pair Or a continuation for a deterministic computation in that the p—resz tells how to
proceed from the current storage and returned value to the final answers. Whereas the <rst,reurn—info>
pair or the continuation yields a unique answer for any given value, environment, and storage, the p—rest
in general does not yield a unique answer; it yields for any given value and storage a set of answers.

This argument suggests that whatever function a p—rest encodes, it should be on VXS to P(A).
The next Section shows that the formal construction of such a function from a given p—rest. The domain
of such functions will be called P—Cont for for Parallel Continuation, and a typical element of this domain
is called B*.

S, Formal development of paraflel continuations

The development of this Section follows that of Section 3 and in fact assumes the definitions of
that Section except as modified herein. In fact, this Section effectively begins at the end of Subsection 3.1
after which the restriction to deterministic control trees is introduced. Additionally, the present develop-
ment takes into account that the environment has been moved out of the state and into the instruction ar-

gument lists.

* in the sense of direct as opposed to continuation semantics

*p is the Hebrew letter Peh.



5.1  Control Tree Representations
Since a node may have a set of successor nodes, a control tree representation may now be either

an
1. instr oran
2. instr;

succ—set.,
with the object represented by instr being as before. The object represented by instr; succ—set is
w(instr;{<sei(x,succ —set):x>|x € succ —set})

where instr and succ represent objects as before, and sel(x,ser) defines a one-to-one mapping from objects
x€set to selectors in R.

A group e.g.,

groupi(x,, . . . ,XnE),

may be in one of two forms

1. value returning:
PASS:&(xy, . . . ,Xn,§)

s—stg:e [x,, . . . . X,,E)
s—ce5(xy,.. %0 E)

where each ¢, is an arbitrary expression; any of the lines may be missing; and a missing first
(PASS) line is taken as equivalent to PASS:{}

2. macro:

ct—rep{x,, . . . .%n,E}

a control tree representation.

A,, can now be defined as

Arlxys - o o X)) =
Py, .« « - EE)-growps (xy, . . . R ET)

'Pm(xll e lxﬂ-&)*gm@;(xli L ’xﬂaﬁc‘rari)
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where group; is obtained from group; according to the latter’s form:
1. value returning:

(u(p(ﬁ;{<(s—comp(n’)oekm0‘))os—aI(pred‘(f))os—c:
s - - » oEn8)>[<L> Ea-ap(eil),
<s-stg:€;(Xy, . - . I, E)>,
<s-c:gg{xy, . . - 1 X0 E)>)
€ (X - o - X EP

<p(E<tos—c:p(ct—rep(x,, . . . X, E);<s-ri:ri>)>),
w

With these definitions it is possible to define a function p—cent on p—rests to P—Conts,

p—cont:is—ct Xis—sal Xis~ri-P—Cont

which given the components of a p—rest, yields a P--Cont, 9, such that

D:VXS=P(A).

Figure9isuseﬁ:lforsedngwheremepimofthedeﬁniﬁonofp-cantmmeﬁ'om.

In the definition the formal parameters of p—ont, ct, 1, and ri together constitute a p—rest. The
result is a function with formal parameters €€V and o€ S which, as can be seen, returns a set of answers.

Definition 2. Suppose is—c{ct) and is—ri(ri). Suppose tn(ct) yields a set, i.e., cf is nondeterministic. Sup-
pose T€tn(ct).
Then

]

p~cont{ct,7,ri) = \(¢,0).
(is=Qct)~{a},

T-J{p—cont{cy ! pred{T;,nri)(¢, oy '))|1 =i<m})
where

ctt = p(cr;{<(s—comp(ri))oelem0']us-aI(prad"‘(‘r)):e>!<i_j> €s-ap(ri)})
{ri, . . . T} = tnfct?)
for each i€{j[1=j=m},

node; = 7;(ct")

nin; = s-in{node;),

na!, = Hi(uodei),

nn', = s—ri(node;),
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n; = number of formal parameters in schema for s—in(node;)
Cpo(<s-stg:oy' >, <s—c:ct'>),¢'> =
A,“(elem(l,ali), . . . elem(m,al),
Ro <s-stg:0>,<s—c:8(ctt,7;)>),1,nri)

6. Attempt to Use P-continuations in Equations

Thus, it is possible given a p—rest to construct the parallel continuation it encodes. The question
now arises as to whether the nondeterministic meaning equation ES of Section 4.5 can be recast into a
form in which the corresponding paralle]l continuation can be used in place of each p—rest. After all,
denotational continuation semantics for deterministic computations does use a continuation wherever the
equations of this paper use a <rst,retn—info> pair.

The answer seems to be “No!”. The control tree of a p—rest carries information which is lost
when its paralle]l continuation is extracted. Both convey the set of all possible final answers starting from a
particular (single) storage and a particular (single) value. However, only the control tree also exhibits what
will be the set of terminal nodes to choose from following the selection and execution of one of its termi-
nal nodes. This information is needed to construct the p—rest of the rst of the current p—rest with respect
to each of the resulting terminal nodes. Only with this information can macro expansion result in an inter-
leaving of the nodes of the appended subtree with those of the original rst.

Therefore, it seems that the meaning equation must be stated in terms of p—rests which explicitly
encode the nondeterministic choices and that a paralle]l condition cannot be used in the equation and main-
tain completely interleaved nonindependent parallelism. It is interesting though, that from any such
p—rest, the parallel continuation it encodes is obtainable.

This loss of information in going from control tree to continuation is not critical in the determinis-
tic case because there is only one choice at any time, and thus, it is not necessary to encode choices.

Asawmequm,memmﬁafmpmﬂleﬁsmpropmedmthispapahamnﬁnuaﬁmwnanﬁa
only in an indirect manner.

Is the semantics denotational in the sense that the meaning of a syntactic construct is constructible
from those of its direct syntactic components? If one extends the notion of syntactic construct to include a
set of them, then the answer is “Yes!” The meaning equation says that the meaning of a sequence (really,
a set) of syntactic entities is constructed from the meanings of the direct components of the individual ele-
ments of the sequence (really, the set).

The reader should observe the similarity between the p—rests and Plotkin’s resumptions. In both
cases, the transition from a state yields a set of possible next states plus p—rests or resumptions, as the
case may be. Both carry enough information to continue in the same manner from any of the possibie next
states. Plotkin and Smyth also observe that the more abstract functions on states to sets of states, called
P-continuations in the present paper, are not powerful enough to model full interleaving. The present pa-
per, however, shows how to obtain the more abstract functions from the less abstract p—rests.



6.1 Alternative Meaning and Interpreter

Itisthusrecognizedtbatthcproposedsemanﬁcdeﬁniﬁonfornondeterminismandparanelismis
only denotational and cannot be made also continuation. An opportunity then arises to abandon the non-
direct form of the meaning equation scheme, which has various nonindependent pieces of one control tree
on both sides and for which there must be integrity constraints guaranteeing that the pieces could come
from one single tree. This non-direct form was used from the beginning to permit eventual replacement
of the p—rests by parallel continuations. With the possibility of this replacement scuttled, perhaps a more
direct form ofameaningequaﬁonsdmuecanberusedinwlﬁd:themcaningﬁmcﬁonhasasinglcwhole
control tree as a parameter:

M’ Eis=ct X is-stg~P(A).

Equation E6 defining

M[<inst,, . . . ,Inst,>] <<rst, X, reurn—~info,>,
o o o, KISty Xp, TN = infO, > 518

can be revised to define
M'{[cont]stg

where cont is the control tree with terminal nodes {n,, . . . ,1,} such that for 1=i=n, inst, is the instruc-
tion of m; and <rst,x,,return—info;> is the p—rest of cont with respect to ;. Specifically

(E7) M’ [cond)stg = {anset;{1 Siﬁn}

where anset, is determined as follows:

anset; = it execution of inst, in szg and <rst;,x,,return—info,> gives rise
to a value-returning group yielding stg,’ and val)’
then
M'[[com‘, ']]stg;'
where cont’ is r3t; with val;’ passed up from x; according to retumn—info;,
elif execution of inst; in stg and <rst,,x;,return—info,> gives rise
to a value-returning group yielding stg;" and cont;’, and return—info, is O
then
M'[cont;"] stg;’
olif execution of inst, in stg and <rst,x,return—info> gives rise
to a macro group yielding a control subtree st
then
M'{cont;"]stg
where cont’ is rst; with st made its x;th component
|

This new meaning function is cleaner that the original but is still only an equation scheme. This meaning
function is essentially the interpreter, and its most direct fimte specification is the VDL definition itself!
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62  Denotation of Paraiel Programs

If one chooses to write a denotational definition of the language using the equation scheme sug-
gested by E6, it is legitimate to ask, “Just what is the denotation of a program?” Because of the existence
of the function p—ont yielding the element of P—Cont encoded by any given p—rest, there two possible
answers to this question. The denotation of a program can be taken either as a p—rest or as a parailel
continuation.

Given a program p, the p—rest denoting p is*

<interpret—program(p)l {1>,
and the parallel continuation denoting p is

p—cont(interpret—program(p),l,{).
Each of these applied (in its own way) to an initial storage srg, and an empty value yields the set of all
- answers resulting from executing p with an initial storage stg,.

If one insists that whatever is taken as the denotation be useable in an equation scheme of the
form suggested by E6 and that the denotation of a construct be constructible from the same kind of deno-
tation of its direct syntactic components, then only the p—rest denotation can be used.

In either case, the denotation of a program and its set of final answers depends of the choice of
which operations are indivisible, i.e., value-returning in VDL. It is these indivisible operations that get in-
terleaved to produce a computation sequence. A different choice of indivisible operations yields a dif-
ferent set of possible interleavings and thus a different set of final answers.

Note that the denotation of p:=p+1p:=p+1,

<Interpret—st—list{<p:=p+1p:=p+1>)1 0>,

is different from that of p:=p-+2,

<interpret—st(p:=p+2),1,(1>.

However, this is as it should be, because in the presence of other processes accessing the same memory,
the results of the two program fragments could very well be different.

There might be objections to tying the definition of a programming language to such an imple-
mentation dependent concept as the set of indivisible operations. However,

1. ultimately, in any computational system permitting shared access of a common storage medium,
there is a smallest, indivisible operation that cannot be interrupted - usually the assignment to a
single word or byte. (Without this shared access to a storage medium, parallelism is uninteresting
and poses no problems; the processes are completely independent and can be defined completely
separately.)

2. all programming languages known to this author assume that certain operations, especially assign-
ment to a single variable, are indivisible. Even Algol 68, whose definition [vWn75] says explicitly

* 1 is the identity selector.
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that which actions are inseparable (indivisible) is left undefined and thus up to the implementa-
tion, ends up specifying effecrively indivisible operations [Sch78]. There are other axioms in the de-
finition that allow deducing that even if assignation of a single variable is not indivisible in fact in
an implementing machine, it must be implemented as if it were.

3. at the language level, synchronization is used to make long sequences of operations effectively in-
divisible. This fact carries the implication of the existence of some indivisible operations, e.g., in-
crementation and test-and-set, with which the synchronization primitives can be implemented.

The final technical question is whether the recursive function definitions given in Sections 3 and §
of cont and p—cont have fixed points. This author is not in a position to answer this question and wel-
comes anyone to consider the question. He feels however that the definitions do define functions simply
because he knows that the VDL functions on which they are based work and the notion of a computation
as a sequence of states generalized by A works. These new functions capture a whole computation as a re-
cursive rendition of the loop:

while 3 an instruction to execute do
select one instruction inst;
determine set of possible next instructions;
exscuta inst

od.

7. Conciusion
This paper has presented a denotational semantics for nondeterminism and parallelism which is at

1. powerful enocugh to deal with arbitrary interleaved access to shared memory,
2. systematically constructible from an operational semantics of the same, and

3. such that a more abstract functional meaning on states to sets of states is obtainable from the
given meaning,

This paper has also dealt with the relation between VDL and denotational semantics. The conclu-
sion is that from a technical point of view, it does not matter whether a VDL or a denotational semantic
definition is given of a programming language. Section 3 shows how to construct a denotational continua-
tion semantic definition from a deterministic VDL semantic definition. Appendix IV gives a VDL defini-
tion constructed from the example denotational continuation semantic definition found in Chapter 13 of
[Ten81). Because each can be constructed from each other, both are based on the same firm mathematical
grounds. It becomes strictly a matter of taste as to which style is used. A language definer should take
into account which is easier for him or her to write and which is easier for the intended audience to use in
the intended manner.

One supposed advantage of denotational semantics is that it is easily used in proofs of properties
about the defined language. However, the fact is that operational and especially VDL definitions have
been used in proofs also [HIJ70, JL71, McG70, McG72, Bry72]. A favorite exerdise is to demonstrate the
correctness of an implementation of a language or a feature by showing the implementation operationally
equivalent to the definition. In general, any property may be proved by a computational induction that
shows it true in all states of a computation.
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Tt is clear that the mutual constructibility extends also to any formal presentation of operational
semantics. Consider the most recent (to this author’s knowledge) presentation of operational semantics
developed by Hennessy, Li, and Plotkin (See ¢.8., [P1083]). A specification in their structured operational
semantics can be systematically converted to denotational form either directly or via VDL. The rules

<skip,o>~C

<y,g>-v
<x:=y,0>~0;

<o, 0>=a’
<cp;6,>-<c,0'>

can be expressed in the denotational equations as they suggest,
C [skip}o=0c

C[x:=y]o=0o;
where C[y]Jo=v

Cleacijo=Cle]oCledo .

Alternatively, the rules may be converted into a VDL instruction for a machine with only a control tree,”

interpret(c,0)=
c= [skip] -
pass(c)
pass(j.(o; <x:v>));
vinterpret{y,o)
e= [eues] -
Interpret{c,,0’);
o’ interpret{c,,c)

and then to almost the same denotational equations.

Fmaﬂy,thispapuhasobservedthatVDLmnuolmreanyencodemnﬁnuaﬁms. One may
note that the control tree idea is even more prevalent than just in VDL definitions. Examination of Sec-
tion 2.1.4, Actions, of the Revised Algol 68 Report [vWn75] shows that the interpreter, described in En-
glish, is really a control tree with actions at each node. An action is the elaboration (execution) of a con-
struct (picce of program text) in an environ (environment). This elaboration may both have an effect on
the state and yield a value. Furthermore, examination of Sections 1.2.3 through 1.2.5, on operations, in-
structions, and the mechanization of the meta-language, of the ECMA/ANSI PL/I BASIST definition
[ANSI74] shows that the PL/I interpretation machine also has a control tree, namely a parse tree of in-
structions in the process of being executed. By a suitable systematic construction, these two definitions
may be converted to denotational semantic definitions.

*Lest the reader draw the conclusion that VDL produces longer definitions, observe that short instruction
names e.g., “C" or “<” could have been used as well.
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Appendix 1

Abstract Syntax of Program:

(A1)
(A2)
(A3)
(A4)
(AB)
(AB)
(A7)
{A7.5)
(A8)

(A9)

(A10)
(A11)
(A12)
(A13)
(A14)
(A15)
(A16)
(A17)
(A18)
(A19)

Wh.l’l:‘

is-progr == is-block

is-block == (<s—decl—part:is—decl—plrt>,<s-sb-|ist:is-sb—!ist>)

is-decl-part = ({<id:is-attr> | is-id(id)})

is-attr == is-var-attr V is-proc-attr V is-funct-attr V is-label-attr

is—vai-attr == {INT,LOG,LABVAR}

is-proc-attr == (< s-param-listis-id-list>, < s-stiis-st>)

is-funct-atte = (<s-param-listiis-id-list>, <s-stiis-st>, < s-expriis-expr>)

is-labal-attr == is-st-list '

is-st == is-assign-st V is-cond-st V is-proc-call V is-block v
is-goto-st V is-while-st

is-assign-st == (<s—left—part:is—var>,<s-right-part:is—upr>)

is-expr == is-cont V is-var V is-funct-des V is-bin V is-unary

is-const == is-log V is-int

is-var == is-id

is-funct-des = (< s-id:is-id >, <s-arg-list:is-id-list>)

is-bin = {<s-rdliis-expr>,< s-rd2:is-expr>, <s-op:is-bin-rt>)

is-unary == (< s-rdiis-expr>, <s-op:is-unary-rt>)

is-cond-st = (<s-axpr:is—a:pr),<s-then-st:is-st>,<s-alsa-st:is-st>)

is-proc-call = (< s-id:is-id >, < s-arg-list:is-id-list>)

is-goto-st = id-id )

is-while-st = (<s-cond:is-expr>, <s-body:is-st>)

is—id an infinits set of identifiers

is-log a set of constants denoting-the truth values

is—int an infinite set of constants denoting the intager values
is—undry-rt a set of unary (one-place) operators

is-binary-rt a set of binary (two-place) operators

{INT LOG} two attributes used to distinguish intager variables
from logical variables.

Abstract Syntax of State:

(51)

(S2)
(S3)
(S4)
(S5)
(S6)

(56.1)

is-state = (L s-enviis-any >, L s-clis-¢ >, < s-atiis-at>, <s-dniis-dn>>,
< s-diis-d>, < s-n:is-integer-value>)

is-env = ({<id:is-n> | is-id(id)})

is-c == ... {standard control trees as defined in LLS70)

is-at = ({<n:is-type> [is-n{n)})

is—fype == {INT,LOG,PROC FUNCT LABVAR LABCONST}

is-dn = ({<n:is-value V is-proc-den V is-funct-den V is-label-den>
§ is-n(n)})

is-proc-den == (< s-env:is-env>, <s-attr:is-proc-attr >)

41



(58.2) is-funct-den = (<s-enviis-env>>, <s-attris-funct-attr>)
(56.3) is-label-den = {<s-enviis-env>,<Ls-ciis-c >, <s-diis-d>)
(57)  is-d = (<s-enviis-eny>,<s-ciisc >, <s-diis-4>) V is-0

where:

is—n infinite set of names (used for the generation
of unique namas)

{PROC, two attributes used to distinguish function
namss and procedure names

{s-env,s-c, selectors for the components of the
s-at,s-dn,s-n}  interpreting machine

is—value infinite set of values, the integers and the truth values

The initial state for any given program t €is-progr is:
Mo < s-c:int—progr(t)>, <s-n:1>)

States £ whose controi part s-c(E) is {) are end states.

Abbreviations used in Instruction Schemata:

ENV  s-env(E)
c s-c(§)
AT s-at(E)
DN s-dn(§)
D s-d(£)
Instruction Schemata:
(I1)  Int—-progr(t) = int—block(t)
for: is-progr(t)

(2)  int—bleck(t) =
s—d: (< s-env:ENVD, L s—<:C>, <s-d:D>)
s—c:exit;
int—st—list(s—st-list(t));
int—deci—part{s—decl-part(t));
update—env{s-decl-part(L))
for: is-block(t)

@  update—env(y) =
null;
{update—id{id,n});n:un—name lid(v)*= O}
for: is-decl-part(t)
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(14)  update—id{id,n) =
s—onv:(ENV; <id:n>)
for: is-id(id), is-n(n)

(IS)  int—deci—part(t) =
i;
™ {int—decl(id(ENV),id(t)) lid(t)* 2}
for; is-decl-part(t)

(I6)  int—decl(n,attr) =
' is—var—attr{attr)-~
s—at:p(AT; <n:athr>)
is—proc—sttr{attr)-
s—at:u{AT;<n:PROC>)
s—dn:p.(DN;<n:}.l.°(<l-—lt-tr:attr>,<an:ENV>)>)
is—funct-attr{attr)-
s—at:u(AT; <n:FUNCT>)
s—dn:p.(DN;<n:p,(<s—attr:aw>,<s—cnv:EIW>)>)
is—label-attr{attr)-
s—at:u(AT; <n:LABCONST>)
s—dn:pu(DN; <n:pt, < s-env:ENV>, <s-d:D>,
< s—c:oxit;
int—st—list{attr);>)>)
for: is-n(n), is-attr(attr)

@ imt—st-list(t) =
is=< > (t)~null
T-
int—st—list(tail(t));
int—st(head(t))

for: is-st-list(t)

) int-st(y) =

is—assign—st{t)~int—assign—st(t)
is—cond—st{t)~int—cond—st(t)
is-proc—cali(t)&(at, = PROC)~int—proc—call(t)
is~block(t)~int—block(t)
is-goto—st{t)&(at, = LABCONSTvat, = LABVAR)-int—goto—st(t)
is—while—st(t)~int—while—st(t)

where: at, = ((s-id(1))(ENV))(AT)

at, = (L{ENV))(AT)
for: is-st(t)

(I9)  int—assign—st(t) =
is—var-attr(n,(AT))-
assign(n.,v);
v:int—expr(s-right-part(t))
T—arror
where: n, = (s-left-part(t))(ENV)
for: is-assign-st(t)

(110) assign(n,v) =
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(11)

(2)

(113)

(114)

(115)

$—dn: 1 (DN;n < :convert{v,n(AT))>)
for: is-n(n), is-value(v)

int—cond—st{t) =
branch(v,s—then—st{t),s—else—st(t));
v:int—expr(s—axpr(t))
for: is-cond-st(t)

branch(v,stl st2) =
convert{v,LOG)~int—st(st1)
—convert(y,L.OG)~int—st{st2)

for: is-value(v), is-st(stl), is-st(st2}

int—proc—cali{t) =
(tength(arg-list,) = length(p—list,))~
s—onv:u{env,{ < slem(i,p-list,):elem(i,arg-list,)(ENV)> |
1sislength(p-list;)}
s—d: o <s—onv:ENV> , <3<¢:C>, <s-d:D>)
s—c:axit;
Int—st(st,)
T—error :
where: n, = (s~id(t))(ENV)
p-list; = s—param-list * s—attr * n(DN),
snv, = s—env* n,(DN),
arg-list, = s—arg-list(t),
st; = s—st* s—attr * ny(DN)
for: is-proc-call(t))

exit =
s—env:s—env(D)
s—c:s—(D)
s—d:s-d(D}

int—expr(t) =
is—bin(t)~
int—bin—op(s—op(t),a,b);
a:int—expr(s—rd1(t)),
bint—expr(s—rd2())
is—unary(t)-
int—un—op(s—op(t),a);
s:Int—expr(s—rd(t))
is-funct—des(t)&(at, = FUNCT)-
pass—value(n);
Int—funct—call(t,n});
n:un—name
is—var(t)&is—var-attr{n,(AT))~
PASS:n,(DN)
is—const(t)-
PASS:value(t)
T-arror
where: n, = t(ENV),
aty = {(s-id(t))(ENV))(AT)



(116)

@7

(118)

9

(120)

for: is-expr(t)

pass—value(n} =
PASS:n(DN)

Int—funct—call(t,n) =
(length(arg-tist;) = length(p-tist,))~
s—env:p(env,{ < olem(i,p-list,):slem(i,arg-list,(ENV)> |
1sislength(p-fist,)}
s—d: (< s—env:ENV> , <3+¢:C>,<s-d:D>)
s—c:exlt;
assign(n,v);
viint—expr(expr,};
Int—st(st,)
T-earror
where: n, = {s~id(t))(ENV),
p-list, = s-param=list * s—attr * n,(DN),
snv, = s—env * n,;(DN),
arg-list, = s—arg-list(t),
st, = s-st° s—attr *n,(DN),
oxpry = s—expr * s—attr * n,(DN)
for: is-funct-des(t), is-n(n)

Int—goto—stt) =
s—env:eny,
s—did,
s—cic, :
where:n, = t(ENV),
env, = s—onv * n,(DN),
d, = s-d °n (DN),
¢; = s~ *ny(DN)
for: is-goto-st(t)

Int—while—st(t) =
loop—or—exit{v,t);
viint—expr{s—cend(t))
for: is-while-st(t)

loop—or—exit{v,t) =
convert(v,L.OG)~
int—while—st(t);
Int—st(s-body(t))

~convert(v,LOG)-null
for: is-value(v), is-while-st(t)
where (defined):
un—name =
PASS:n,., £)
s—n:s-n(E)+1
nll =
PASS:(
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. The following functions and instructions are not further specified:

convert(v,attr) function which yields v converted (if necessary) to -
the type spedified by attr which may either be INT
or LOG.

int—bin—op(op,a,b)  Instruction which returns the result of applying the
operator op to a and b. It is left open whether
there is a conversion performed in case the operator
is not applicable to operands of type a and b.

int—un—op(op,a) - Instruction which returns the result of applying the

operator op to a (for the problem of conversion
see above).
value(a) Function which yields the value given a constant a.



Appendix I

Abstract Syntax of Program:
(Al) is-progr = is-block
(A2) is-block = (<s-decl-partis-decl-list> , <s-st-list:is-st-list>)
(A3) is-ded = (<s-idis-id>,<s-attr:is-attr>)
(A4) is-attr = is-var-attr v is-proc-attr v is-funct-attr v is-label-attr
(AS5) is-vai-attr = {INT,LOG,LABVAR}
(A6) is-proc-attr = (<s-param-listis-id-list>, <s-stis-st>)
(A7) is-funct-attr = (<s~param-1ist:is—id-1ist>,<s-st:‘s-st>,<s-expr:is-expr>)
(A7.5) is-label-attr = is-st-list
(A8)  is-st = is-assign-st v is-cond-st v is-proc-call v is-block v
is-goto-st v is-while-st
(A9) is-assign-st = (<s-left-part:is-var>,<s-right-part:is-expr>)
(A10) is-expr = is-cont v is-var v is-funct-des v is-bin v is-unary
(All) is-comst = is-log v is-int
(A12) is-var =is-id
(A13) is-funct-des = (<s-idds-id> , <s-arg-list:s-id-list>)
(Al14) is-bin = (<s-rdl:s-expr>, <s-rd2is-expr>,<s-opis-bin-rt>)
(A15) is-unary = (<s-rdis-expr>, <s-opis-unary-rt>)
(A16) is-cond-st = (<s-expr:is‘cxpr>,<s-then-st:is-st>,<s-else-st:is-st>)
(A17) is-proc-call = (<s-idds-id>,<s-arg-listds-id-list>)
(A18) is-goto-st = id-id :
(A19) is-while-st = (<s-condsis-expr>, <s-body:is-st>)
where: ‘
is—id an infinite set of identifiers
is=log a set of constants denoting the truth values’
is—int an infinite set of constants denoting the integer values
is—undry—rt a set of unary (one-place) operators
is~binary-rt  a set of binary (two-place) operators
{INT,LOG} two attributes used to distinguish integer variables
from logical variables.
Abstract Syntax of State:
(S§1)  is-state = (<s-envis-env>,<s-Ciis-c> , <s-stgris-stg>)
(2) is-env = ({<idis-n> | is-id(id)})
(S3) isc = ... (standard control trees as defined in LLS70)
(34)  is-stg = ({<n:(<s-dnis-den>,<s-atis-type>) | is-n(n)>})
(S5) is—type = {INT,LOG,PROC,FUNCT,LABVAR,LABCONST}
(S6) is-den = is-proc-dem v is-funct-den v is-value v
is-label-den v is-UNINIT
(S6.1) is-proc-den = (<s-envis-env>,<s-attris-proc-attr>)
($6.2) is-funct-den = (<s-envis-env>,<s-attris-funct-atir>)
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(S6.3) is-label-den = (<s-envis-env>,<s-cis-c>)

where:
is=n infinite set of names (used for the generation
of unique names)
{PROC, two attributes used to distinguish function

FUNCT} names and procedure names
{s-env,s-c, selectors for the components of the

s-at,s-dn, interpreting machine
s-stg}

is-value infinite set of values, the integers and the truth values

The initial state for any given program t €is—progr is:
1o (<s-cint—progr(t)>,<s-n:1>)

States £ whose control part s-c(£) is () are end states.

Abbreviations used in Instruction Schemata:

ENV  s-env(f)

c s-c(£)
STG  s-stg(E)

Instruction Schemata
(1)  int—progr(t) = int—block(t)
for: is-progr(t)
(12)  int—block(t) =
exit(ENV);

int—st—list(s-st-list(t));
int—decl—part(s—deci—part(t),C,ENV);
update—env(s-decl-part(t))
for: is-block(t)

(B) update—env(t) =
ig=< > (1)~null
Tﬂ
update—env(tail(t)):
update—id(s—id(head(t)),n);
n:un—name
for: is-decl-part(t)

(14)  update—id{id,n) = s—env:u(ENV;<id:n>)



for: is-id(id), is-n(n)

(IS)  int—decl—part(t,cuterct,outereny) =
is=< > (t)~null
T=
int—decl—part(tail(t),outerct,outereny);
int—deci(s—id(head(t))(ENV),s-attr{head(t)),outerct,outaranv);
for: is-decl-part(t), is-c{outerct), is-env(outerenv)

16) int—deci(n,attr,cuterct,outerenv) =
is—var-atsr(attr)-
s—stg:u(STG;
<niph{<s—atiatir>,
<3-dn:UNINIT>)>)
is-proc-attr(attr)-
s—stg:(STG;
<[ < s-at:PROC>,
< s—dn: i, < s-attratte>,
<s—env:ENV>)>)>)
is~funct—attr(attr)=
s—stg:i.(STG,;
&0 oo < s—-at:FUNCT >,
<a—dn:po( <s-attrattr>,
<s-anv:ENV>)>)>)
is—label-attr(attr)-
s—stg: u(STG;
< n:y{ < 3-at:LABCONST >,
< 3~dn:py( < s—env:ENV>,
<s-c:
w{outerct; <SUCC, * tn(outerct):
exit{outerenv);
int—st—list(attr)>)>)>)
for: is-n(n), is-attr(attr), is-c{outerct), is-env(cuterenv)

Note: tm(control-tree) is the composite selector selecting, in this case, the unique terminal node of control-
tree. Thus, the mutation of outerct above has the effect of appending the sub control tree
exit(outerenv);
int—st—list{attr)
to the terminal node end of outerct, thus creating a control tree which executes from the labelled state-
ment on. Tn is defined formally in section 2.

(I7)  int—st—-list(t) =
is=< > (t)~null
T-D
int—st—list{tail(t));
Int—st{head(t))

for: is-st-list(t)

(I3)  Int—stft) =
is—assign—st{t)~int—assign—st(t)
is—cond—st{t)~int—cond—st(t)
is—proc—all(t)&(at, = PROC)~int—proc—call(t)
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~is=~block(t}=int—block(t)
is-goto-st{t)&(at, = LABCONSTVat, = LABVAR)-int—goto—st(t)
is—while—st(t)~int—while—st(%)
where: at, = s-at{(s-id(t)(ENV)(STG),
C aty = s-at{(t{ENV)(STG)
for: is-st(t)

(19)  Int—assign—st(t) =
is—var-atir(s—at® n (STG))~
assign(n,.v);
v:int—expr(s—right—part(t))
T—error
where: n, = (s-lsft-part{t}}{ENV)
for: is-assign-st(t)

(110) assign(n,v) =
s—stg:(STG; <s—dn * n:convert{v,s—at * n{STG))>)
for: is-n(n), is-value(v)

(1) int—cond—st{t) =
branch(y,s-then—st{t),s-else-st(t));
v:int—expr(s—expr(t))
for: is-cond-st(t)

(I12) branch(v,stl,st2) =
convert{v,LOG)~Int—st(st1)
—convert(v,LOG)=int—st(st2)

for: is-value(v), is-st(st1), is-st(st2)

(I13) int—proc—call(t) =
(length(arg-list,) = length(p-list;})~
exit{ENV);
Int—st(st,);
establish—env{env,,p-list, arg-list,)

where: n, = (s-id(t))(ENV),

p-list, = s—param-list * s—attr * s—dn ° n,{STG),

env, = s—env *s—dn °n,(STG),

arg-list, = s—arg-list(t),

st; = s—st* s—attr * s—dn * n;(STG)
for: is-proc-call(t)

(I13") establish—env(env,p-list,arg-list) =
s—env:pu(env;{ < elem(i,p-list):elom(i,arg—list)(ENV)> |
1=si<length(p-list)}
for: is-env{env), is-id-list(p-list), is-id-list(arg-list)
(T14) exitfenv) =
s—env:env

for: is-env(env)

(I15) int—expr(t) =

is—bin(t)-
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us)

ty)

@y

(119)

(120)

Int—bin—op(s—op(t),a,b);
a:int—expr(s—rd2(t));
b:int—expr{s—rd1(t))
is~unary(t)~

int—un—op(s—op(t),a);
a:int—expr{s—rd(t))
is—funct—des(t)&(at, = FUNCT)~
int—funct—call(t)
is—var(t)&is—var—atir(s—at * n,(STG))~
PASS:s—dn *n,(STG)
is—const{t)~
PASS:vaiue(t)
T-earror
where: n, = t(ENV),
at, = s—at* (s~id(t)(ENV))(STG)
for: is-expr(t)

pass—back{v) = PASS:v
for: is-value(v)

int—funct—call(t) =
(length(arg-list;) = tength(p-fist;)}~
pass—back(v); )
oxit(ENV),
v:int—expr{expr,);
int—st(st,);
establish—env{env, p-list, arg-list;)

where: n, = (s-id(t}){(ENV),

p-list, = s—param-list * s—attr* s-dn * n,(STG),
eny, = s—env " s~dn *n,(STG),
arg-list, = s—arg-list(t),
st, = s~st " s—atir * s—dn * ny(STG),
expr, = s—expr * s—attr * s—dn * n,(STG)
for: is-function-des(t)

Int—goto—st{t) =
s—env:env,
s—cic,
where: dn, = s—dn * (L{ENV))(STG),
env, = s—env{dn,),
€, = s—<(dn,)
for: is-goto-st(t)

Int—while—st(t) =
loop—or—exit(v,t);
v:int—expr(s—cond(t))
for: is-while-st(t)

loop—or—exit(v,t) =
convert(v,LOG)~
int—while—st(t);
int—st({s-body(t))
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“T-null
for: is-value(v), is-while-st(t)

where (defined):
un-—name =
PASS:n
where: n(STG) = O

null =
PASS:Q)

The following functions and instructions are not further specified:

convert(v,attr) function which yields v converted (if necessary) to
the type specified by attr which may either be INT
or LOG.

int—bin—op(op,s,b) Instruction which returns the result of applying the
operator op to a and b. It is left open whether
there is a conversion performed in case the operator
is not applicable to operands of type a and b.

int—un—op(op,s) Instruction which returns the result of applying the
operator op to a (for the problem of conversion
see above).

value(a) Function which yields the value given a constant a.
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Appendix 1 '

Abstract Syntax of Program:
(Al) is-progr = is-block
(A2) is-block = (<s-decl-partis-decl-part>, <s-st-list:s-st-list>)
(A3) is-decl-part = ({<idis-attr> [ is-id(id)})
(A4) is-attr = is-var-attr v is-proc-attr v is-funct-attr v is-label-attr
(AS)  is-var-sttr = {INT,LOG,LABVAR}
(A6) is-proc-attr = (<s-param-listis-id-list>,<s-st:is-st>)
(A7) is-funct-attr = (<s-param-list:s-id-list>, <s-stis-st>,<s-expris-expr>)
(A7.5) is-label-attr = is-st-list
(A8)  is-st = is-assign-st v is-cond-st v is-proc-call v is-block v
is-goto-st v is-while-st v is-par-block
(A9) is-assign-st = (<s-left-partis-var> ,<s-right-part:is-expr>)
(A10) is-expr = is-cont v is-var v is-funct-des v is-bin v is-unary
(Al11) is-const = is-log v is-int
(A12) is-var = is-id -
(A13) is-funct-des = (<s-idds-id>,<s-arg-listis-id-list>)
(Al4) is-bin = (<s-rdl is-expr>, <s-rd2:is-expr>,<s-opis-bin-rt>)
(A15) is-unary = (<s-rd:is-expr>,<s-opis-unary-rt>)
(Al6) is-cond-st = (<s-expris-expr> ,<s-then-st:is-st> ,<s-else-stis-st>)
(A17) is-proc-call = (<s-idds-id> ,<s-arg-listds-id-list>)
(A18) is-goto-st = id-id ’
(A19) is-while-st = (<s-condis-expr>,<s-body:s-st>)
(A20) is-par-block = (<s-paris-st-list>)
where:
is—id an infinite set of identifiers
is-log a set of constants denoting the truth values
is-int an infinite set of constants denoting the integer values
is=undry-rt a set of unary (one-place) operators
is-binary-rt  a set of binary (two-place) operators
{INT,LOG}  two attributes used to distinguish integer variables
from logical variables.
Abstract Syntax of State:
(S1)  is-state = (<s-cis-c>,<s-stgis-stg>)
(82) is-emv = ({<idis-n> ] is-idGd)})
(83) isc = ... (standard control trees as defined in L1.570)
(84) is-stg = ({<n:(<s-dnis-den>,<s-atis-type>) [ is-n(n)>})
(S5) is-Eype = {INT,LOG,PROC,FUNCT,LABVAR,LABCONST}
(S6) is-den = is-proc-den v is-funct-den v is-value v
is-label-den v is-UNINIT
(S86.1) is-proc-den = (<s-envis-env>,<s-attris-proc-attr>)
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(86.2)
(86.3)

where:

is-funct-den = (<s-envis-env>,<s-attris-funct-attr>)
is-label-den = (<s-cis-c>)

is~n infinite set of names (used for the generation
of unique names)
{FROC, two attributes used to distinguish function

FUNCT} names and procedure names

{s-env,s-c, selectors for the components of the
s-at,s-dn, interpreting machine
s-stg}

is—value infinite set of values, the integers and the truth values

The initial state for any given program t €is-progr is:

Wo{<s-ciint—progr(t)>,<s-n:1>)

States £ whose control part s-c(£) is ) are end states.

Abbreviations used in Instruction Schemata:

c s-c(£)
STG  s-stg(§)

Instruction Schemata:

1)

1)

(B)

4

int—progr(t) = int—block{t,{])
for: is-progr(t)

int—block(t,env) =
exit;
Int—st—Hst{s—st—list(t),env’);
int—decl—part(s—deci-part(t),env’);
onv':update—env{s-decl-part(t),env)
for: is-block(t), is-env(env)

update—env(t,env) =
pass—env(e,onv);
{id(e):un—name |id(t)! =2}
for: is-decl-part(t), is-env(env)

pass—env(e,env) =

PASS:penv;{<id:n> |id(e)# &id(e)=n}
for: is-env(e), is-env(env)
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(I5)  int—deci—part{t,env) =

null; :
{int—decl(id(env),id(t),env)|id(t) = 0}
for: is-decl-part(t), is-env(env)

(I6)  int—decl(n,attr,env) =
is-var-attr{attr)-
s—stg:u(STG;
<n:py(<s-atiattr>,
< s-dn:UNINIT>)>)
is—proc—attr{atir)-
s—stg:p{STG;
<0y < s-at:PROCS,
< s—dn: (< s-attratie>,
< s—anv:env>)>)>)
is=funct—attr{atir)-
s—stg:u(STG;
: < N <82t FUNCT >,
< s~dn:ph (< s-attriatte>,
<s-envieny>)>)>)
is—label-sttr{atir)-
s—stg:L(STG;
<[ € 9~at:LABCONST >,
< s~dn:j,
<s—c:
1(C; <pred*(r{C):
int—st—list{attr)>)>)>)>)
for: is-n{n), is-attr{attr), is-env(env)

Note: 7 is the formal parameter of the function @y, ae, Which is a composite selector selecting the
currently executed instruction in s—<(£); when the instruction schema for int—decl is converted into the de-
finition of ®yy—qeqy the T in the schema ends up being bound by the formal parameter 7 in the definition of
Dy ce- Pred(x) is the composite selector selecting two nodes up from the leaf end of x. These are de-
fined formally in section 4.

an Int—st—list(t,env) =
is~< > (t)~null
T-o
int—st—list(tail{t),onv);
int—st{head(t),env)
for: is-st-list(t)

(I8)  int—st(tenv) =

is-assign—-st(t)~int—assign—st(t,env)
is—cond-st{t)-int—cond—st(t,env)
is-proc—call(t)&(at, = PROC)~int—proc—call(t,env)
is—block(t)~int—block{t,env)
is-goto-st(t)&{at, = LABCONSTvat, = LABVAR)-Int—goto—st{t,anv)
is~while—st(t)-int—while—st{t,env)

where: at, = s—at((s-id{t)(env)(STG),

at, = s—at{(t{env)(STG)
for: is-st(t)
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1)

110)

@y

12

(13)

03)

(14)
ws)

int—assign—st(t,env) =
is—var—attr(s—at * n,(STG)~
assign(n,,v);
v:int—expr{s—right—part{t))
T-error

where: n, = (s—left—part(t))(env)
for: is-assign-st(t)

assign(n,v) =
s—stg: u(STG; <s—dn * n:convert{v,s—at * n(STG))>)
for: is-n(n), is-value(v)
Int—cond—st(t,env) =
branch(v,s—then-st{t),s—else—st(t),env);
v:int—expr(s—expr(t))
for: is~cond-st(t), is-env(env)

branch(v,st1,s%2,env) =
convert(v,LOG)~int—st{st1,env)
—~convert(v,LOQ)~int—st(st2,env)

for: is-value(v), is-st(stl), is-st(st2), is-env(env)

Int—proc—cali(t,env) =
(tength{arg-list,}=tength(p—list,)~
exit; )
int—st(st, env’);
env’:establish—env(env, p-list, arg-list,env)

where: n, = (s—id{t})(env),

p-list, = s-param-list ® s—attr * s—dn * n,{STG),

env, = s—env * s—dn " n,(STG),

sty = s-st ° s—attr * s—dn *n,(STG),

arg-list, = s—arg-list(t)
for: is-proc-cali(t)

establish—env{env, p-list, arg-list, env) =
PASS:w(envy;{ <elem(i,p—list,):elem(i,arg-list,)(onv)> |
1sislength(p-list,)}
for: is—env{env,),is—id-list{p-list,),is—id~list(arg—tist;),is—env{env)

exit = null

int—expr(t,env) =
is=bin{t)-
int—-bin—op(s—op(t),a,b);
a:int—expr(s—rd1(t),env),
b:int—expr(s—rd2(t),env)
is—unary(t)~
Int—un—op(s—op(t),a);
a:int—expr{s—rd(t),env)
is~funct—des(t)&(at, = FUNCT)~
int—funct—cali(t,env)
is—var(t)&is—var—attr(s—at * n,(STG))~
PASS:s—dn ° n,(STG)
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is—const{t)-PASS:valus(t)
T-error
where: n, = t(env),
at, = s~at " (s-id{(t)(env))(STG)
for: is-expr(t), is-env(env)

(I16) pass—back(v) = PASS:v
for: is-value(v)

(I17) int—funct—calift,env} =
(length(arg-list;) = length(p-list,))-
pass—back(v);
exit;
v:int—expr(expr env’);
int—st(st, onv’);
env: utablllh—onv(anv,,p-hstbarg-llst,,env)
where: n, = (s-id(t))(env),
p-list, = s—param-list * s—attr ® s—dn * n,{STG),
env, = s—env * 3~dn *n,(STG),
arg-list,; = s—arg-list(t),
sty = s—st ° s—attr * n,(STG),
axpr, = s—expr * s—attr ® s~dn * n,(STG)
for: is-function-des(t), is-env{env)

(T18) int—goto—st(t,env) =
s—c:s—¢ * 3—dn * {t{env))(STG)
for: is-goto-st(t), is-env(env)

(119)  int—while—st(t,env) =
loop—or—exit(v,,env);
viint—expr{s—cond(t),env)
for: is-while-st(t), is-env(env)

(120) loop—or—exit(v,tenv) =
convert(v,LOG)~
int—while—st(t,env);
Int—st{s-body(i),env)
T-nuil
for: is-value(v), is-while-st(t), is-env(env)

(121) int—par—bilock{t,env) =
null;
{il'lt"" .t('hm(il"P. r(t));‘ﬂ\') | 1=sislength (]-p. r(tn}
for: is-par-block(t)

where (defined):
un—name =
PASSm
where: n(STG) =

nutl =
PASS:()
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. The following functions and instructions are not further specified:

convert(v,attr) function which yields v converted (if necessary) to
the type specified by attr which may either be INT
or .

int—bin—op(op,a,b) Instruction which returns the result of applying the
operator op to a and b. It is left open whether
there is a conversion performed in case the operator
is not applicable to operands of type a and b.

int—un—op(op,a) Instruction which returns the result of applying the
operator op to a (for the problem of conversion
see above).

value(a) Function which yields the value given a constant a.
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Appendix ID
Abstract Syntax of Program:

is-progr = is-block

is-block = (<s-ded-part:is-ded-1ist>,<s-st-list:is-st-]ist>)

is-ded = (<s-idds-id>,<s-attris-attr>)

is-attr = is-var-attr v is-proc-attr v is-funct-attr v is-label-attr

is~vai-attr = {INT,LOG,LABVAR}

is-proc-attr = (<s-param-listsis-id-list>, <s-stis-st>)

is-funct-attr = (<s-param-]ist:is-id—1ist>,<s—st:is-st>,<s-expr:is-expr>)

is-label-attr = is-st-list

is-st = is-assign-st v is-cond-st v is-proc-call v is-block v
is-goto-st v is-while-st

is-assign-st = (<s-1eft-part:is-var>,<s-right-part:is-cxpr>)

is-expr = is-cont v is-var v is-funct-des v is-bin v is-unary

is-const = is-log v is-int

is-var = issid -

is-funct-des = (<s-idds-id>,<s-arg-list:s-id-list>)

is-bin = (<s—rd1:is-upr>,<s-rd2:is-expr>,<s—op:is—bin-rt>)

is-unary = (<s-rd:s-expr>,<s-opis-unary-rt>)

is-cond-st = (<s-expris-expr>,<s-then-stis-st> ,<s-else-stiis-st>)

is-proc-call = (<s-idis-id>, <s-arg-list:is-id-list>)

is-goto-st = id-id .

is-while-st = (<s-condss-expr>,<s-body:is-st>)

is=id an infinite set of identifiers
is=log a set of constants denoting the truth values
is—int an infinite set of constants denoting the integer values

is—undry—rt a set of unary (one-place) operators
is-binary—rt a set of binary (two-place) operators

{INT,LOG} two attributes used to distinguish integer variables
from logical variables.

Abstract Syntax of State Components:

(82)
(54)
(S5)
(S6)

(86.1)
(86.2)
(56:3)

is-env = ({<iddis-n> | is-id(id)})
is-stg = ({<n:(<s-dnis-den>,<s-atis-type>) | is-n(n)>})
is—type = {INT ,.LOG,PROC,FUNCT,LABVAR,LABCONST}
is-den = is-proc-den v is-funct-den v is-value v

is-label-den v is-UNINIT
is-proc-den = (<s-envis-env>,<s-attris-proc-attr>)
is-funct-den = (<s-env:is-env>,<s-atu':is-ftmct-attr>)
is-label-den = (<s-envis-env>,<s-cis-in-Cont>)
is-in-Cont(p) = p €Cont
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is—n infinite set of names (used for the generation
of unique names)

{PROC, two attributes used to distinguish function

FUNCT} names and procedure names

{s-env,s-c, selectors for the components of the

s-at,s-dn, interpreting machine

s-stg}

is-value infinite set of values, the integers and the truth values
Note that predicates of the form

is-t = {<dids-r>{is-d(d)}
describe tables, i.e., functions on is=d to is~r. In fact, Foralltmchthatls-t(t),’l'heremstsaumquef

€ [is™~d~is>r| such that for all d such that is-d(d),
d(t) = £(d);
f is said to be the function represented by the table t (f is unique since for all 4’ not appearing explicitly in
t, d(t") is taken as {2). In addition,
p(t;<dr>)
represents the function
fldr).
is-anv
represent the elements of
fis~id-is~n],

Thus, the elements of

and the elements of

is-stg
represent the elements of

[is=n={<s—dn:is—den> < s-atiis-type>)].
In denotational semantics, function application is denoted by juxtaposition of the functicn name with its ar-
guments. In VDL, function application is denoted by the function name followed by a parenthesized argu-
ment list. When calculating values of arguments to the denotational meaning function and to a continua-
tion, the VDL convention is used, but when applying the denotational meaning function or a continuation,
the denotational semantics convention is used.

Semantic Equations:

In the following,
is-env(ENV), is-in-Cont(p), is-stg(STG),
is-env(env), is-stg(srg), is-value(v), and likewise
for any primed version of these symbols.

(1) Mean [int—progr(t)] ENV P STG =
Mean [int—block(t)] ENV P STG

for: is-progr(t)
(I2) Mean [int—block(t)] ENV P STG =

Mean [update—env(s—decl-pari(t)]] ENV P’ STG
wherep ' v env s1g =



Mean [dsle(s—decl-part(t),s-st-list(t),p ,ENV)] env D sg
for: is-block(t)

(R Mean [dsle{dp,sl,outerquf,outerenv)] ENV p STG =
Mean [[int-docl—part(dp,outerquf,uuturonv)] ENV P’ STG
wherep'’ v env 513 =
Mean [sie(sl,outereny)] env P stg
fors-decl-part(dp), is-st-list(sl), is-in-Cont(outerquf), is-env(outerenv)

(I2") Mean [sle(sl,outerenv)] ENV P STG =
Mean [int—st—list{sl)] ENV P’ STG
wherep’ v env s1g =
Mean [exit{outerenv)] env D stg
for:is-st-list(sl), is-env{outerenv)

(3) Mean [update—env(t)] ENV D STG =
is=< >(t)=Mean [null] ENV D STG
T-~Mean [un—name] ENV p' STG
wherep’ v env 513 =
Mean [ie{s—id(head(t)),v tail(t))] env p 512
for: is-decl-part(t)

(I3') Mean [ie{is,n,dp)] ENV P STG =
Mean [update—id(id,n)] ENV D’ STG
wherep' v env s1g =
Mean Jupdate—env(dp)] env P stg
for: is-id(id), is-n(n), is-decl-part(dp)

(14)  Mean Jupdate—id(id,n)] ENV p STG =
P Q w{ENV;<id:n>) STG
for: is-id(id), is-n(n)

(IS)  Mean [Int—deci—part(t,outerquf,outerenv)] ENV p STG =
is=< > (t)~Mean [nill] ENV p STG
T-
Mean [[int—decl(s—id(head (t})(ENV),s-attr(head{t)),outerquf,
outerenv)] ENV P’ STG
where: P’ v env s1g =
Mean [int—deci—part(tail{t),outerquf,outerenv)] env p stg
for: is-decl-part(t), is-in-Cont(outerquf), is-env(outerenv)

(I6) Mean [int—deci(n,attr,outerquf,outerenv)] ENV P STG =
is—var—attr{attr)-
p {1 ENV p(STG;
< niphy( < s-atiattr >,
<s—dn:UNINIT>)>)
is—proc-attr{atir)=
p 0 ENV n(STG;
<n:py{<s—st:PROC>,
< s=dn: (< s—attratte>,
<s—env:ENV>)>)>)
is—funct—attr{atir)-
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p 1 ENV p{STG;
< n:iplp{ < s-a8:FUNCT >,
< s-dn:p,( < s—atbratir>,
<s-env:ENVD)>)>)
is—labal-attr(atir)-
p 0 ENV p{STG;
< n: (< s-at:LABCONST >,
< s~dn:p( <s—env:ENVD,
<s—<P’>)>)>)
where: P’ v env stg =
©*  Mean [sle{attr,outersnv)] env outerquf stg
for: is-n(n), is-attr(attr), is-in-Cont(outerquf}, is-env(outerenv)

(I7)  Mean [int—st—list(t)]] ENV p STG =
is=< >(t)~Mean [null] ENV D STG
T-
Mean {int—st(head(t))]] ENV P’ STG
where: P’ v env stg =
Mean {int—st—list{tail(t))} env P st8
for: is-st-list(t)

(I8) Mean [int—st(t)] ENVP STG =
is—assign-st{t)~Mean [int—assign—st{t)] ENV p STG
is—cond—st(t)~Mean [int—cond—st(t]] ENV p STG
is—proc—call(t)&(at, = PROC)~
Mean [int—proc—call(t)] ENV p STG
is-block(t)~Mean [int—block(t)] ENV P STG
is—goto—st(t)&(at; = LABCONSTVat, = LABVAR}~
Mean [int—goto—st{t]] ENV D STG
is-while—st(t)~Mean [int—while—st{t)] ENV p STG
where: at, = s-at((s-id(t)(ENV)(STG),
at, = s-at{(H{ENV)(STG)

for: is-st(t)

(9) Mean [int—assign—st(t)] ENV D STG =
is—var—attr{s-at * n,{STG))~
Mean {int—expr(s-right-part(t))] ENV D' STG

T-error

where: D’ v env s1g =
Mean [assign(n,,v)} env P Stg,
ny = (s—left—part{t))(ENV)

for: is-assign-st(t)

(110) Mean Jassign{n,v)] ENV P STG =
P 0 ENV u(STG; <s—dn * n:convert(v,s—at * n(STG))>)
for: is-n(n), is-value(v)

(T11) Mean [int—cond—st(:)} ENV D STG =
Mean [int—expr(s—expr(t)]] ENV p’ STG
where: P’ v env stg =
Mean [branch(v,s—then-st{t),s—eise—st(t))] env P 58
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(112) Mean [branch(v,stl,st2)] ENV P STG =
convert(v,LOG)~Mean [int—st(st1)] ENV p STG
—convert(v,LOG)~Mean [int—st(st2)] ENV D STG

for: is-value(v), is-st(stl), is-st(st2)

(113) Mean [int—proc—call{t)] ENV P STG =
(length(arg-list;) = length{p-tist;)}~
Mean {establish—env(env,,p-list, arg-list.)] ENV p’ STG
where:p' v env stg =
Mean [[se(st, ENV]] env P’ Stg,

ny = (s-id{t))(ENV),

p-list, = s—param-list * s—attr *s—dn* n,{STG),

env, = s-env ° s—dn " n,(STG),

arg-list, = s—arg-list(t),

st, = s—st° s-atdr * s—dn * n,(STG)

for: is-proc-call(t)

(113) Mean [establish—env({env,p-list,arg-list]] ENV p STG =
pQ p.(orw;{<alam(i,p—list):-lom(i,arg—!ist)(ENV)>l
1=5i<length(p-list)} STG
for: is-env(env), is-id-list(p-list), is-id-list(arg-list)

(I13") Mean [se(st,outerenv)] ENV p STG =
Mean [int—st(st)] ENV P’ STG
where: D’ v env s1g =
Mean [exit{outeranv)] env P stg
for: is-st(st), is-env(outerenv)

(I114) Mean [jexit{env)] ENV P STG =
p (env STG
for: is-env(env)

(115) Mean [int—expr(t)] ENV P STG =
is-bin(t)~
“ Mean [int—oexpr{s—rd1(t))] ENV P’ STG
is~unary(t)~
Mean [int—expr(s-rd(t))] ENV p’ STG
is~funct—des(t)&(at, = FUNCT)~
Mean [int—tfunct—call(t)] ENV D STG
is—var(t)is-var—attr(s-at * n (STG))~
P s—dn*n,(STG) ENV STG
is—const(t)=
D value(t) ENV STG
T-error
where: P’ a env stg =
Mean [eb(s-rd2(t),s—op(t),2)] env P Stg,
P’ aenvstg =
Mean [int—un—op{s—op(t),a)] env P Stg,
n, = {ENV),
at, = s—at* (s-id(t)(ENV)){STG)
for: is-expr(t)



(I15") Mean [ob(rd2,0p,a)] ENV P STG =
Mean [int—expr(rd2)] ENV P’ STG
where: D' b env stg =
Mean [Int—bin—op(op,a,b)] env P stg
for: is-expr(rd2), is-bin-op(op), is-value(a)

(I116) Mean [pass—back(v)] ENV P STG =
P v ENV STG
for: is-value(v)

(117) Mean [int—funct—call{t)] ENV P STG =
(length(arg-list,) = tength(p-tist;))~
Mean [establish—env(env, p-list, arg-list,)] ENV p’ STG
where: P’ v env s1g =
Mean [seep(st, expr,  ENV)] env P Stg,
1 = (s-id(8))(ENV),
p-list, = s—param-list ° s—attr * s—dn * n;(STG),
env, = s—env " s=dn * n,(STG),
arg-list, = s—arg-list(t),
st, = s—st* s=attr * s~dn * n,(STG),
oxpr, = s—expr * s—attr * s—dn ° n,(STG)
for: is-function-des(t)

(I17’) Mean [sesp(st,expr,outerenv)] ENV p STG =
Mean [Int—st(st)] ENV P’ STG
where: D’ v env stg =
Mean [jeep(expr,outerenv)] env P st2
for: is-st(st), is-expr(expr), is-env(outerenv)

(1177) Mean Jeep(expr,outerenv)] ENV P STG =
Mean [int—expr{expr)] ENV P’ STG
where: P’ v env 513 =
Mean [ep(outerenv,v)] env P stg
for: is-expr(expr), is-env(outerenv)

(I17™) Mean [ep{outerenv,vai)] ENV P STG =
Mean [exit{outerenv)] ENV D’ STG
where: P’ v env s1g =
Mean [pass—back(val)] env P s7g
for: is-env(outerenv), is-value(val)

(118) Mean [int—goto—st(t)] ENV P STG =
¢, {I env, STG
where: dn, = s—dn * ((ENV))(STG),
env, = s—env(dn,),
¢, = s—<(dn;)
for: is-goto-st(t)

(119) Mean [int—while—st(t)] ENV P STG =
Mean [int—expr(s—cond(t))] ENV P’ STG
where: P’ v env stg =
Mean [loop—or—exit{v,t)] env p stg



for: is-while-st(t)
(20) Mean [loop—or—exit(vt)] ENV P STG =
convert{v,LOG)-
Mean {int—st(s-body(t)]] ENV p’ STG

T-Mean [null] ENV P STG

where: D’ val env stg =

Mean [Int—while—st(t)] env p s13
for: is-value(v), is-while-st(t)

where (defined):
Mean [un—name] ENV D STG =
P n ENV STG
where: n(STG) =

Mean [rull] ENV P STG =
p QL ENV STG

Mean [int—bin—op(op,a,b)] ENV D STG =
P (a op b) ENV STG
where: (a op b) is the result of applying the operator op to a and b.
Itmleﬁopenwhethcrthcreuamnvamonperformedmme
the operator is not applicable to operands of type a and b.
for: is-binary-rt(op), is-value(a), is-value(b)

Mean [int—un—op(ep,a)] ENV D STG =
P (op a) ENV STG
where: (opa)lsthem\ﬂtofapplpngtheopaatoroptoa.
It is left open whether there is a conversion performed in case
the operator is not applicable to an operand of type a.
for: is-unary-rt(op), is-value(a)

The following functions and instructions are not further specified:
convert(v,attr) function which yields v converted (if necessary) to
the type specified by attr which may either be INT
or LOG.

value(a) Function which yields the value given a constant a.



Appendix IV '

Syntactic Domains:

(A1)

(A2)
(A3)
(Ad)
(AS)
(A6)
(A7)

(A8)
(A9)
(A10)

(A11)

(A12)
(A13)
(A14)
(A15)
(A16)
(A17)
(A18)

(A19)
(A20)

is-Exp = is-0 v is-1 v is-neg v is-not v is-add v is-equal v
is-Ide v is-procedure

is-neg = (<s-neg:s-Exp>)

is-not = (<s-not:is-Exp>}

is-add = (<s-addlis-Exp>,<s-add2is-Exp>)

is-equal = (<s-equallis-Exp>,<s-equal2:is-Exp>)

is-procedure = (<s-procedurezis-Com>)

is-Def = is-var-def v is-const-def
is-var-def = (<s-newis-Ide>,<s-initis-Exp>)
is-const-def = (<s-valdis-Ide>,<is-init:is-Exp>)

is-Com = is-NULL v is-assign v is-call v is-semic v is-if v
is-while v is-with v is-labeled-Com v is-Seq

is-assign = (<s-lpis-Ide>,<s-rpdis-Exp>)

is-call = (<s-calliis-Exp>)

is-semic = (<s-firstis-Com> , <is-second:is-Com>)

is-if = (<s-if-is-Exp>,<s-then:is-Com>,<s-else:is-Com>)

is-while = (<s-whilesis-Exp>,<s-dois-Com>)

is-with = (<s-withzis-Def>>,<s-dozis-Com>)

is-labeled-Com = (<s-labelis-Ide>,<s-com:is-Com>)

is-Seq = (<s-gotois-Ide>)
is-Pro = (<s-outputis-Ide>,<s-program:s-Com>>)

Semantic Domains;

(S1)
(S2)
(S3)
($4)

is=T = {TRUE,FALSE}

is=Z = { e s'2"13011?2’ Tt }

is-B = is-T v is-B

is-R = is-B v is-P

isL = --- (locations)

is-§ = ({<lis-R v is-UNUSED>{is-L()})
is-D = is-L v is-R v is—¢ v is-UNDEFINED
is-U = ({<Lis-D>Jis-Ide(D})

is-P = is-¢
is-state = (s-Uis-U>,<3-Siis-5>,<s-ciis-c>)
is-c = .- - (control trees)

is-initial-state = (<s-Uts-initial-U>,<s-S:s-initial-S>,
<s-ciint—Pro(P,B)>
where: is-Pro(P), is-B(B)

is-initial-U({<Iis-UNDEFINED> fis-Ide(T)})



(S14) is-initial-S({<1is-UNUSED>fis-L()})

Abbreviations used in Instruction Schemata:

u s-U(§)
s s-8(§)
c s-c()
Instruction Schemata:
1) int—Exp(E) =
is~0(E)=
PASS:0
is—-1{E)~
PASS:1
is—neg(E)=~
test—r—is—Z—and—negate(r);
r:int—Exp(s—neg(E))
is-not({E)-
test—r—is—T—and—not(r);
r:int—Exp(s-not(E))
is—add(E)~

test—r2—Is—Z—and—add(r, r.);

ro:test—r1—is—Z—and—int—Exp(r, s-add2(E));

r,:int—Exp(s—add1(E))
is—equai(E)=

test—r2—is—T—and—equai(r,,r,);

t,:test—r1—lis—T—and—int—Exp(r,,s—equal2(E));

r,:int—Exp(s—equail{E))
is~Ide{E)-

is—L (E{u))~PASS:{E{u))(s)
is~R(E{u))~PASS E{u)
is—procedure(E)-
PASS:int—Com(s—procedure(E});

establish—env{u)
for: is-Exp(E)

(12) test—r—is—Z—and—negate(r) =
is=Z(r)~PASS: -r
T-arror
for: is-R(r)

(I3) test—r—is—T—and—not(r) =
is—~T(r)~PASS: —¢
T-error

for: is-R(r)
14) test—r2—is—~Z—and— add(rx.fz) =

is=Z(r,)~PASS:r, +r,
T-arror
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(s)

(18)

(®)

(110)

1i)

 for: is-Def(D)

for: iS'R(f1), iS‘R(I'z)

test—r1—is—Z—and—int—Exp(r, E) =
is~2(r,)~int—Exp(E)
T-arror

for: iS-R(f:.)s IS-EIP(E)

tm—rz—ls—T—and-mﬂl(f;.le =
is~T(ry)~PASS:r,=r,
T—arror

for: is-R(r,), is-R(r,)

test—r1—Is~T—and—int—Exp(r, E) =
is=T{r,)=Int—Exp(E)
T-error

for: iS'R.(l';l), is'ExP(E)

int—Def(D) =
is—var—def(D)-
alloc—assoc{s—new(E),r);
r:int—Exp{s-init(E))
is—const—def(D)-
auoc(s—val(E),r).; .
r:int—Exp(s—init(E))

alloc—assoc{l,r) = :
@1')(is-UNUSED{" (u)))~
s—S:u(s; <lr>)
s=U:p{y;<Lt>)
T=errar
where: is-UNUSED(I{u))
for: is-Ide(T), is-R(r)

assoc(lr) =
s=Upf{y;<Lr>)
for: is-Ide(T), is-R(r)

int~Com{C) =
is—-NULL(C)~
null
is-assign(C)=
assign(s-Ip(C),r);
r:int—Exp(s—rp{C))
is-call(C)~

call(r);
r:int—Exp(s—cail(C))
is—semic(C)-
Int—Com(s-second(C));

int—Com{s—first(C))

branch(r,s—then(C),s—else(C));

is—if(C)=



' r:int—Exp(s~if(C))
is—while(C)-
loop—or—exit{r,C);
r:int—Exp(s—whils(c))
is=with{C)~
establish—env{u);
Int—Com{s—do(C});
Int—Det{s-with(C))
is-labeled-Com(C)~
establish—env(u);
int—Com{s—com(C));
assoc{s-labei(C),c’)
where: ¢’ =
c;
int~Com({C)
for: is-Com(C)

(112) null = PASS:O -

(I13) assign(lr) =
is—L(I(u))~s—5:(s; <!{u):r>}
T-error

for: is-Ide(I), is-R(z)

(114) cally) =
is—P(r)-
establish—env(u);
T~arror l'

for: is-R(r)

(115] b’”'ch(ra c L C!) =
is~T(r)=
r~int—Com(C,)
T~int—Com{C,)
T-error

for: is-R(r), is-Com(C,), is-Com(C,)
Note that the above instruction and the next instruction deviate slightly from Terment’s semantics in that

they both check that T is in the domain is=T. This checking is consistent with the rest of the instructions
and the rest of Tennent’s semantics.

(116} loop—or—exit{r,C) =

is=T(r)~
. int—Com{C);
int—Com{s—do(C))
T-
oull
T—error
for: is-R(r), is-while(C)



@7

18)

- @9

establish—env(U) =
s—Uy
for: is-UCU)

int—Seq(S) =
EF-c((s—;oho(S ))(u))~s~c:{s—goto(S))(u)

for: is-Seq(S)

int—Pro(P,B) =
astablish—env{u); .
Int—Com(s—program(P));
alloc—assoc(s—output(P),B)
for: is-Pro(P), is-B(B)






